1 |
Jin HY, Zhang M, Hu B. Techniques to integrate artificial intelligence systems with medical information in gastroenterology. Artif Intell Gastrointest Endosc 2020; 1(1): 19-27 [DOI: 10.37126/aige.v1.i1.19] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
2 |
Masuzaki R, Kanda T, Sasaki R, Matsumoto N, Nirei K, Ogawa M, Moriyama M. Application of artificial intelligence in hepatology: Minireview. Artif Intell Gastroenterol 2020; 1(1): 5-11 [DOI: 10.35712/aig.v1.i1.5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
3 |
Kader R, Hadjinicolaou AV, Georgiades F, Stoyanov D, Lovat LB. Optical diagnosis of colorectal polyps using convolutional neural networks. World J Gastroenterol 2021;27:5908-18. [PMID: 34629808 DOI: 10.3748/wjg.v27.i35.5908] [Cited by in CrossRef: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
4 |
Yu C, Helwig EJ. Artificial intelligence in gastric cancer: a translational narrative review. Ann Transl Med 2021;9:269. [PMID: 33708896 DOI: 10.21037/atm-20-6337] [Reference Citation Analysis]
|
5 |
Caires Silveira E, Santos Corrêa CF, Madureira Silva L, Almeida Santos B, Mattos Pretti S, Freire de Melo F. Recognition of esophagitis in endoscopic images using transfer learning. World J Gastrointest Endosc 2022; 14(5): 311-319 [DOI: 10.4253/wjge.v14.i5.311] [Reference Citation Analysis]
|
6 |
Koo CS, Siah KTH, Koh CJ. Endoscopy training in COVID-19: Challenges and hope for a better age. J Gastroenterol Hepatol 2021. [PMID: 33871079 DOI: 10.1111/jgh.15524] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|