BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Davenport MS, Khalatbari S, Liu PS, Maturen KE, Kaza RK, Wasnik AP, Al-Hawary MM, Glazer DI, Stein EB, Patel J, Somashekar DK, Viglianti BL, Hussain HK. Repeatability of diagnostic features and scoring systems for hepatocellular carcinoma by using MR imaging. Radiology 2014;272:132-42. [PMID: 24555636 DOI: 10.1148/radiol.14131963] [Cited by in Crossref: 111] [Cited by in F6Publishing: 98] [Article Influence: 13.9] [Reference Citation Analysis]
Number Citing Articles
1 Burke LMB, Sofue K, Alagiyawanna M, Nilmini V, Muir AJ, Choudhury KR, Semelka RC, Bashir MR. Natural history of liver imaging reporting and data system category 4 nodules in MRI. Abdom Radiol 2016;41:1758-66. [DOI: 10.1007/s00261-016-0762-3] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 4.2] [Reference Citation Analysis]
2 Gholamrezanezhad A, Kessler M, Hayeri SM. The Need for Standardization of Musculoskeletal Practice Reporting: Learning From ACR BI-RADS, Liver Imaging-Reporting and Data System, and Prostate Imaging-Reporting and Data System. J Am Coll Radiol 2017;14:1585-7. [PMID: 28781103 DOI: 10.1016/j.jacr.2017.06.019] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
3 Barth BK, Donati OF, Fischer MA, Ulbrich EJ, Karlo CA, Becker A, Seifert B, Reiner CS. Reliability, Validity, and Reader Acceptance of LI-RADS-An In-depth Analysis. Acad Radiol 2016;23:1145-53. [PMID: 27174029 DOI: 10.1016/j.acra.2016.03.014] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 4.8] [Reference Citation Analysis]
4 Becker AS, Barth BK, Marquez PH, Donati OF, Ulbrich EJ, Karlo C, Reiner CS, Fischer MA. Increased interreader agreement in diagnosis of hepatocellular carcinoma using an adapted LI-RADS algorithm. European Journal of Radiology 2017;86:33-40. [DOI: 10.1016/j.ejrad.2016.11.004] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 4.6] [Reference Citation Analysis]
5 Oestmann PM, Wang CJ, Savic LJ, Hamm CA, Stark S, Schobert I, Gebauer B, Schlachter T, Lin M, Weinreb JC, Batra R, Mulligan D, Zhang X, Duncan JS, Chapiro J. Deep learning-assisted differentiation of pathologically proven atypical and typical hepatocellular carcinoma (HCC) versus non-HCC on contrast-enhanced MRI of the liver. Eur Radiol. 2021;epub ahead of print. [PMID: 33409782 DOI: 10.1007/s00330-020-07559-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
6 Tang Q, Ma C. Performance of Gd-EOB-DTPA-enhanced MRI for the diagnosis of LI-RADS 4 category hepatocellular carcinoma nodules with different diameters. Oncol Lett 2018;16:2725-31. [PMID: 30008946 DOI: 10.3892/ol.2018.8884] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
7 Lewis S, Peti S, Hectors SJ, King M, Rosen A, Kamath A, Putra J, Thung S, Taouli B. Volumetric quantitative histogram analysis using diffusion-weighted magnetic resonance imaging to differentiate HCC from other primary liver cancers. Abdom Radiol (NY) 2019;44:912-22. [PMID: 30712136 DOI: 10.1007/s00261-019-01906-7] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
8 Rosenkrantz AB, Doshi AM, Ginocchio LA, Aphinyanaphongs Y. Use of a Machine-learning Method for Predicting Highly Cited Articles Within General Radiology Journals. Academic Radiology 2016;23:1573-81. [DOI: 10.1016/j.acra.2016.08.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
9 Ballotin VR, Bigarella LG, Soldera J, Soldera J. Deep learning applied to the imaging diagnosis of hepatocellular carcinoma. Artif Intell Gastrointest Endosc 2021; 2(4): 127-135 [DOI: 10.37126/aige.v2.i4.127] [Reference Citation Analysis]
10 Zheng J, Chakraborty J, Chapman WC, Gerst S, Gonen M, Pak LM, Jarnagin WR, DeMatteo RP, Do RKG, Simpson AL; Hepatopancreatobiliary Service in the Department of Surgery of the Memorial Sloan Kettering Cancer Center., Research Staff in the Department of Surgery at Washington University School of Medicine. Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma Using Quantitative Image Analysis. J Am Coll Surg 2017;225:778-788.e1. [PMID: 28941728 DOI: 10.1016/j.jamcollsurg.2017.09.003] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 5.4] [Reference Citation Analysis]
11 Bruix J, Ayuso C. Diagnosis of Hepatic Nodules in Patients at Risk for Hepatocellular Carcinoma: LI-RADS Probability Versus Certainty. Gastroenterology 2019;156:860-2. [PMID: 30776351 DOI: 10.1053/j.gastro.2019.02.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
12 Ronot M, Vilgrain V. Hepatocellular carcinoma: diagnostic criteria by imaging techniques. Best Pract Res Clin Gastroenterol. 2014;28:795-812. [PMID: 25260309 DOI: 10.1016/j.bpg.2014.08.005] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 3.4] [Reference Citation Analysis]
13 Chernyak V, Kobi M, Flusberg M, Fruitman KC, Sirlin CB. Effect of threshold growth as a major feature on LI-RADS categorization. Abdom Radiol 2017;42:2089-100. [DOI: 10.1007/s00261-017-1105-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
14 Chernyak V, Flusberg M, Law A, Kobi M, Paroder V, Rozenblit AM. Liver Imaging Reporting and Data System: Discordance Between Computed Tomography and Gadoxetate-Enhanced Magnetic Resonance Imaging for Detection of Hepatocellular Carcinoma Major Features. Journal of Computer Assisted Tomography 2018;42:155-61. [DOI: 10.1097/rct.0000000000000642] [Cited by in Crossref: 15] [Cited by in F6Publishing: 4] [Article Influence: 3.8] [Reference Citation Analysis]
15 Bargellini I, Battaglia V, Bozzi E, Lauretti DL, Lorenzoni G, Bartolozzi C. Radiological diagnosis of hepatocellular carcinoma. J Hepatocell Carcinoma 2014;1:137-48. [PMID: 27508183 DOI: 10.2147/JHC.S44379] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
16 Pahade JK, Juice D, Staib L, Israel G, Cornfeld D, Mitchell K, Weinreb J. Is there an added value of a hepatobiliary phase with gadoxetate disodium following conventional MRI with an extracellular gadolinium agent in a single imaging session for detection of primary hepatic malignancies? Abdom Radiol 2016;41:1270-84. [DOI: 10.1007/s00261-016-0635-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
17 Yokoo T, Singal AG, Diaz de Leon A, Ananthakrishnan L, Fetzer DT, Pedrosa I, Khatri G. Prevalence and clinical significance of discordant LI-RADS® observations on multiphase contrast-enhanced MRI in patients with cirrhosis. Abdom Radiol 2020;45:177-87. [DOI: 10.1007/s00261-019-02133-w] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
18 Giganti F, Pecoraro M, Stavrinides V, Stabile A, Cipollari S, Sciarra A, Kirkham A, Allen C, Punwani S, Emberton M, Catalano C, Moore CM, Panebianco V. Interobserver reproducibility of the PRECISE scoring system for prostate MRI on active surveillance: results from a two-centre pilot study. Eur Radiol 2020;30:2082-90. [PMID: 31844959 DOI: 10.1007/s00330-019-06557-2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
19 Zhang YD, Zhu FP, Xu X, Wang Q, Wu CJ, Liu XS, Shi HB. Classifying CT/MR findings in patients with suspicion of hepatocellular carcinoma: Comparison of liver imaging reporting and data system and criteria-free Likert scale reporting models. J Magn Reson Imaging 2016;43:373-83. [PMID: 26119393 DOI: 10.1002/jmri.24987] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 4.6] [Reference Citation Analysis]
20 Khatri G, Pedrosa I, Ananthakrishnan L, Leon AD, Fetzer DT, Leyendecker J, Singal AG, Xi Y, Yopp A, Yokoo T. Abbreviated‐protocol screening MRI vs. complete‐protocol diagnostic MRI for detection of hepatocellular carcinoma in patients with cirrhosis: An equivalence study using LI‐RADS v2018. J Magn Reson Imaging 2019;51:415-25. [DOI: 10.1002/jmri.26835] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 7.3] [Reference Citation Analysis]
21 Girometti R, Giannarini G, Greco F, Isola M, Cereser L, Como G, Sioletic S, Pizzolitto S, Crestani A, Ficarra V, Zuiani C. Interreader agreement of PI-RADS v. 2 in assessing prostate cancer with multiparametric MRI: A study using whole-mount histology as the standard of reference. J Magn Reson Imaging 2019;49:546-55. [PMID: 30187600 DOI: 10.1002/jmri.26220] [Cited by in Crossref: 35] [Cited by in F6Publishing: 26] [Article Influence: 8.8] [Reference Citation Analysis]
22 Pang Z, Margolis M, Menezes RJ, Maan H, Ghai S. Diagnostic performance of 2015 American Thyroid Association guidelines and inter-observer variability in assigning risk category. Eur J Radiol Open 2019;6:122-7. [PMID: 30976628 DOI: 10.1016/j.ejro.2019.03.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
23 Shankar PR, Kaza RK, Al-Hawary MM, Masch WR, Curci NE, Mendiratta-Lala M, Sakala MD, Johnson TD, Davenport MS. Impact of Clinical History on Maximum PI-RADS Version 2 Score: A Six-Reader 120-Case Sham History Retrospective Evaluation. Radiology 2018;288:158-63. [PMID: 29664338 DOI: 10.1148/radiol.2018172619] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
24 Shropshire EL, Chaudhry M, Miller CM, Allen BC, Bozdogan E, Cardona DM, King LY, Janas GL, Do RK, Kim CY, Ronald J, Bashir MR. LI-RADS Treatment Response Algorithm: Performance and Diagnostic Accuracy. Radiology. 2019;292:226-234. [PMID: 31038409 DOI: 10.1148/radiol.2019182135] [Cited by in Crossref: 40] [Cited by in F6Publishing: 34] [Article Influence: 13.3] [Reference Citation Analysis]
25 Sadot E, Simpson AL, Do RK, Gonen M, Shia J, Allen PJ, D'Angelica MI, DeMatteo RP, Kingham TP, Jarnagin WR. Cholangiocarcinoma: Correlation between Molecular Profiling and Imaging Phenotypes. PLoS One 2015;10:e0132953. [PMID: 26207380 DOI: 10.1371/journal.pone.0132953] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
26 Schellhaas B, Görtz RS, Pfeifer L, Kielisch C, Neurath MF, Strobel D. Diagnostic accuracy of contrast-enhanced ultrasound for the differential diagnosis of hepatocellular carcinoma: ESCULAP versus CEUS-LI-RADS. Eur J Gastroenterol Hepatol 2017;29:1036-44. [PMID: 28562394 DOI: 10.1097/MEG.0000000000000916] [Cited by in Crossref: 31] [Cited by in F6Publishing: 6] [Article Influence: 7.8] [Reference Citation Analysis]
27 Kim B, Lee JH, Kim JK, Kim HJ, Kim YB, Lee D. The capsule appearance of hepatocellular carcinoma in gadoxetic acid-enhanced MR imaging: Correlation with pathology and dynamic CT. Medicine (Baltimore) 2018;97:e11142. [PMID: 29924016 DOI: 10.1097/MD.0000000000011142] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 2.8] [Reference Citation Analysis]
28 Gregory J, Paisant A, Paulatto L, Raynaud L, Bertin C, Kerbaol A, Vullierme MP, Paradis V, Vilgrain V, Ronot M. Limited added value of contrast-enhanced ultrasound over B-mode for the subtyping of hepatocellular adenomas. Eur J Radiol 2020;128:109027. [PMID: 32361381 DOI: 10.1016/j.ejrad.2020.109027] [Reference Citation Analysis]
29 Winter TC. The Propaedeutics of Structured Reporting. Radiology 2015;275:309-10. [DOI: 10.1148/radiol.15142411] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
30 Shankar PR, Curci NE, Davenport MS. Characteristics of PI-RADS 4 lesions within the prostatic peripheral zone: a retrospective diagnostic accuracy study evaluating 170 lesions. Abdom Radiol 2018;43:2176-82. [DOI: 10.1007/s00261-017-1415-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
31 Darnell A, Rimola J, Belmonte E, Ripoll E, Garcia-Criado Á, Caparroz C, Díaz-González Á, Vilana R, Reig M, Ayuso C, Bruix J, Forner A. Evaluation of LI-RADS 3 category by magnetic resonance in US-detected nodules ≤ 2 cm in cirrhotic patients. Eur Radiol 2021;31:4794-803. [PMID: 33409789 DOI: 10.1007/s00330-020-07457-6] [Reference Citation Analysis]
32 Horvat N, Nikolovski I, Long N, Gerst S, Zheng J, Pak LM, Simpson A, Zheng J, Capanu M, Jarnagin WR, Mannelli L, Do RKG. Imaging features of hepatocellular carcinoma compared to intrahepatic cholangiocarcinoma and combined tumor on MRI using liver imaging and data system (LI-RADS) version 2014. Abdom Radiol (NY) 2018;43:169-78. [PMID: 28765978 DOI: 10.1007/s00261-017-1261-x] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 10.0] [Reference Citation Analysis]
33 Lee JY, Huo EJ, Weinstein S, Santos C, Monto A, Corvera CU, Yee J, Hope TA. Evaluation of an abbreviated screening MRI protocol for patients at risk for hepatocellular carcinoma. Abdom Radiol (NY) 2018;43:1627-33. [PMID: 29018942 DOI: 10.1007/s00261-017-1339-5] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 11.0] [Reference Citation Analysis]
34 Ren AH, Xu H, Yang DW, Zhang N, Ba T, Wang ZC, Yang ZH. Systematic Training of Liver Imaging Reporting and Data System Magnetic Resonance Imaging v2018 can Improve the Diagnosis of Hepatocellular Carcinoma for Different Radiologists. J Clin Transl Hepatol 2021;9:537-44. [PMID: 34447683 DOI: 10.14218/JCTH.2021.00180] [Reference Citation Analysis]
35 Fraum TJ, Cannella R, Ludwig DR, Tsai R, Naeem M, Leblanc M, Salter A, Tsung A, Shetty AS, Borhani AA, Furlan A, Fowler KJ. Assessment of primary liver carcinomas other than hepatocellular carcinoma (HCC) with LI-RADS v2018: comparison of the LI-RADS target population to patients without LI-RADS-defined HCC risk factors. Eur Radiol 2020;30:996-1007. [DOI: 10.1007/s00330-019-06448-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
36 Giganti F, Dinneen E, Kasivisvanathan V, Haider A, Freeman A, Kirkham A, Punwani S, Emberton M, Shaw G, Moore CM, Allen C. Inter-reader agreement of the PI-QUAL score for prostate MRI quality in the NeuroSAFE PROOF trial. Eur Radiol 2021. [PMID: 34327583 DOI: 10.1007/s00330-021-08169-1] [Reference Citation Analysis]
37 Thompson SM, Garg I, Ehman EC, Sheedy SP, Bookwalter CA, Carter RE, Roberts LR, Venkatesh SK. Non-alcoholic fatty liver disease-associated hepatocellular carcinoma: effect of hepatic steatosis on major hepatocellular carcinoma features at MRI. Br J Radiol 2018;91:20180345. [PMID: 30074820 DOI: 10.1259/bjr.20180345] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
38 Flusberg M, Ganeles J, Ekinci T, Goldberg-stein S, Paroder V, Kobi M, Chernyak V. Impact of a Structured Report Template on the Quality of CT and MRI Reports for Hepatocellular Carcinoma Diagnosis. Journal of the American College of Radiology 2017;14:1206-11. [DOI: 10.1016/j.jacr.2017.02.050] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 7.2] [Reference Citation Analysis]
39 Ehman EC, Umetsu SE, Ohliger MA, Fidelman N, Ferrell LD, Yeh BM, Yee J, Hope TA. Imaging prediction of residual hepatocellular carcinoma after locoregional therapy in patients undergoing liver transplantation or partial hepatectomy. Abdom Radiol (NY) 2016;41:2161-8. [PMID: 27484789 DOI: 10.1007/s00261-016-0837-1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
40 Sofue K, Burke LM, Nilmini V, Alagiyawanna M, Muir AJ, Choudhury KR, Jaffe TA, Semelka RC, Bashir MR. Liver imaging reporting and data system category 4 observations in MRI: Risk factors predicting upgrade to category 5: LI-RADS Category 4 Observations in MRI. J Magn Reson Imaging 2017;46:783-92. [DOI: 10.1002/jmri.25627] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
41 Kono Y, Sirlin CB, Fetzer DT, Kim TK, Rodgers SK, Piscaglia F, Lyshchik A, Dietrich CF, Wilson SR. Time to Clarify Common Misconceptions about the Liver Imaging Reporting and Data System for Contrast-enhanced US. Radiology 2020;295:245-7. [DOI: 10.1148/radiol.2020192557] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
42 Kim YY, Choi JY, Sirlin CB, An C, Kim MJ. Pitfalls and problems to be solved in the diagnostic CT/MRI Liver Imaging Reporting and Data System (LI-RADS). Eur Radiol 2019;29:1124-32. [PMID: 30116960 DOI: 10.1007/s00330-018-5641-6] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
43 Masch WR, Parikh ND, Licari TL, Mendiratta-Lala M, Davenport MS. Radiologist Quality Assurance by Nonradiologists at Tumor Board. J Am Coll Radiol 2018;15:1259-65. [PMID: 29866627 DOI: 10.1016/j.jacr.2018.04.021] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
44 Yamashita R, Mittendorf A, Zhu Z, Fowler KJ, Santillan CS, Sirlin CB, Bashir MR, Do RKG. Deep convolutional neural network applied to the liver imaging reporting and data system (LI-RADS) version 2014 category classification: a pilot study. Abdom Radiol45:24-35. [PMID: 31696269 DOI: 10.1007/s00261-019-02306-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
45 Darnell A, Forner A, Rimola J, Reig M, García-Criado Á, Ayuso C, Bruix J. Liver Imaging Reporting and Data System with MR Imaging: Evaluation in Nodules 20 mm or Smaller Detected in Cirrhosis at Screening US. Radiology. 2015;275:698-707. [PMID: 25658038 DOI: 10.1148/radiol.15141132] [Cited by in Crossref: 97] [Cited by in F6Publishing: 88] [Article Influence: 13.9] [Reference Citation Analysis]
46 Fowler KJ, Tang A, Santillan C, Bhargavan-Chatfield M, Heiken J, Jha RC, Weinreb J, Hussain H, Mitchell DG, Bashir MR, Costa EAC, Cunha GM, Coombs L, Wolfson T, Gamst AC, Brancatelli G, Yeh B, Sirlin CB. Interreader Reliability of LI-RADS Version 2014 Algorithm and Imaging Features for Diagnosis of Hepatocellular Carcinoma: A Large International Multireader Study. Radiology. 2018;286:173-185. [PMID: 29091751 DOI: 10.1148/radiol.2017170376] [Cited by in Crossref: 51] [Cited by in F6Publishing: 48] [Article Influence: 10.2] [Reference Citation Analysis]
47 Park SH, Shim YS, Kim B, Kim SY, Kim YS, Huh J, Park JH, Kim KW, Lee SS. Retrospective analysis of current guidelines for hepatocellular carcinoma diagnosis on gadoxetic acid-enhanced MRI in at-risk patients. Eur Radiol 2021;31:4751-63. [PMID: 33389037 DOI: 10.1007/s00330-020-07577-z] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
48 Ronot M, Purcell Y, Vilgrain V. Hepatocellular Carcinoma: Current Imaging Modalities for Diagnosis and Prognosis. Dig Dis Sci 2019;64:934-50. [DOI: 10.1007/s10620-019-05547-0] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 6.7] [Reference Citation Analysis]
49 Li J, Ling W, Chen S, Ma L, Yang L, Lu Q, Luo Y. The interreader agreement and validation of contrast-enhanced ultrasound liver imaging reporting and data system. European Journal of Radiology 2019;120:108685. [DOI: 10.1016/j.ejrad.2019.108685] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
50 Stocker D, Becker AS, Barth BK, Skawran S, Kaniewska M, Fischer MA, Donati O, Reiner CS. Does quantitative assessment of arterial phase hyperenhancement and washout improve LI-RADS v2018–based classification of liver lesions? Eur Radiol 2020;30:2922-33. [DOI: 10.1007/s00330-019-06596-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
51 Rosenkrantz AB, Ginocchio LA, Cornfeld D, Froemming AT, Gupta RT, Turkbey B, Westphalen AC, Babb JS, Margolis DJ. Interobserver Reproducibility of the PI-RADS Version 2 Lexicon: A Multicenter Study of Six Experienced Prostate Radiologists. Radiology 2016;280:793-804. [PMID: 27035179 DOI: 10.1148/radiol.2016152542] [Cited by in Crossref: 262] [Cited by in F6Publishing: 244] [Article Influence: 43.7] [Reference Citation Analysis]
52 Van Wettere M, Purcell Y, Bruno O, Payancé A, Plessier A, Rautou P, Cazals-hatem D, Valla D, Vilgrain V, Ronot M. Low specificity of washout to diagnose hepatocellular carcinoma in nodules showing arterial hyperenhancement in patients with Budd-Chiari syndrome. Journal of Hepatology 2019;70:1123-32. [DOI: 10.1016/j.jhep.2019.01.009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
53 Smereka P, Doshi AM, Ream JM, Rosenkrantz AB. The American College of Radiology Incidental Findings Committee Recommendations for Management of Incidental Lymph Nodes: A Single-Center Evaluation. Acad Radiol 2017;24:603-8. [PMID: 28169142 DOI: 10.1016/j.acra.2016.12.009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
54 Ngu S, Lebron-Zapata L, Pomeranz C, Katz S, Gerst S, Zheng J, Moskowitz C, Do RK. Inter-observer agreement on the assessment of relative liver lesion signal intensity on hepatobiliary phase imaging with gadoxetate (Gd-EOB-DTPA). Abdom Radiol (NY) 2016;41:50-5. [PMID: 26830611 DOI: 10.1007/s00261-015-0609-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
55 Jeong WK, Jamshidi N, Felker ER, Raman SS, Lu DS. Radiomics and radiogenomics of primary liver cancers. Clin Mol Hepatol 2019;25:21-9. [PMID: 30441889 DOI: 10.3350/cmh.2018.1007] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 5.8] [Reference Citation Analysis]
56 Tsai R, Mintz A, Lin M, Mhlanga J, Chiplunker A, Salter A, Ciorba M, Deepak P, Fowler K. Magnetic resonance enterography features of small bowel Crohn's disease activity: an inter-rater reliability study of small bowel active inflammation in clinical practice setting. Br J Radiol 2019;92:20180930. [PMID: 31141389 DOI: 10.1259/bjr.20180930] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
57 Bashir MR, Hussain HK. Imaging in Patients with Cirrhosis. Radiologic Clinics of North America 2015;53:919-31. [DOI: 10.1016/j.rcl.2015.05.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
58 Baron RL. The radiologist as interpreter and translator. Radiology 2014;272:4-8. [PMID: 24956044 DOI: 10.1148/radiol.14140613] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
59 Hamm CA, Wang CJ, Savic LJ, Ferrante M, Schobert I, Schlachter T, Lin M, Duncan JS, Weinreb JC, Chapiro J, Letzen B. Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI. Eur Radiol. 2019;29:3338-3347. [PMID: 31016442 DOI: 10.1007/s00330-019-06205-9] [Cited by in Crossref: 66] [Cited by in F6Publishing: 56] [Article Influence: 22.0] [Reference Citation Analysis]
60 Assadi M, Velez E, Najafi MH, Gholamrezanezhad A. The need for standardization of nuclear cardiology reporting and data system (NCAD-RADS): Learning from coronary artery disease (CAD), breast imaging (BI), liver imaging (LI), and prostate imaging (PI) RADS. J Nucl Cardiol 2019;26:660-5. [PMID: 30374849 DOI: 10.1007/s12350-018-01473-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
61 Yacoub JH, Miller FH. Understanding LI-RADS, Its Relationship to AASLD and OPTN, and the Challenges of Its Adoption. Curr Hepatology Rep 2017;16:72-80. [DOI: 10.1007/s11901-017-0337-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
62 Swenson DW, Baird GL, Portelli DC, Mainiero MB, Movson JS. Pilot study of a new comprehensive radiology report categorization (RADCAT) system in the emergency department. Emerg Radiol 2018;25:139-45. [DOI: 10.1007/s10140-017-1565-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
63 Cunha GM, Kwon H, Wolfson T, Gamst AC, Chung YE, Kim M, Kim SW, Sirlin CB, Fowler KJ. Examining LI-RADS recommendations: should observation size only be measured on non-arterial phases? Abdom Radiol 2020;45:3144-54. [DOI: 10.1007/s00261-020-02490-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
64 Gupta M, Gabriel H, Miller FH. Role of Imaging in Surveillance and Diagnosis of Hepatocellular Carcinoma. Gastroenterology Clinics of North America 2018;47:585-602. [DOI: 10.1016/j.gtc.2018.04.013] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
65 Arslanoglu A, Seyal AR, Sodagari F, Sahin A, Miller FH, Salem R, Yaghmai V. Current Guidelines for the Diagnosis and Management of Hepatocellular Carcinoma: A Comparative Review. American Journal of Roentgenology 2016;207:W88-98. [DOI: 10.2214/ajr.15.15490] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
66 Ronot M, Fouque O, Esvan M, Lebigot J, Aubé C, Vilgrain V. Comparison of the accuracy of AASLD and LI-RADS criteria for the non-invasive diagnosis of HCC smaller than 3 cm. J Hepatol 2018;68:715-23. [PMID: 29274407 DOI: 10.1016/j.jhep.2017.12.014] [Cited by in Crossref: 51] [Cited by in F6Publishing: 47] [Article Influence: 10.2] [Reference Citation Analysis]
67 Ludwig DR, Fraum TJ, Cannella R, Ballard DH, Tsai R, Naeem M, LeBlanc M, Salter A, Tsung A, Shetty AS, Borhani AA, Furlan A, Fowler KJ. Hepatocellular carcinoma (HCC) versus non-HCC: accuracy and reliability of Liver Imaging Reporting and Data System v2018. Abdom Radiol (NY) 2019;44:2116-32. [PMID: 30798397 DOI: 10.1007/s00261-019-01948-x] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 16.0] [Reference Citation Analysis]
68 Fraum TJ, Tsai R, Rohe E, Ludwig DR, Salter A, Nalbantoglu I, Heiken JP, Fowler KJ. Differentiation of Hepatocellular Carcinoma from Other Hepatic Malignancies in Patients at Risk: Diagnostic Performance of the Liver Imaging Reporting and Data System Version 2014. Radiology 2018;286:158-72. [PMID: 28853673 DOI: 10.1148/radiol.2017170114] [Cited by in Crossref: 70] [Cited by in F6Publishing: 67] [Article Influence: 14.0] [Reference Citation Analysis]
69 Tanabe M, Kanki A, Wolfson T, Costa EA, Mamidipalli A, Ferreira MP, Santillan C, Middleton MS, Gamst AC, Kono Y, Kuo A, Sirlin CB. Imaging Outcomes of Liver Imaging Reporting and Data System Version 2014 Category 2, 3, and 4 Observations Detected at CT and MR Imaging. Radiology. 2016;281:129-139. [PMID: 27115054 DOI: 10.1148/radiol.2016152173] [Cited by in Crossref: 57] [Cited by in F6Publishing: 47] [Article Influence: 9.5] [Reference Citation Analysis]
70 Liu W, Qin J, Guo R, Xie S, Jiang H, Wang X, Kang Z, Wang J, Shan H. Accuracy of the diagnostic evaluation of hepatocellular carcinoma with LI-RADS. Acta Radiol. 2018;59:140-146. [PMID: 28648125 DOI: 10.1177/0284185117716700] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
71 Yoon JH, Park JW, Lee JM. Noninvasive Diagnosis of Hepatocellular Carcinoma: Elaboration on Korean Liver Cancer Study Group-National Cancer Center Korea Practice Guidelines Compared with Other Guidelines and Remaining Issues. Korean J Radiol 2016;17:7-24. [PMID: 26798212 DOI: 10.3348/kjr.2016.17.1.7] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 5.8] [Reference Citation Analysis]
72 Esposito A, Buscarino V, Raciti D, Casiraghi E, Manini M, Biondetti P, Forzenigo L. Characterization of liver nodules in patients with chronic liver disease by MRI: performance of the Liver Imaging Reporting and Data System (LI-RADS v.2018) scale and its comparison with the Likert scale. Radiol Med 2020;125:15-23. [PMID: 31587182 DOI: 10.1007/s11547-019-01092-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
73 Kang JH, Choi SH, Lee JS, Kim KW, Kim SY, Lee SS, Byun JH. Inter-reader reliability of CT Liver Imaging Reporting and Data System according to imaging analysis methodology: a systematic review and meta-analysis. Eur Radiol 2021;31:6856-67. [PMID: 33713172 DOI: 10.1007/s00330-021-07815-y] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
74 Wang CJ, Hamm CA, Savic LJ, Ferrante M, Schobert I, Schlachter T, Lin M, Weinreb JC, Duncan JS, Chapiro J, Letzen B. Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features. Eur Radiol. 2019;29:3348-3357. [PMID: 31093705 DOI: 10.1007/s00330-019-06214-8] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 10.0] [Reference Citation Analysis]
75 Rahman WT, Hussain HK, Parikh ND, Davenport MS. Reinterpretation of Outside Hospital MRI Abdomen Examinations in Patients With Cirrhosis: Is the OPTN Mandate Necessary? American Journal of Roentgenology 2016;207:782-8. [DOI: 10.2214/ajr.16.16209] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
76 Joo I, Lee JM, Lee SM, Lee JS, Park JY, Han JK. Diagnostic accuracy of liver imaging reporting and data system (LI-RADS) v2014 for intrahepatic mass-forming cholangiocarcinomas in patients with chronic liver disease on gadoxetic acid-enhanced MRI. J Magn Reson Imaging. 2016;44:1330-1338. [PMID: 27087012 DOI: 10.1002/jmri.25287] [Cited by in Crossref: 48] [Cited by in F6Publishing: 45] [Article Influence: 8.0] [Reference Citation Analysis]
77 Miguet M, Adam JP, Blanc JF, Lapuyade B, Bernard P, Buscail E, Neau-Cransac M, Vendrely V, Laurent C, Chiche L. Multidisciplinary meetings specific to hepatocellular carcinoma: How to proceed? J Visc Surg 2019;156:217-27. [PMID: 31203872 DOI: 10.1016/j.jviscsurg.2018.09.007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
78 Tang A, Bashir MR, Corwin MT, Cruite I, Dietrich CF, Do RKG, Ehman EC, Fowler KJ, Hussain HK, Jha RC, Karam AR, Mamidipalli A, Marks RM, Mitchell DG, Morgan TA, Ohliger MA, Shah A, Vu KN, Sirlin CB; LI-RADS Evidence Working Group. Evidence Supporting LI-RADS Major Features for CT- and MR Imaging-based Diagnosis of Hepatocellular Carcinoma: A Systematic Review. Radiology 2018;286:29-48. [PMID: 29166245 DOI: 10.1148/radiol.2017170554] [Cited by in Crossref: 131] [Cited by in F6Publishing: 128] [Article Influence: 26.2] [Reference Citation Analysis]
79 Tang A, Cruite I, Mitchell DG, Sirlin CB. Hepatocellular carcinoma imaging systems: why they exist, how they have evolved, and how they differ. Abdom Radiol (NY) 2018;43:3-12. [PMID: 28840293 DOI: 10.1007/s00261-017-1292-3] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 9.7] [Reference Citation Analysis]
80 Sevim S, Dicle O, Gezer NS, Barış MM, Altay C, Akın IB. How high is the inter-observer reproducibility in the LIRADS reporting system? Pol J Radiol 2019;84:e464-9. [PMID: 31969967 DOI: 10.5114/pjr.2019.90090] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
81 Ren A, Du J, Yang D, Zhao P, Wang Z, Yang Z. The role of ancillary features for diagnosing hepatocellular carcinoma on CT: based on the Liver Imaging Reporting and Data System version 2017 algorithm. Clinical Radiology 2020;75:478.e25-35. [DOI: 10.1016/j.crad.2019.08.031] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
82 Zhang YD, Zhu FP, Xu X, Wang Q, Wu CJ, Liu XS, Shi HB. Liver Imaging Reporting and Data System:: Substantial Discordance Between CT and MR for Imaging Classification of Hepatic Nodules. Acad Radiol. 2016;23:344-352. [PMID: 26777590 DOI: 10.1016/j.acra.2015.11.002] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 5.5] [Reference Citation Analysis]
83 Morad K, Moustafa AF, Refaat AM, AbdEllatif A, ElAzab MS. Optimizing diagnostic imaging data using LI-RADS and the Likert scale in patients with hepatocellular carcinoma. Pol J Radiol 2021;86:e557-63. [PMID: 34820032 DOI: 10.5114/pjr.2021.110647] [Reference Citation Analysis]
84 Abdel Razek AAK, El-Serougy LG, Saleh GA, Shabana W, Abd El-Wahab R. Liver Imaging Reporting and Data System Version 2018: What Radiologists Need to Know. J Comput Assist Tomogr. 2020;44:168-177. [PMID: 32195795 DOI: 10.1097/rct.0000000000000995] [Cited by in Crossref: 23] [Cited by in F6Publishing: 12] [Article Influence: 11.5] [Reference Citation Analysis]
85 Allen BC, Ho LM, Jaffe TA, Miller CM, Mazurowski MA, Bashir MR. Comparison of Visualization Rates of LI-RADS Version 2014 Major Features With IV Gadobenate Dimeglumine or Gadoxetate Disodium in Patients at Risk for Hepatocellular Carcinoma. AJR Am J Roentgenol 2018;210:1266-72. [PMID: 29629800 DOI: 10.2214/AJR.17.18981] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
86 Tiyarattanachai T, Bird KN, Lo EC, Mariano AT, Ho AA, Ferguson CW, Chima RS, Desser TS, Morimoto LN, Kamaya A. Ultrasound Liver Imaging Reporting and Data System (US LI-RADS) Visualization Score: a reliability analysis on inter-reader agreement. Abdom Radiol (NY) 2021;46:5134-41. [PMID: 34228197 DOI: 10.1007/s00261-021-03067-y] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
87 Aubé C, Oberti F, Lonjon J, Pageaux G, Seror O, N'Kontchou G, Rode A, Radenne S, Cassinotto C, Vergniol J, Bricault I, Leroy V, Ronot M, Castera L, Michalak S, Esvan M, Vilgrain V; CHIC Group. EASL and AASLD recommendations for the diagnosis of HCC to the test of daily practice. Liver Int 2017;37:1515-25. [PMID: 28346737 DOI: 10.1111/liv.13429] [Cited by in Crossref: 48] [Cited by in F6Publishing: 47] [Article Influence: 9.6] [Reference Citation Analysis]
88 Joo I, Lee JM, Lee DH, Ahn SJ, Lee ES, Han JK. Liver imaging reporting and data system v2014 categorization of hepatocellular carcinoma on gadoxetic acid-enhanced MRI: Comparison with multiphasic multidetector computed tomography: LI-RADS for HCCs: Gd-EOB-MRI vs. MDCT. J Magn Reson Imaging 2017;45:731-40. [DOI: 10.1002/jmri.25406] [Cited by in Crossref: 41] [Cited by in F6Publishing: 37] [Article Influence: 6.8] [Reference Citation Analysis]
89 Kim TH, Woo S, Han S, Suh CH, Do RKG, Lee JM. Risk Factors for Hypervascularization in Hepatobiliary Phase Hypointense Nodules without Arterial Phase Hyperenhancement: A Systematic Review and Meta-analysis. Acad Radiol 2020:S1076-6332(20)30512-2. [PMID: 32962925 DOI: 10.1016/j.acra.2020.08.031] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
90 Puttagunta S, van der Pol CB, Ferri M, Sy Wat J, Kulkarni A, Carrion-Martinez I. Diagnostic Accuracy of Single-Phase Computed Tomography Texture Analysis for Prediction of LI-RADS v2018 Category. J Comput Assist Tomogr 2020;44:188-92. [PMID: 32195797 DOI: 10.1097/RCT.0000000000001003] [Reference Citation Analysis]
91 Kim Y, Furlan A, Borhani AA, Bae KT. Computer-aided diagnosis program for classifying the risk of hepatocellular carcinoma on MR images following liver imaging reporting and data system (LI-RADS). J Magn Reson Imaging. 2018;47:710-722. [PMID: 28556283 DOI: 10.1002/jmri.25772] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
92 Ko A, Park HJ, Lee ES, Park SB, Kim YK, Choi SY, Ahn S. Comparison of the diagnostic performance of the 2017 and 2018 versions of LI-RADS for hepatocellular carcinoma on gadoxetic acid enhanced MRI. Clin Radiol 2020;75:319.e1-9. [PMID: 31858990 DOI: 10.1016/j.crad.2019.11.004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
93 Sofue K, Sirlin CB, Allen BC, Nelson RC, Berg CL, Bashir MR. How reader perception of capsule affects interpretation of washout in hypervascular liver nodules in patients at risk for hepatocellular carcinoma. J Magn Reson Imaging 2016;43:1337-45. [PMID: 26559157 DOI: 10.1002/jmri.25094] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 4.0] [Reference Citation Analysis]
94 Mahmud N, Hoteit MA, Goldberg DS. Risk Factors and Center-Level Variation in Hepatocellular Carcinoma Under-Staging for Liver Transplantation. Liver Transpl 2020;26:977-88. [PMID: 32363720 DOI: 10.1002/lt.25787] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
95 Ehman EC, Behr SC, Umetsu SE, Fidelman N, Yeh BM, Ferrell LD, Hope TA. Rate of observation and inter-observer agreement for LI-RADS major features at CT and MRI in 184 pathology proven hepatocellular carcinomas. Abdom Radiol (NY) 2016;41:963-9. [PMID: 27193793 DOI: 10.1007/s00261-015-0623-5] [Cited by in Crossref: 54] [Cited by in F6Publishing: 48] [Article Influence: 13.5] [Reference Citation Analysis]
96 Hong CW, Park CC, Mamidipalli A, Hooker JC, Fazeli Dehkordy S, Igarashi S, Alhumayed M, Kono Y, Loomba R, Wolfson T, Gamst A, Murphy P, Sirlin CB. Longitudinal evolution of CT and MRI LI-RADS v2014 category 1, 2, 3, and 4 observations. Eur Radiol 2019;29:5073-81. [PMID: 30809719 DOI: 10.1007/s00330-019-06058-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
97 Corwin MT, Lee AY, Fananapazir G, Loehfelm TW, Sarkar S, Sirlin CB. Nonstandardized Terminology to Describe Focal Liver Lesions in Patients at Risk for Hepatocellular Carcinoma: Implications Regarding Clinical Communication. American Journal of Roentgenology 2018;210:85-90. [DOI: 10.2214/ajr.17.18416] [Cited by in Crossref: 15] [Cited by in F6Publishing: 3] [Article Influence: 3.8] [Reference Citation Analysis]
98 Baek KA, Kim SS, Shin HC, Hwang JA, Choi SY, Lee WH, Park CH, Lee HN, Heo NH. Gadoxetic acid-enhanced MRI for diagnosis of hepatocellular carcinoma in patients with chronic liver disease: can hypointensity on the late portal venous phase be used as an alternative to washout? Abdom Radiol (NY) 2020;45:2705-16. [PMID: 32382820 DOI: 10.1007/s00261-020-02553-z] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
99 Chernyak V, Fowler KJ, Kamaya A, Kielar AZ, Elsayes KM, Bashir MR, Kono Y, Do RK, Mitchell DG, Singal AG, Tang A, Sirlin CB. Liver Imaging Reporting and Data System (LI-RADS) Version 2018: Imaging of Hepatocellular Carcinoma in At-Risk Patients. Radiology 2018;289:816-30. [PMID: 30251931 DOI: 10.1148/radiol.2018181494] [Cited by in Crossref: 212] [Cited by in F6Publishing: 196] [Article Influence: 53.0] [Reference Citation Analysis]
100 Schellhaas B, Hammon M, Strobel D, Pfeifer L, Kielisch C, Goertz RS, Cavallaro A, Janka R, Neurath MF, Uder M, Seuss H. Interobserver and intermodality agreement of standardized algorithms for non-invasive diagnosis of hepatocellular carcinoma in high-risk patients: CEUS-LI-RADS versus MRI-LI-RADS.Eur Radiol. 2018;28:4254-4264. [PMID: 29675659 DOI: 10.1007/s00330-018-5379-1] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 8.0] [Reference Citation Analysis]