1 |
Shen B, Hou W, Jiang Z, Li H, Singer AJ, Hoshmand-kochi M, Abbasi A, Glass S, Thode HC, Levsky J, Lipton M, Duong TQ. Longitudinal Chest X-ray Scores and their Relations with Clinical Variables and Outcomes in COVID-19 Patients. Diagnostics 2023;13:1107. [DOI: 10.3390/diagnostics13061107] [Reference Citation Analysis]
|
2 |
Sagar Deep Deb, Rajib Kumar Jha, Rajnish Kumar, Prem S. Tripathi, Yash Talera, Manish Kumar. CoVSeverity-Net: an efficient deep learning model for COVID-19 severity estimation from Chest X-Ray images. Res. Biomed. Eng. 2023. [ DOI: 10.1007/s42600-022-00254-8] [Reference Citation Analysis]
|
3 |
Bania RK. Ensemble of deep transfer learning models for real-time automatic detection of face mask. Multimed Tools Appl 2023;:1-23. [PMID: 36743998 DOI: 10.1007/s11042-023-14408-y] [Reference Citation Analysis]
|
4 |
Albataineh Z, Aldrweesh F, Alzubaidi MA. COVID-19 CT-images diagnosis and severity assessment using machine learning algorithm. Cluster Comput 2023;:1-16. [PMID: 36712413 DOI: 10.1007/s10586-023-03972-5] [Reference Citation Analysis]
|
5 |
Hasan MM, Islam MU, Sadeq MJ, Fung WK, Uddin J. Review on the Evaluation and Development of Artificial Intelligence for COVID-19 Containment. Sensors (Basel) 2023;23. [PMID: 36617124 DOI: 10.3390/s23010527] [Reference Citation Analysis]
|
6 |
Akl AA, Hosny KM, Fouda MM, Salah A. A hybrid CNN and ensemble model for COVID-19 lung infection detection on chest CT scans. PLoS One 2023;18:e0282608. [PMID: 36893081 DOI: 10.1371/journal.pone.0282608] [Reference Citation Analysis]
|
7 |
Lasker A, Ghosh M, Obaidullah SM, Chakraborty C, Roy K. LWSNet - a novel deep-learning architecture to segregate Covid-19 and pneumonia from x-ray imagery. Multimed Tools Appl 2022. [DOI: 10.1007/s11042-022-14247-3] [Reference Citation Analysis]
|
8 |
Anai S, Hisasue J, Takaki Y, Hara N. Deep Learning Models to Predict Fatal Pneumonia Using Chest X-Ray Images. Canadian Respiratory Journal 2022;2022:1-12. [DOI: 10.1155/2022/8026580] [Reference Citation Analysis]
|
9 |
Duanmu H, Ren T, Li H, Mehta N, Singer AJ, Levsky JM, Lipton ML, Duong TQ. Deep learning of longitudinal chest X-ray and clinical variables predicts duration on ventilator and mortality in COVID-19 patients. Biomed Eng Online 2022;21:77. [PMID: 36242040 DOI: 10.1186/s12938-022-01045-z] [Reference Citation Analysis]
|
10 |
Takara B, Freitas F, Bacelar A, Salomon Alva Sanchez M, Lykawka R. Artificial intelligence to evaluate diagnosed COVID-19 chest radiographs. Braz J Rad Sci 2022;10. [DOI: 10.15392/bjrs.v10i3.2056] [Reference Citation Analysis]
|
11 |
Gupta S, Shabaz M, Vyas S. Artificial intelligence and IoT based prediction of Covid-19 using chest X-ray images. Smart Health 2022;25:100299. [DOI: 10.1016/j.smhl.2022.100299] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
12 |
Li MD, Arun NT, Aggarwal M, Gupta S, Singh P, Little BP, Mendoza DP, Corradi GCA, Takahashi MS, Ferraciolli SF, Succi MD, Lang M, Bizzo BC, Dayan I, Kitamura FC, Kalpathy-Cramer J. Multi-population generalizability of a deep learning-based chest radiograph severity score for COVID-19. Medicine (Baltimore) 2022;101:e29587. [PMID: 35866818 DOI: 10.1097/MD.0000000000029587] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
|
13 |
Chamberlin JH, Aquino G, Nance S, Wortham A, Leaphart N, Paladugu N, Brady S, Baird H, Fiegel M, Fitzpatrick L, Kocher M, Ghesu F, Mansoor A, Hoelzer P, Zimmermann M, James WE, Dennis DJ, Houston BA, Kabakus IM, Baruah D, Schoepf UJ, Burt JR. Automated diagnosis and prognosis of COVID-19 pneumonia from initial ER chest X-rays using deep learning. BMC Infect Dis 2022;22:637. [PMID: 35864468 DOI: 10.1186/s12879-022-07617-7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
14 |
Uma Dasgupta, Neha Garg. A Novel Technique to Investigation of Infectious Diseases. IJSRCSEIT 2022. [DOI: 10.32628/cseit2283123] [Reference Citation Analysis]
|
15 |
Gourdeau D, Potvin O, Biem JH, Cloutier F, Abrougui L, Archambault P, Chartrand-Lefebvre C, Dieumegarde L, Gagné C, Gagnon L, Giguère R, Hains A, Le H, Lemieux S, Lévesque MH, Nepveu S, Rosenbloom L, Tang A, Yang I, Duchesne N, Duchesne S. Deep learning of chest X-rays can predict mechanical ventilation outcome in ICU-admitted COVID-19 patients. Sci Rep 2022;12:6193. [PMID: 35418698 DOI: 10.1038/s41598-022-10136-9] [Reference Citation Analysis]
|
16 |
Demko IV, Korchagin EE, Cherkashin OA, Gordeeva NV, Anikin DA, Anikina DA. Possibilities of information systems for prediction of outcomes of new coronavirus infection COVID-19. Medicinskij sovet 2022. [DOI: 10.21518/2079-701x-2022-16-4-42-50] [Reference Citation Analysis]
|
17 |
Gourdeau D, Potvin O, Archambault P, Chartrand-Lefebvre C, Dieumegarde L, Forghani R, Gagné C, Hains A, Hornstein D, Le H, Lemieux S, Lévesque MH, Martin D, Rosenbloom L, Tang A, Vecchio F, Yang I, Duchesne N, Duchesne S. Tracking and predicting COVID-19 radiological trajectory on chest X-rays using deep learning. Sci Rep 2022;12:5616. [PMID: 35379856 DOI: 10.1038/s41598-022-09356-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
18 |
Jena B, Nayak GK, Saxena S. Convolutional neural network and its pretrained models for image classification and object detection: A survey. Concurrency and Computation 2022;34. [DOI: 10.1002/cpe.6767] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
19 |
Choudhury S, Chohan A, Dadhwal R, Vakil AP, Franco R, Taweesedt PT. Applications of artificial intelligence in common pulmonary diseases. Artif Intell Med Imaging 2022; 3(1): 1-7 [DOI: 10.35711/aimi.v3.i1.1] [Reference Citation Analysis]
|
20 |
Vineth Ligi S, Kundu SS, Kumar R, Narayanamoorthi R, Lai KW, Dhanalakshmi S, Ieracitano C. Radiological Analysis of COVID-19 Using Computational Intelligence: A Broad Gauge Study. Journal of Healthcare Engineering 2022;2022:1-25. [DOI: 10.1155/2022/5998042] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
21 |
Lee H, Aqil AF. Combination of Transfer Learning Methods for Kidney Glomeruli Image Classification. Applied Sciences 2022;12:1040. [DOI: 10.3390/app12031040] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
22 |
Zaeri N. AI Modeling to Combat COVID-19 Using CT Scan Imaging Algorithms and Simulations: A Study. Simulation Modeling 2022. [DOI: 10.5772/intechopen.99442] [Reference Citation Analysis]
|
23 |
Yamaguchi K, Nakajima T, Yamaguchi A, Itai M, Onuki Y, Shin Y, Uno S, Muto S, Kouno S, Yatomi M, Aoki-Saito H, Hara K, Endo Y, Motegi SI, Muro Y, Nakasatomi M, Sakairi T, Hiromura K, Katsumata N, Hirasawa H, Tsushima Y, Maeno T. Quantitative CT analysis of interstitial pneumonia in anti-melanoma differentiation-associated gene 5 antibody-positive dermatomyositis: a single center, retrospective study. Clin Rheumatol 2022. [PMID: 35034225 DOI: 10.1007/s10067-021-06033-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
24 |
Irmak E. COVID-19 disease diagnosis from paper-based ECG trace image data using a novel convolutional neural network model. Phys Eng Sci Med 2022. [PMID: 35020175 DOI: 10.1007/s13246-022-01102-w] [Reference Citation Analysis]
|
25 |
Chouvarda I, Perantoni E, Steiropoulos P. Respiratory decision support systems. Wearable Sensing and Intelligent Data Analysis for Respiratory Management 2022. [DOI: 10.1016/b978-0-12-823447-1.00008-7] [Reference Citation Analysis]
|
26 |
Lu JY, Hou W, Duong TQ. Longitudinal prediction of hospital-acquired acute kidney injury in COVID-19: a two-center study. Infection 2022;50:109-19. [PMID: 34176087 DOI: 10.1007/s15010-021-01646-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
|
27 |
Rezayi S, Ghazisaeedi M, Kalhori SN, Saeedi S. Artificial intelligence approaches on X-ray-oriented images process for early detection of COVID-19. J Med Signals Sens 2022;12:233. [DOI: 10.4103/jmss.jmss_111_21] [Reference Citation Analysis]
|
28 |
Fan L, Shi J, Shi N, Tu W, Bian Y, Zhou X, Guan Y, Shi Y, Liu S. Artificial Intelligence-Based Evaluation of Infectious Disease Imaging: A COVID-19 Perspective. Artificial Intelligence in Cardiothoracic Imaging 2022. [DOI: 10.1007/978-3-030-92087-6_42] [Reference Citation Analysis]
|
29 |
Gandomkar Z, Brennan PC, Suleiman ME. Optimizing Radiologic Detection of COVID-19. Artificial Intelligence in Medicine 2022. [DOI: 10.1007/978-3-030-64573-1_285] [Reference Citation Analysis]
|
30 |
Park S, Kim G, Oh Y, Seo JB, Lee SM, Kim JH, Moon S, Lim JK, Ye JC. Multi-task vision transformer using low-level chest X-ray feature corpus for COVID-19 diagnosis and severity quantification. Med Image Anal 2022;75:102299. [PMID: 34814058 DOI: 10.1016/j.media.2021.102299] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 21.0] [Reference Citation Analysis]
|
31 |
Chung H, Park C, Kang WS, Lee J. Gender Bias in Artificial Intelligence: Severity Prediction at an Early Stage of COVID-19. Front Physiol 2021;12:778720. [PMID: 34912242 DOI: 10.3389/fphys.2021.778720] [Reference Citation Analysis]
|
32 |
Khan M, Mehran MT, Haq ZU, Ullah Z, Naqvi SR, Ihsan M, Abbass H. Applications of artificial intelligence in COVID-19 pandemic: A comprehensive review. Expert Syst Appl 2021;185:115695. [PMID: 34400854 DOI: 10.1016/j.eswa.2021.115695] [Cited by in Crossref: 36] [Cited by in F6Publishing: 24] [Article Influence: 18.0] [Reference Citation Analysis]
|
33 |
Balik E, Kaya M. Detection of Covid-19 and Pneumonia from Colorized X-Ray Images by Deep Learning. 2021 International Conference on Decision Aid Sciences and Application (DASA) 2021. [DOI: 10.1109/dasa53625.2021.9682404] [Reference Citation Analysis]
|
34 |
Elazab A, Elfattah MA, Zhang Y. Novel multi-site graph convolutional network with supervision mechanism for COVID-19 diagnosis from X-ray radiographs. Appl Soft Comput 2022;114:108041. [PMID: 34803550 DOI: 10.1016/j.asoc.2021.108041] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
35 |
Gao K, Fan Z, Su J, Zeng LL, Shen H, Zhu J, Hu D. Deep Transfer Learning for Cerebral Cortex Using Area-Preserving Geometry Mapping. Cereb Cortex 2021:bhab394. [PMID: 34791082 DOI: 10.1093/cercor/bhab394] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
36 |
Sarker S, Jamal L, Ahmed SF, Irtisam N. Robotics and artificial intelligence in healthcare during COVID-19 pandemic: A systematic review. Rob Auton Syst 2021;146:103902. [PMID: 34629751 DOI: 10.1016/j.robot.2021.103902] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 6.5] [Reference Citation Analysis]
|
37 |
Shetty AA, Hegde NT, Vaz AC, Srinivasan CR. Deep Learning Methodologies for Diagnosis of Respiratory Disorders from Chest X-ray Images: A Comparative Study. IOCA 2021 2021. [DOI: 10.3390/ioca2021-10900] [Reference Citation Analysis]
|
38 |
Liz H, Sánchez-montañés M, Tagarro A, Domínguez-rodríguez S, Dagan R, Camacho D. Ensembles of Convolutional Neural Network models for pediatric pneumonia diagnosis. Future Generation Computer Systems 2021;122:220-33. [DOI: 10.1016/j.future.2021.04.007] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
|
39 |
Zulkifley MA, Abdani SR, Zulkifley NH, Shahrimin MI. Residual-Shuffle Network with Spatial Pyramid Pooling Module for COVID-19 Screening. Diagnostics (Basel) 2021;11:1497. [PMID: 34441431 DOI: 10.3390/diagnostics11081497] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
40 |
Perumal V, Narayanan V, Rajasekar SJS. Prediction of COVID Criticality Score with Laboratory, Clinical and CT Images using Hybrid Regression Models. Comput Methods Programs Biomed 2021;209:106336. [PMID: 34403841 DOI: 10.1016/j.cmpb.2021.106336] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
41 |
Ende VJ, Singh G, Babatsikos I, Hou W, Li H, Thode HC, Singer AJ, Duong TQ, Richman PS. Survival of COVID-19 Patients With Respiratory Failure is Related to Temporal Changes in Gas Exchange and Mechanical Ventilation. J Intensive Care Med 2021;:8850666211033836. [PMID: 34397301 DOI: 10.1177/08850666211033836] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
42 |
Suman G, Patra A, Korfiatis P, Majumder S, Chari ST, Truty MJ, Fletcher JG, Goenka AH. Quality gaps in public pancreas imaging datasets: Implications & challenges for AI applications. Pancreatology 2021;21:1001-8. [PMID: 33840636 DOI: 10.1016/j.pan.2021.03.016] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
43 |
Alyasseri ZAA, Al-Betar MA, Doush IA, Awadallah MA, Abasi AK, Makhadmeh SN, Alomari OA, Abdulkareem KH, Adam A, Damasevicius R, Mohammed MA, Zitar RA. Review on COVID-19 diagnosis models based on machine learning and deep learning approaches. Expert Syst 2021;:e12759. [PMID: 34511689 DOI: 10.1111/exsy.12759] [Cited by in Crossref: 36] [Cited by in F6Publishing: 42] [Article Influence: 18.0] [Reference Citation Analysis]
|
44 |
Karthik R, Menaka R, Hariharan M, Kathiresan GS. AI for COVID-19 Detection from Radiographs: Incisive Analysis of State of the Art Techniques, Key Challenges and Future Directions. Ing Rech Biomed 2021. [PMID: 34336141 DOI: 10.1016/j.irbm.2021.07.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
45 |
Laino ME, Ammirabile A, Posa A, Cancian P, Shalaby S, Savevski V, Neri E. The Applications of Artificial Intelligence in Chest Imaging of COVID-19 Patients: A Literature Review. Diagnostics (Basel) 2021;11:1317. [PMID: 34441252 DOI: 10.3390/diagnostics11081317] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
46 |
Afshar-Oromieh A, Prosch H, Schaefer-Prokop C, Bohn KP, Alberts I, Mingels C, Thurnher M, Cumming P, Shi K, Peters A, Geleff S, Lan X, Wang F, Huber A, Gräni C, Heverhagen JT, Rominger A, Fontanellaz M, Schöder H, Christe A, Mougiakakou S, Ebner L. A comprehensive review of imaging findings in COVID-19 - status in early 2021. Eur J Nucl Med Mol Imaging 2021;48:2500-24. [PMID: 33932183 DOI: 10.1007/s00259-021-05375-3] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 12.5] [Reference Citation Analysis]
|
47 |
Snider B, McBean EA, Yawney J, Gadsden SA, Patel B. Identification of Variable Importance for Predictions of Mortality From COVID-19 Using AI Models for Ontario, Canada. Front Public Health 2021;9:675766. [PMID: 34235131 DOI: 10.3389/fpubh.2021.675766] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
48 |
Çallı E, Sogancioglu E, van Ginneken B, van Leeuwen KG, Murphy K. Deep learning for chest X-ray analysis: A survey. Med Image Anal 2021;72:102125. [PMID: 34171622 DOI: 10.1016/j.media.2021.102125] [Cited by in Crossref: 53] [Cited by in F6Publishing: 19] [Article Influence: 26.5] [Reference Citation Analysis]
|
49 |
Rehouma R, Buchert M, Chen YP. Machine learning for medical imaging‐based COVID‐19 detection and diagnosis. Int J Intell Syst 2021;36:5085-115. [DOI: 10.1002/int.22504] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
50 |
Keidar D, Yaron D, Goldstein E, Shachar Y, Blass A, Charbinsky L, Aharony I, Lifshitz L, Lumelsky D, Neeman Z, Mizrachi M, Hajouj M, Eizenbach N, Sela E, Weiss CS, Levin P, Benjaminov O, Bachar GN, Tamir S, Rapson Y, Suhami D, Atar E, Dror AA, Bogot NR, Grubstein A, Shabshin N, Elyada YM, Eldar YC. COVID-19 classification of X-ray images using deep neural networks. Eur Radiol 2021. [PMID: 34052882 DOI: 10.1007/s00330-021-08050-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 7.5] [Reference Citation Analysis]
|
51 |
Lu JY, Babatsikos I, Fisher MC, Hou W, Duong TQ. Longitudinal Clinical Profiles of Hospital vs. Community-Acquired Acute Kidney Injury in COVID-19. Front Med (Lausanne) 2021;8:647023. [PMID: 34124089 DOI: 10.3389/fmed.2021.647023] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
52 |
Zandehshahvar M, van Assen M, Maleki H, Kiarashi Y, De Cecco CN, Adibi A. Toward understanding COVID-19 pneumonia: a deep-learning-based approach for severity analysis and monitoring the disease. Sci Rep 2021;11:11112. [PMID: 34045510 DOI: 10.1038/s41598-021-90411-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
|
53 |
Chaturvedi K, Kansal T, Gupta S, Vishwakarma DK, Deo N. COVID-19 Severity Assessment from Chest X-rays using Attention-based Weakly-Supervised Learning. 2021 2nd International Conference for Emerging Technology (INCET) 2021. [DOI: 10.1109/incet51464.2021.9456449] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
54 |
Karbhari Y, Basu A, Geem ZW, Han GT, Sarkar R. Generation of Synthetic Chest X-ray Images and Detection of COVID-19: A Deep Learning Based Approach. Diagnostics (Basel) 2021;11:895. [PMID: 34069841 DOI: 10.3390/diagnostics11050895] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 12.0] [Reference Citation Analysis]
|
55 |
Alhasan M, Hasaneen M. Digital imaging, technologies and artificial intelligence applications during COVID-19 pandemic. Comput Med Imaging Graph 2021;91:101933. [PMID: 34082281 DOI: 10.1016/j.compmedimag.2021.101933] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
|
56 |
Fontanellaz M, Ebner L, Huber A, Peters A, Löbelenz L, Hourscht C, Klaus J, Munz J, Ruder T, Drakopoulos D, Sieron D, Primetis E, Heverhagen JT, Mougiakakou S, Christe A. A Deep-Learning Diagnostic Support System for the Detection of COVID-19 Using Chest Radiographs: A Multireader Validation Study. Invest Radiol 2021;56:348-56. [PMID: 33259441 DOI: 10.1097/RLI.0000000000000748] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
|
57 |
[DOI: 10.1109/iciccs51141.2021.9432181] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
58 |
Chen A, Zhao Z, Hou W, Singer AJ, Li H, Duong TQ. Time-to-Death Longitudinal Characterization of Clinical Variables and Longitudinal Prediction of Mortality in COVID-19 Patients: A Two-Center Study. Front Med (Lausanne) 2021;8:661940. [PMID: 33996864 DOI: 10.3389/fmed.2021.661940] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
59 |
Rasheed J, Jamil A, Hameed AA, Al-Turjman F, Rasheed A. COVID-19 in the Age of Artificial Intelligence: A Comprehensive Review. Interdiscip Sci 2021;13:153-75. [PMID: 33886097 DOI: 10.1007/s12539-021-00431-w] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
|
60 |
Lu JQ, Musheyev B, Peng Q, Duong TQ. Neural network analysis of clinical variables predicts escalated care in COVID-19 patients: a retrospective study. PeerJ 2021;9:e11205. [PMID: 33976972 DOI: 10.7717/peerj.11205] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
|
61 |
Chung H, Ko H, Kang WS, Kim KW, Lee H, Park C, Song HO, Choi TY, Seo JH, Lee J. Prediction and Feature Importance Analysis for Severity of COVID-19 in South Korea Using Artificial Intelligence: Model Development and Validation. J Med Internet Res 2021;23:e27060. [PMID: 33764883 DOI: 10.2196/27060] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
|
62 |
Lawton S, Viriri S. Detection of COVID-19 from CT Lung Scans Using Transfer Learning. Comput Intell Neurosci 2021;2021:5527923. [PMID: 33936188 DOI: 10.1155/2021/5527923] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
|
63 |
Li MD, Little BP, Alkasab TK, Mendoza DP, Succi MD, Shepard JO, Lev MH, Kalpathy-Cramer J. Multi-Radiologist User Study for Artificial Intelligence-Guided Grading of COVID-19 Lung Disease Severity on Chest Radiographs. Acad Radiol 2021;28:572-6. [PMID: 33485773 DOI: 10.1016/j.acra.2021.01.016] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
|
64 |
Signoroni A, Savardi M, Benini S, Adami N, Leonardi R, Gibellini P, Vaccher F, Ravanelli M, Borghesi A, Maroldi R, Farina D. BS-Net: Learning COVID-19 pneumonia severity on a large chest X-ray dataset. Med Image Anal 2021;71:102046. [PMID: 33862337 DOI: 10.1016/j.media.2021.102046] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 14.5] [Reference Citation Analysis]
|
65 |
Lv D, Wang Y, Wang S, Zhang Q, Qi W, Li Y, Sun L. A Cascade-SEME network for COVID-19 detection in chest x-ray images. Med Phys 2021;48:2337-53. [PMID: 33778966 DOI: 10.1002/mp.14711] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
66 |
Irmak E. COVID-19 disease severity assessment using CNN model. IET Image Process 2021;15:1814-24. [PMID: 34230837 DOI: 10.1049/ipr2.12153] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
|
67 |
Kulkarni AR, Athavale AM, Sahni A, Sukhal S, Saini A, Itteera M, Zhukovsky S, Vernik J, Abraham M, Joshi A, Amarah A, Ruiz J, Hart PD, Kulkarni H. Deep learning model to predict the need for mechanical ventilation using chest X-ray images in hospitalised patients with COVID-19. BMJ Innov 2021;7:261-70. [PMID: 34192015 DOI: 10.1136/bmjinnov-2020-000593] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
|
68 |
Suri JS, Agarwal S, Gupta SK, Puvvula A, Biswas M, Saba L, Bit A, Tandel GS, Agarwal M, Patrick A, Faa G, Singh IM, Oberleitner R, Turk M, Chadha PS, Johri AM, Miguel Sanches J, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Pareek G, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou A, Misra DP, Agarwal V, Kitas GD, Ahluwalia P, Teji J, Al-Maini M, Dhanjil SK, Sockalingam M, Saxena A, Nicolaides A, Sharma A, Rathore V, Ajuluchukwu JNA, Fatemi M, Alizad A, Viswanathan V, Krishnan PK, Naidu S. A narrative review on characterization of acute respiratory distress syndrome in COVID-19-infected lungs using artificial intelligence. Comput Biol Med 2021;130:104210. [PMID: 33550068 DOI: 10.1016/j.compbiomed.2021.104210] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 17.5] [Reference Citation Analysis]
|
69 |
Shen B, Hoshmand-Kochi M, Abbasi A, Glass S, Jiang Z, Singer AJ, Thode HC, Li H, Hou W, Duong TQ. Initial chest radiograph scores inform COVID-19 status, intensive care unit admission and need for mechanical ventilation. Clin Radiol 2021;76:473.e1-7. [PMID: 33706997 DOI: 10.1016/j.crad.2021.02.005] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
|
70 |
Zhong A, Li X, Wu D, Ren H, Kim K, Kim Y, Buch V, Neumark N, Bizzo B, Tak WY, Park SY, Lee YR, Kang MK, Park JG, Kim BS, Chung WJ, Guo N, Dayan I, Kalra MK, Li Q. Deep metric learning-based image retrieval system for chest radiograph and its clinical applications in COVID-19. Med Image Anal 2021;70:101993. [PMID: 33711739 DOI: 10.1016/j.media.2021.101993] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 6.5] [Reference Citation Analysis]
|
71 |
Singh D, Kumar V, Kaur M. Densely connected convolutional networks-based COVID-19 screening model. Appl Intell 2021;51:3044-51. [DOI: 10.1007/s10489-020-02149-6] [Cited by in Crossref: 49] [Cited by in F6Publishing: 22] [Article Influence: 24.5] [Reference Citation Analysis]
|
72 |
Chung H, Ko H, Kang WS, Kim KW, Lee H, Park C, Song H, Choi T, Seo JH, Lee J. Prediction and Feature Importance Analysis for Severity of COVID-19 in South Korea Using Artificial Intelligence: Model Development and Validation (Preprint).. [DOI: 10.2196/preprints.27060] [Reference Citation Analysis]
|
73 |
Gandomkar Z, Brennan PC, Suleiman ME. Optimizing Radiologic Detection of COVID-19. Artificial Intelligence in Medicine 2021. [DOI: 10.1007/978-3-030-58080-3_285-1] [Reference Citation Analysis]
|
74 |
Site A, Nurmi J, Lohan ES. Systematic Review on Machine-Learning Algorithms Used in Wearable-Based eHealth Data Analysis. IEEE Access 2021;9:112221-35. [DOI: 10.1109/access.2021.3103268] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
75 |
Kieu STH, Bade A, Hijazi MHA, Kolivand H. A Survey of Deep Learning for Lung Disease Detection on Medical Images: State-of-the-Art, Taxonomy, Issues and Future Directions. J Imaging 2020;6:131. [PMID: 34460528 DOI: 10.3390/jimaging6120131] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
|
76 |
Zandehshahvar M, van Assen M, Maleki H, Kiarashi Y, De Cecco CN, Adibi A. Toward Understanding COVID-19 Pneumonia: A Deep-learning-based Approach for Severity Analysis and Monitoring the Disease.. [DOI: 10.1101/2020.11.24.20235887] [Reference Citation Analysis]
|
77 |
Wang H, Gu H, Qin P, Wang J. CheXLocNet: Automatic localization of pneumothorax in chest radiographs using deep convolutional neural networks. PLoS One 2020;15:e0242013. [PMID: 33166371 DOI: 10.1371/journal.pone.0242013] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
|
78 |
Kikkisetti S, Zhu J, Shen B, Li H, Duong TQ. Deep-learning convolutional neural networks with transfer learning accurately classify COVID-19 lung infection on portable chest radiographs. PeerJ 2020;8:e10309. [PMID: 33194447 DOI: 10.7717/peerj.10309] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
|
79 |
Rasheed J, Jamil A, Hameed AA, Aftab U, Aftab J, Shah SA, Draheim D. A survey on artificial intelligence approaches in supporting frontline workers and decision makers for the COVID-19 pandemic. Chaos Solitons Fractals 2020;141:110337. [PMID: 33071481 DOI: 10.1016/j.chaos.2020.110337] [Cited by in Crossref: 45] [Cited by in F6Publishing: 46] [Article Influence: 15.0] [Reference Citation Analysis]
|
80 |
Goldstein E, Keidar D, Yaron D, Shachar Y, Blass A, Charbinsky L, Aharony I, Lifshitz L, Lumelsky D, Neeman Z, Mizrachi M, Hajouj M, Eizenbach N, Sela E, Weiss C, Levin P, Benjaminov O, Bachar GN, Tamir S, Rapson Y, Suhami D, dror AA, Bogot N, Grubstein A, Shabsin N, Elyada YM, Eldar Y. COVID-19 Classification of X-ray Images Using Deep Neural Networks.. [DOI: 10.1101/2020.10.01.20204073] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
81 |
Ozsahin I, Sekeroglu B, Musa MS, Mustapha MT, Uzun Ozsahin D. Review on Diagnosis of COVID-19 from Chest CT Images Using Artificial Intelligence. Comput Math Methods Med 2020;2020:9756518. [PMID: 33014121 DOI: 10.1155/2020/9756518] [Cited by in Crossref: 83] [Cited by in F6Publishing: 89] [Article Influence: 27.7] [Reference Citation Analysis]
|
82 |
Li MD, Arun NT, Aggarwal M, Gupta S, Singh P, Little BP, Mendoza DP, Corradi GCA, Takahashi MS, Ferraciolli SF, Succi MD, Lang M, Bizzo BC, Dayan I, Kitamura FC, Kalpathy-Cramer J. Improvement and Multi-Population Generalizability of a Deep Learning-Based Chest Radiograph Severity Score for COVID-19. medRxiv 2020:2020. [PMID: 32995811 DOI: 10.1101/2020.09.15.20195453] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
|