BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ma F, Pellegrini M. ACTINN: automated identification of cell types in single cell RNA sequencing. Bioinformatics 2020;36:533-8. [PMID: 31359028 DOI: 10.1093/bioinformatics/btz592] [Cited by in Crossref: 10] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Fu R, Gillen AE, Sheridan RM, Tian C, Daya M, Hao Y, Hesselberth JR, Riemondy KA. clustifyr: an R package for automated single-cell RNA sequencing cluster classification. F1000Res 2020;9:223. [PMID: 32765839 DOI: 10.12688/f1000research.22969.2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 12.0] [Reference Citation Analysis]
2 Sánchez-Corrales YE, Pohle RVC, Castellano S, Giustacchini A. Taming Cell-to-Cell Heterogeneity in Acute Myeloid Leukaemia With Machine Learning. Front Oncol 2021;11:666829. [PMID: 33996595 DOI: 10.3389/fonc.2021.666829] [Reference Citation Analysis]
3 Lin Y, Cao Y, Kim HJ, Salim A, Speed TP, Lin DM, Yang P, Yang JYH. scClassify: sample size estimation and multiscale classification of cells using single and multiple reference. Mol Syst Biol 2020;16:e9389. [PMID: 32567229 DOI: 10.15252/msb.20199389] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
4 Maseda F, Cang Z, Nie Q. DEEPsc: A Deep Learning-Based Map Connecting Single-Cell Transcriptomics and Spatial Imaging Data. Front Genet 2021;12:636743. [PMID: 33833776 DOI: 10.3389/fgene.2021.636743] [Reference Citation Analysis]
5 Tangherloni A, Ricciuti F, Besozzi D, Liò P, Cvejic A. Analysis of single-cell RNA sequencing data based on autoencoders. BMC Bioinformatics 2021;22:309. [PMID: 34103004 DOI: 10.1186/s12859-021-04150-3] [Reference Citation Analysis]
6 Ekiz HA, Conley CJ, Stephens WZ, O'Connell RM. CIPR: a web-based R/shiny app and R package to annotate cell clusters in single cell RNA sequencing experiments. BMC Bioinformatics 2020;21:191. [PMID: 32414321 DOI: 10.1186/s12859-020-3538-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
7 Cui Z, Cui Y, Gao Y, Jiang T, Zang T, Wang Y. Enhancement and Imputation of Peak Signal Enables Accurate Cell-Type Classification in scATAC-seq. Front Genet 2021;12:658352. [PMID: 33889181 DOI: 10.3389/fgene.2021.658352] [Reference Citation Analysis]
8 Chen S, Yan G, Zhang W, Li J, Jiang R, Lin Z. RA3 is a reference-guided approach for epigenetic characterization of single cells. Nat Commun 2021;12:2177. [PMID: 33846355 DOI: 10.1038/s41467-021-22495-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
9 Choi JH, In Kim H, Woo HG. scTyper: a comprehensive pipeline for the cell typing analysis of single-cell RNA-seq data. BMC Bioinformatics 2020;21:342. [PMID: 32753029 DOI: 10.1186/s12859-020-03700-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
10 Sun Q, Peng Y, Liu J. A reference-free approach for cell type classification with scRNA-seq. iScience 2021;24:102855. [PMID: 34381979 DOI: 10.1016/j.isci.2021.102855] [Reference Citation Analysis]
11 Forcato M, Romano O, Bicciato S. Computational methods for the integrative analysis of single-cell data. Brief Bioinform 2021;22:20-9. [PMID: 32363378 DOI: 10.1093/bib/bbaa042] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 11.0] [Reference Citation Analysis]
12 Wang S, Pisco AO, McGeever A, Brbic M, Zitnik M, Darmanis S, Leskovec J, Karkanias J, Altman RB. Leveraging the Cell Ontology to classify unseen cell types. Nat Commun 2021;12:5556. [PMID: 34548483 DOI: 10.1038/s41467-021-25725-x] [Reference Citation Analysis]
13 O'Connor SA, Feldman HM, Arora S, Hoellerbauer P, Toledo CM, Corrin P, Carter L, Kufeld M, Bolouri H, Basom R, Delrow J, McFaline-Figueroa JL, Trapnell C, Pollard SM, Patel A, Paddison PJ, Plaisier CL. Neural G0: a quiescent-like state found in neuroepithelial-derived cells and glioma. Mol Syst Biol 2021;17:e9522. [PMID: 34101353 DOI: 10.15252/msb.20209522] [Reference Citation Analysis]
14 Wang T, Bai J, Nabavi S. Single-cell classification using graph convolutional networks. BMC Bioinformatics 2021;22:364. [PMID: 34238220 DOI: 10.1186/s12859-021-04278-2] [Reference Citation Analysis]
15 Ma F, Hernandez GE, Romay M, Iruela-Arispe ML. Single-cell RNA sequencing to study vascular diversity and function. Curr Opin Hematol 2021;28:221-9. [PMID: 33714967 DOI: 10.1097/MOH.0000000000000651] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Pasquini G, Rojo Arias JE, Schäfer P, Busskamp V. Automated methods for cell type annotation on scRNA-seq data. Comput Struct Biotechnol J 2021;19:961-9. [PMID: 33613863 DOI: 10.1016/j.csbj.2021.01.015] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
17 Liu J, Fan Z, Zhao W, Zhou X. Machine Intelligence in Single-Cell Data Analysis: Advances and New Challenges. Front Genet 2021;12:655536. [PMID: 34135939 DOI: 10.3389/fgene.2021.655536] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
18 Abdelaal T, Michielsen L, Cats D, Hoogduin D, Mei H, Reinders MJT, Mahfouz A. A comparison of automatic cell identification methods for single-cell RNA sequencing data. Genome Biol 2019;20:194. [PMID: 31500660 DOI: 10.1186/s13059-019-1795-z] [Cited by in Crossref: 139] [Cited by in F6Publishing: 91] [Article Influence: 69.5] [Reference Citation Analysis]
19 Guo H, Li J. scSorter: assigning cells to known cell types according to marker genes. Genome Biol 2021;22:69. [PMID: 33618746 DOI: 10.1186/s13059-021-02281-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Chen CCL, Deshmukh S, Jessa S, Hadjadj D, Lisi V, Andrade AF, Faury D, Jawhar W, Dali R, Suzuki H, Pathania M, A D, Dubois F, Woodward E, Hébert S, Coutelier M, Karamchandani J, Albrecht S, Brandner S, De Jay N, Gayden T, Bajic A, Harutyunyan AS, Marchione DM, Mikael LG, Juretic N, Zeinieh M, Russo C, Maestro N, Bassenden AV, Hauser P, Virga J, Bognar L, Klekner A, Zapotocky M, Vicha A, Krskova L, Vanova K, Zamecnik J, Sumerauer D, Ekert PG, Ziegler DS, Ellezam B, Filbin MG, Blanchette M, Hansford JR, Khuong-Quang DA, Berghuis AM, Weil AG, Garcia BA, Garzia L, Mack SC, Beroukhim R, Ligon KL, Taylor MD, Bandopadhayay P, Kramm C, Pfister SM, Korshunov A, Sturm D, Jones DTW, Salomoni P, Kleinman CL, Jabado N. Histone H3.3G34-Mutant Interneuron Progenitors Co-opt PDGFRA for Gliomagenesis. Cell 2020;183:1617-1633.e22. [PMID: 33259802 DOI: 10.1016/j.cell.2020.11.012] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
21 Fortelny N, Bock C. Knowledge-primed neural networks enable biologically interpretable deep learning on single-cell sequencing data. Genome Biol 2020;21:190. [PMID: 32746932 DOI: 10.1186/s13059-020-02100-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
22 Bernstein MN, Ma Z, Gleicher M, Dewey CN. CellO: comprehensive and hierarchical cell type classification of human cells with the Cell Ontology. iScience 2021;24:101913. [PMID: 33364592 DOI: 10.1016/j.isci.2020.101913] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]