BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tang LYW, Coxson HO, Lam S, Leipsic J, Tam RC, Sin DD. Towards large-scale case-finding: training and validation of residual networks for detection of chronic obstructive pulmonary disease using low-dose CT. Lancet Digit Health 2020;2:e259-67. [PMID: 33328058 DOI: 10.1016/S2589-7500(20)30064-9] [Cited by in Crossref: 28] [Cited by in F6Publishing: 18] [Article Influence: 9.3] [Reference Citation Analysis]
Number Citing Articles
1 Wu Y, Du R, Feng J, Qi S, Pang H, Xia S, Qian W. Deep CNN for COPD identification by Multi-View snapshot integration of 3D airway tree and lung field. Biomedical Signal Processing and Control 2023;79:104162. [DOI: 10.1016/j.bspc.2022.104162] [Reference Citation Analysis]
2 Kumar PS, Dash PB, Rao BK, Vimal S, Muhammad K. Early Detection of Chronic Obstructive Pulmonary Disease Using LSTM-Firefly Based Deep Learning Model. Nature-Inspired Optimization Methodologies in Biomedical and Healthcare 2023. [DOI: 10.1007/978-3-031-17544-2_11] [Reference Citation Analysis]
3 Karpiel I, Starcevic A, Urzeniczok M. Database and AI Diagnostic Tools Improve Understanding of Lung Damage, Correlation of Pulmonary Disease and Brain Damage in COVID-19. Sensors (Basel) 2022;22:6312. [PMID: 36016071 DOI: 10.3390/s22166312] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
4 Li Z, Huang K, Liu L, Zhang Z. Early detection of COPD based on graph convolutional network and small and weakly labeled data. Med Biol Eng Comput 2022;60:2321-2333. [DOI: 10.1007/s11517-022-02589-x] [Reference Citation Analysis]
5 Jeong MH, Han H, Lagares D, Im H. Recent Advances in Molecular Diagnosis of Pulmonary Fibrosis for Precision Medicine. ACS Pharmacol Transl Sci . [DOI: 10.1021/acsptsci.2c00028] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Xu P, Zheng W, Zhu Y. Effect Analysis of Lung Rehabilitation Training in 5A Nursing Mode for Elderly Patients with COPD Based on X-Ray. Comput Math Methods Med 2022;2022:1963426. [PMID: 35734776 DOI: 10.1155/2022/1963426] [Reference Citation Analysis]
7 Nagaraj Y, Wisselink HJ, Rook M, Cai J, Nagaraj SB, Sidorenkov G, Veldhuis R, Oudkerk M, Vliegenthart R, van Ooijen P. AI-Driven Model for Automatic Emphysema Detection in Low-Dose Computed Tomography Using Disease-Specific Augmentation. J Digit Imaging 2022;35:538-50. [PMID: 35182291 DOI: 10.1007/s10278-022-00599-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Yu AC, Mohajer B, Eng J. External Validation of Deep Learning Algorithms for Radiologic Diagnosis: A Systematic Review. Radiol Artif Intell 2022;4:e210064. [PMID: 35652114 DOI: 10.1148/ryai.210064] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
9 San José Estépar R. Artificial intelligence in functional imaging of the lung. Br J Radiol 2022;95:20210527. [PMID: 34890215 DOI: 10.1259/bjr.20210527] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
10 Choudhury S, Chohan A, Dadhwal R, Vakil AP, Franco R, Taweesedt PT. Applications of artificial intelligence in common pulmonary diseases. Artif Intell Med Imaging 2022; 3(1): 1-7 [DOI: 10.35711/aimi.v3.i1.1] [Reference Citation Analysis]
11 Kumar Y, Koul A, Singla R, Ijaz MF. Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. J Ambient Intell Humaniz Comput 2022;:1-28. [PMID: 35039756 DOI: 10.1007/s12652-021-03612-z] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 37.0] [Reference Citation Analysis]
12 Diab MS, Rodriguez-villegas E. Embedded Machine Learning Using Microcontrollers in Wearable and Ambulatory Systems for Health and Care Applications: A Review. IEEE Access 2022;10:98450-74. [DOI: 10.1109/access.2022.3206782] [Reference Citation Analysis]
13 Vannier MW. Isophotes, Scale Space, and Invariants in Lung CT for COPD Diagnosis. Radiol Artif Intell 2022;4:e210301. [PMID: 35146438 DOI: 10.1148/ryai.210301] [Reference Citation Analysis]
14 Savadjiev P, Gallix B, Rezanejad M, Bhatnagar S, Semionov A, Siddiqi K, Forghani R, Reinhold C, Eidelman DH, Dandurand RJ. Improved Detection of Chronic Obstructive Pulmonary Disease at Chest CT Using the Mean Curvature of Isophotes. Radiol Artif Intell 2022;4:e210105. [PMID: 35146436 DOI: 10.1148/ryai.210105] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Watson A, Wilkinson TMA. Digital healthcare in COPD management: a narrative review on the advantages, pitfalls, and need for further research. Ther Adv Respir Dis 2022;16:17534666221075493. [PMID: 35234090 DOI: 10.1177/17534666221075493] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
16 Ebrahimian S, Digumarthy S, Bizzo B, Primak A, Zimmermann M, Tarbiah MM, Kalra MK, Dreyer KJ. Artificial Intelligence has Similar Performance to Subjective Assessment of Emphysema Severity on Chest CT. Acad Radiol 2021:S1076-6332(21)00421-9. [PMID: 34657812 DOI: 10.1016/j.acra.2021.09.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Liu F, Tang J, Ma J, Wang C, Ha Q, Yu Y, Zhou Z. The application of artificial intelligence to chest medical image analysis. Intelligent Medicine 2021;1:104-117. [DOI: 10.1016/j.imed.2021.06.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Mondal S, Sadhu AK, Dutta PK. Automated diagnosis of pulmonary emphysema using multi-objective binary thresholding and hybrid classification. Biomedical Signal Processing and Control 2021;69:102886. [DOI: 10.1016/j.bspc.2021.102886] [Reference Citation Analysis]
19 Hashimoto N, Wakahara K, Sakamoto K. The Importance of Appropriate Diagnosis in the Practical Management of Chronic Obstructive Pulmonary Disease. Diagnostics (Basel) 2021;11:618. [PMID: 33808229 DOI: 10.3390/diagnostics11040618] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
20 Dang MT. A Survey on Transfer Learning for COVID-19 Medical Imaging Diagnosis. Advances in Intelligent Information Hiding and Multimedia Signal Processing 2021. [DOI: 10.1007/978-981-33-6757-9_47] [Reference Citation Analysis]