BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Afshar P, Mohammadi A, Tyrrell PN, Cheung P, Sigiuk A, Plataniotis KN, Nguyen ET, Oikonomou A. [Formula: see text]: deep learning-based radiomics for the time-to-event outcome prediction in lung cancer. Sci Rep 2020;10:12366. [PMID: 32703973 DOI: 10.1038/s41598-020-69106-8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
Number Citing Articles
1 Zhang J, Liu J, Liang Z, Xia L, Zhang W, Xing Y, Zhang X, Tang G. Differentiation of acute and chronic vertebral compression fractures using conventional CT based on deep transfer learning features and hand-crafted radiomics features. BMC Musculoskelet Disord 2023;24:165. [PMID: 36879285 DOI: 10.1186/s12891-023-06281-5] [Reference Citation Analysis]
2 Pradhan KS, Chawla P, Tiwari R. HRDEL: High ranking deep ensemble learning-based lung cancer diagnosis model. Expert Systems with Applications 2023;213:118956. [DOI: 10.1016/j.eswa.2022.118956] [Reference Citation Analysis]
3 Deng G, Tan X, Li Y, Zhang Y, Wang Q, Li J, Li Z. Effect of EGFR-TKIs combined with craniocerebral radiotherapy on the prognosis of EGFR-mutant lung adenocarcinoma patients with brain metastasis: A propensity-score matched analysis. Front Oncol 2023;13:1049855. [PMID: 36845694 DOI: 10.3389/fonc.2023.1049855] [Reference Citation Analysis]
4 Faghani A, Guo L, Wright ME, Hughes MC, Vaezi M. Construction and case study of a novel lung cancer risk index. BMC Cancer 2022;22:1275. [PMID: 36474178 DOI: 10.1186/s12885-022-10370-4] [Reference Citation Analysis]
5 Li S, Liu J, Wang Z, Cao Z, Yang Y, Wang B, Xu S, Lu L, Iqbal Saripan M, Zhang X, Dong X, Wen D. Application of PET/CT-based deep learning radiomics in head and neck cancer prognosis: a systematic review. Radiology Science 2022;1. [DOI: 10.15212/radsci-2022-0006] [Reference Citation Analysis]
6 Currie G, Hawk KE, Rohren E. The transformational potential of molecular radiomics. J Med Radiat Sci 2022. [PMID: 36238997 DOI: 10.1002/jmrs.626] [Reference Citation Analysis]
7 Huang B, Sollee J, Luo Y, Reddy A, Zhong Z, Wu J, Mammarappallil J, Healey T, Cheng G, Azzoli C, Korogodsky D, Zhang P, Feng X, Li J, Yang L, Jiao Z, Bai HX. Prediction of lung malignancy progression and survival with machine learning based on pre-treatment FDG-PET/CT. eBioMedicine 2022;82:104127. [DOI: 10.1016/j.ebiom.2022.104127] [Reference Citation Analysis]
8 Ghosh D, Mastej E, Jain R, Choi YS. Causal Inference in Radiomics: Framework, Mechanisms, and Algorithms. Front Neurosci 2022;16:884708. [DOI: 10.3389/fnins.2022.884708] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Choudhury S, Chohan A, Dadhwal R, Vakil AP, Franco R, Taweesedt PT. Applications of artificial intelligence in common pulmonary diseases. Artif Intell Med Imaging 2022; 3(1): 1-7 [DOI: 10.35711/aimi.v3.i1.1] [Reference Citation Analysis]
10 Torres FS, Akbar S, Raman S, Yasufuku K, Schmidt C, Hosny A, Baldauf-Lenschen F, Leighl NB. End-to-End Non-Small-Cell Lung Cancer Prognostication Using Deep Learning Applied to Pretreatment Computed Tomography. JCO Clin Cancer Inform 2021;5:1141-50. [PMID: 34797702 DOI: 10.1200/CCI.21.00096] [Reference Citation Analysis]
11 Afshar P, Heidarian S, Naderkhani F, Rafiee MJ, Oikonomou A, Plataniotis KN, Mohammadi A. Hybrid Deep Learning Model For Diagnosis Of Covid-19 Using Ct Scans And Clinical/Demographic Data. 2021 IEEE International Conference on Image Processing (ICIP) 2021. [DOI: 10.1109/icip42928.2021.9506661] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
12 Le VH, Kha QH, Hung TNK, Le NQK. Risk Score Generated from CT-Based Radiomics Signatures for Overall Survival Prediction in Non-Small Cell Lung Cancer. Cancers (Basel) 2021;13:3616. [PMID: 34298828 DOI: 10.3390/cancers13143616] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
13 Darendeli BN, Yilmaz A. Convolutional Neural Network Approach to Predict Tumor Samples Using Gene Expression Data. Journal of Intelligent Systems: Theory and Applications 2021. [DOI: 10.38016/jista.946954] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Wu G, Jochems A, Refaee T, Ibrahim A, Yan C, Sanduleanu S, Woodruff HC, Lambin P. Structural and functional radiomics for lung cancer. Eur J Nucl Med Mol Imaging 2021. [PMID: 33693966 DOI: 10.1007/s00259-021-05242-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
15 Piñeiro-Fiel M, Moscoso A, Pubul V, Ruibal Á, Silva-Rodríguez J, Aguiar P. A Systematic Review of PET Textural Analysis and Radiomics in Cancer. Diagnostics (Basel) 2021;11:380. [PMID: 33672285 DOI: 10.3390/diagnostics11020380] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]