Original Article
Copyright ©2013 Baishideng Publishing Group Co.
World J Diabetes. Apr 15, 2013; 4(2): 31-39
Published online Apr 15, 2013. doi: 10.4239/wjd.v4.i2.31
Figure 1
Figure 1 Correlation between trunk fat and bone mineral density at both lumbar and femoral sites. A: Trunk fat (TF) percentage and bone mineral density at the lumbar (BMD L; r = -0.22, P < 0.001); B: Bone mineral density at the hip (BMD H, r = -0.22, P < 0.01).
Figure 2
Figure 2 Inverse relationship between trunk fat percentage and vitamin D (A; r = -0. 27, P < 0.0005), osteocalcin (B; r = -0.49, P < 0.0001) and insulin-like growth factor-1 (C; r = -0.31, P < 0.0001) plasma levels in obese women. VITD: Vitamin D; OSCA: Osteocalcin; IGF-1: Insulin-like growth factor-1; TF: Trunk fat.
Figure 3
Figure 3 Direct relationship between trunk fat percentage, homeostasis model assessment index (A; r = 0. 18, P < 0.01), fibrinogen (B; r = 0.44, P < 0.0001) and erythrocyte sedimentation rate (C; r = 0.29, P < 0.0001) in obese women. HOMA: Homeostasis model assessment; FBN: Fibrinogen; ESR: Erythrocyte sedimentation rate; TF: Trunk fat.
Figure 4
Figure 4 Direct relationship between vitamin D, insulin-like growth factor-1 (A; r = 0. 32, P < 0.0005), hip (B; r = 0.23, P < 0.01) and lumbar bone mineral density (C; r = 0.19, P < 0.005) in obese women. VITD: Vitamin D; IGF-1: Insulin-like growth factor-1; BMD H: Bone mineral density at the hip; BMD L: Bone mineral density at the lumbar; TF: Trunk fat.
Figure 5
Figure 5 Inverse relationship between vitamin D levels with homeostasis model assessment (A; r = -0. 27, P < 0.001) and with fibrinogen (B; r = -0.28, P < 0.0005). VITD: Vitamin D; HOMA: Homeostasis model assessment; FBN: Fibrinogen.