1 |
Zhao Y, Cao LY, Zhao YX, Wang F, Xie LL, Xing HY, Wang Q. Medical record data-enabled machine learning can enhance prediction of left atrial appendage thrombosis in nonvalvular atrial fibrillation. Thromb Res 2023;223:174-83. [PMID: 36764084 DOI: 10.1016/j.thromres.2023.01.001] [Reference Citation Analysis]
|
2 |
Balasubramanian A, Putcha N, MacIntyre NR, Jensen RL, Kinney G, Stringer WW, Hersh CP, Bowler RP, Casaburi R, Han MK, Porszasz J, Barr RG, Regan E, Make BJ, Hansel NN, Wise RA, McCormack MC. Diffusing Capacity and Mortality in Chronic Obstructive Pulmonary Disease. Ann Am Thorac Soc 2023;20:38-46. [PMID: 35969416 DOI: 10.1513/AnnalsATS.202203-226OC] [Reference Citation Analysis]
|
3 |
Zhang S, Li X, Ma H, Zhu M, Zhou Y, Zhang Q, Peng H. Relationship between Antithrombin III Activity and Mortality in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease. COPD 2022;19:353-64. [PMID: 36469629 DOI: 10.1080/15412555.2022.2106200] [Reference Citation Analysis]
|
4 |
Zixiong Zeng, Xiaocui Ke, Shan Gong, Xin Huang, Qin Liu, Xiaoying Huang, Juan Cheng, Yuqun Li, Liping Wei. Blood urea nitrogen to serum albumin ratio: a good predictor of in-hospital and 90-day all-cause mortality in patients with acute exacerbations of chronic obstructive pulmonary disease. BMC Pulm Med 2022;22:476. [PMID: 36522751 DOI: 10.1186/s12890-022-02258-7] [Reference Citation Analysis]
|
5 |
Ko BS, Jeon S, Son D, Choi SH, Shin TG, Jo YH, Ryoo SM, Kim YJ, Park YS, Kwon WY, Suh GJ, Lim TH, Kim WY; Korean Shock Society (KoSS) Investigators. Machine Learning Model Development and Validation for Predicting Outcome in Stage 4 Solid Cancer Patients with Septic Shock Visiting the Emergency Department: A Multi-Center, Prospective Cohort Study. J Clin Med 2022;11. [PMID: 36498805 DOI: 10.3390/jcm11237231] [Reference Citation Analysis]
|
6 |
Yuan NF, Hasenstab K, Retson T, Conrad DJ, Lynch DA, Hsiao A. Unsupervised Learning Identifies Computed Tomographic Measurements as Primary Drivers of Progression, Exacerbation, and Mortality in Chronic Obstructive Pulmonary Disease. Ann Am Thorac Soc 2022;19:1993-2002. [PMID: 35830591 DOI: 10.1513/AnnalsATS.202110-1127OC] [Reference Citation Analysis]
|
7 |
Cai D, Xiao T, Zou A, Mao L, Chi B, Wang Y, Wang Q, Ji Y, Sun L. Predicting acute kidney injury risk in acute myocardial infarction patients: An artificial intelligence model using medical information mart for intensive care databases. Front Cardiovasc Med 2022;9. [DOI: 10.3389/fcvm.2022.964894] [Reference Citation Analysis]
|
8 |
Gregory A, Xu Z, Pratte K, Lee S, Liu C, Chase R, Yun J, Saferali A, Hersh CP, Bowler R, Silverman E, Castaldi PJ, Boueiz A. Clustering-based COPD subtypes have distinct longitudinal outcomes and multi-omics biomarkers. BMJ Open Respir Res 2022;9:e001182. [PMID: 35999035 DOI: 10.1136/bmjresp-2021-001182] [Reference Citation Analysis]
|
9 |
Dritsas E, Trigka M. Machine Learning Methods for Hypercholesterolemia Long-Term Risk Prediction. Sensors 2022;22:5365. [DOI: 10.3390/s22145365] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
10 |
Dritsas E, Trigka M. Data-Driven Machine-Learning Methods for Diabetes Risk Prediction. Sensors (Basel) 2022;22:5304. [PMID: 35890983 DOI: 10.3390/s22145304] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
11 |
[DOI: 10.1145/3529190.3534748] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
12 |
Tang H, Jin Z, Deng J, She Y, Zhong Y, Sun W, Ren Y, Cao N, Chen C. Development and validation of a deep learning model to predict the survival of patients in ICU. J Am Med Inform Assoc 2022:ocac098. [PMID: 35751440 DOI: 10.1093/jamia/ocac098] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
13 |
Dritsas E, Trigka M. Stroke Risk Prediction with Machine Learning Techniques. Sensors 2022;22:4670. [DOI: 10.3390/s22134670] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 15.0] [Reference Citation Analysis]
|
14 |
Olsson M, Currow DC, Ekström MP. Exploring the most important factors related to self-perceived health among older men in Sweden: a cross-sectional study using machine learning. BMJ Open 2022;12:e061242. [PMID: 35728903 DOI: 10.1136/bmjopen-2022-061242] [Reference Citation Analysis]
|
15 |
Hadaya J, Verma A, Sanaiha Y, Ramezani R, Qadir N, Benharash P. Machine learning-based modeling of acute respiratory failure following emergency general surgery operations. PLoS One 2022;17:e0267733. [PMID: 35482751 DOI: 10.1371/journal.pone.0267733] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
16 |
Tahir I, Marquardt JP, Mercaldo ND, Bourgouin PP, Wrobel MM, Mrah S, Sharp GC, Khandekar MJ, Willers H, Keane FK, Fintelmann FJ. Utility of Noncancerous Chest CT Features for Predicting Overall Survival and Noncancer Death in Patients With Stage I Lung Cancer Treated With Stereotactic Body Radiotherapy. AJR Am J Roentgenol 2022. [PMID: 35416054 DOI: 10.2214/AJR.22.27484] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
17 |
Polat Ö, Şalk İ, Doğan ÖT. Determination of COPD severity from chest CT images using deep transfer learning network. Multimed Tools Appl 2022;81:21903-17. [DOI: 10.1007/s11042-022-12801-7] [Reference Citation Analysis]
|
18 |
Liu W, Zhang L, Xin Z, Zhang H, You L, Bai L, Zhou J, Ying B. A Promising Preoperative Prediction Model for Microvascular Invasion in Hepatocellular Carcinoma Based on an Extreme Gradient Boosting Algorithm. Front Oncol 2022;12:852736. [DOI: 10.3389/fonc.2022.852736] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
19 |
Choudhury S, Chohan A, Dadhwal R, Vakil AP, Franco R, Taweesedt PT. Applications of artificial intelligence in common pulmonary diseases. Artif Intell Med Imaging 2022; 3(1): 1-7 [DOI: 10.35711/aimi.v3.i1.1] [Reference Citation Analysis]
|
20 |
Wu F, Zhou Y, Peng J, Deng Z, Wen X, Wang Z, Zheng Y, Tian H, Yang H, Huang P, Zhao N, Sun R, Chen R, Ran P. Rationale and design of the Early Chronic Obstructive Pulmonary Disease (ECOPD) study in Guangdong, China: a prospective observational cohort study. J Thorac Dis 2021;13:6924-35. [PMID: 35070376 DOI: 10.21037/jtd-21-1379] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
21 |
Gregory A, Xu Z, Pratte K, Lee S, Liu C, Chase R, Yun JH, Saferali A, Hersh CP, Bowler RP, Silverman EK, Castaldi PJ, Boueiz A. Clustering-based COPD Subtypes Have Distinct Longitudinal Outcomes and Multi-omics Biomarkers.. [DOI: 10.1101/2022.01.11.22268818] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
22 |
Choi E, Kim J, Nah G, Kim W, Yoo K, Kim Y, Yoon D. Prediction of COPD severity based on clinical data using Machine Learning. 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 2021. [DOI: 10.1109/bibm52615.2021.9669887] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
23 |
Tedesco S, Andrulli M, Larsson MÅ, Kelly D, Alamäki A, Timmons S, Barton J, Condell J, O'Flynn B, Nordström A. Comparison of Machine Learning Techniques for Mortality Prediction in a Prospective Cohort of Older Adults. Int J Environ Res Public Health 2021;18. [PMID: 34886532 DOI: 10.3390/ijerph182312806] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
|
24 |
De Ramón Fernández A, Ruiz Fernández D, Gilart Iglesias V, Marcos Jorquera D. Analyzing the use of artificial intelligence for the management of chronic obstructive pulmonary disease (COPD). Int J Med Inform 2021;158:104640. [PMID: 34890934 DOI: 10.1016/j.ijmedinf.2021.104640] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
25 |
Becirovic LS, Deumic A, Pokvic LG, Badnjevic A. Aritificial Inteligence Challenges in COPD management: a review. 2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE) 2021. [DOI: 10.1109/bibe52308.2021.9635374] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
26 |
Yun J, Cho YH, Lee SM, Hwang J, Lee JS, Oh YM, Lee SD, Loh LC, Ong CK, Seo JB, Kim N. Deep radiomics-based survival prediction in patients with chronic obstructive pulmonary disease. Sci Rep 2021;11:15144. [PMID: 34312450 DOI: 10.1038/s41598-021-94535-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
27 |
Exarchos KP, Kostikas K. Artificial intelligence in COPD: Possible applications and future prospects. Respirology 2021;26:641-2. [PMID: 33851496 DOI: 10.1111/resp.14061] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
28 |
Dhar J. Multistage Ensemble Learning Model With Weighted Voting and Genetic Algorithm Optimization Strategy for Detecting Chronic Obstructive Pulmonary Disease. IEEE Access 2021;9:48640-57. [DOI: 10.1109/access.2021.3067949] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
29 |
Feng Y, Wang Y, Zeng C, Mao H. Artificial Intelligence and Machine Learning in Chronic Airway Diseases: Focus on Asthma and Chronic Obstructive Pulmonary Disease. Int J Med Sci 2021;18:2871-89. [PMID: 34220314 DOI: 10.7150/ijms.58191] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
|
30 |
Matheson AM, Parraga G. Machine Learning Predictions of COPD Mortality: Computational Hide and Seek. Chest 2020;158:846-7. [PMID: 32892878 DOI: 10.1016/j.chest.2020.04.038] [Reference Citation Analysis]
|