BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Miao Z, Moreno P, Huang N, Papatheodorou I, Brazma A, Teichmann SA. Putative cell type discovery from single-cell gene expression data. Nat Methods 2020;17:621-8. [DOI: 10.1038/s41592-020-0825-9] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 20.0] [Reference Citation Analysis]
Number Citing Articles
1 He J, Kleyman M, Chen J, Alikaya A, Rothenhoefer KM, Ozturk BE, Wirthlin M, Bostan AC, Fish K, Byrne LC, Pfenning AR, Stauffer WR. Transcriptional and anatomical diversity of medium spiny neurons in the primate striatum. Curr Biol 2021:S0960-9822(21)01369-5. [PMID: 34727523 DOI: 10.1016/j.cub.2021.10.015] [Reference Citation Analysis]
2 Teschendorff AE, Feinberg AP. Statistical mechanics meets single-cell biology. Nat Rev Genet 2021;22:459-76. [PMID: 33875884 DOI: 10.1038/s41576-021-00341-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
3 Chen S, Yan G, Zhang W, Li J, Jiang R, Lin Z. RA3 is a reference-guided approach for epigenetic characterization of single cells. Nat Commun 2021;12:2177. [PMID: 33846355 DOI: 10.1038/s41467-021-22495-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
4 Liu S, Thennavan A, Garay JP, Marron JS, Perou CM. MultiK: an automated tool to determine optimal cluster numbers in single-cell RNA sequencing data. Genome Biol 2021;22:232. [PMID: 34412669 DOI: 10.1186/s13059-021-02445-5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Sánchez-Corrales YE, Pohle RVC, Castellano S, Giustacchini A. Taming Cell-to-Cell Heterogeneity in Acute Myeloid Leukaemia With Machine Learning. Front Oncol 2021;11:666829. [PMID: 33996595 DOI: 10.3389/fonc.2021.666829] [Reference Citation Analysis]
6 Mohr SE, Tattikota SG, Xu J, Zirin J, Hu Y, Perrimon N. Methods and tools for spatial mapping of single-cell RNAseq clusters in Drosophila. Genetics 2021;217:iyab019. [PMID: 33713129 DOI: 10.1093/genetics/iyab019] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Clarke ZA, Andrews TS, Atif J, Pouyabahar D, Innes BT, MacParland SA, Bader GD. Tutorial: guidelines for annotating single-cell transcriptomic maps using automated and manual methods. Nat Protoc 2021;16:2749-64. [PMID: 34031612 DOI: 10.1038/s41596-021-00534-0] [Reference Citation Analysis]
8 Wang J, Ma A, Chang Y, Gong J, Jiang Y, Qi R, Wang C, Fu H, Ma Q, Xu D. scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses. Nat Commun 2021;12:1882. [PMID: 33767197 DOI: 10.1038/s41467-021-22197-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
9 Patterson-Cross RB, Levine AJ, Menon V. Selecting single cell clustering parameter values using subsampling-based robustness metrics. BMC Bioinformatics 2021;22:39. [PMID: 33522897 DOI: 10.1186/s12859-021-03957-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Bhattacherjee A, Jung J, Zia S, Ho M, Eskandari-Sedighi G, St Laurent CD, McCord KA, Bains A, Sidhu G, Sarkar S, Plemel JR, Macauley MS. The CD33 short isoform is a gain-of-function variant that enhances Aβ1-42 phagocytosis in microglia. Mol Neurodegener 2021;16:19. [PMID: 33766097 DOI: 10.1186/s13024-021-00443-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
11 Litviňuková M, Talavera-López C, Maatz H, Reichart D, Worth CL, Lindberg EL, Kanda M, Polanski K, Heinig M, Lee M, Nadelmann ER, Roberts K, Tuck L, Fasouli ES, DeLaughter DM, McDonough B, Wakimoto H, Gorham JM, Samari S, Mahbubani KT, Saeb-Parsy K, Patone G, Boyle JJ, Zhang H, Zhang H, Viveiros A, Oudit GY, Bayraktar OA, Seidman JG, Seidman CE, Noseda M, Hubner N, Teichmann SA. Cells of the adult human heart. Nature 2020;588:466-72. [PMID: 32971526 DOI: 10.1038/s41586-020-2797-4] [Cited by in Crossref: 123] [Cited by in F6Publishing: 104] [Article Influence: 123.0] [Reference Citation Analysis]
12 Skinnider MA, Squair JW, Courtine G. Enabling reproducible re-analysis of single-cell data. Genome Biol 2021;22:215. [PMID: 34311752 DOI: 10.1186/s13059-021-02422-y] [Reference Citation Analysis]
13 Osumi-Sutherland D, Xu C, Keays M, Levine AP, Kharchenko PV, Regev A, Lein E, Teichmann SA. Cell type ontologies of the Human Cell Atlas. Nat Cell Biol 2021;23:1129-35. [PMID: 34750578 DOI: 10.1038/s41556-021-00787-7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Moreno P, Huang N, Manning JR, Mohammed S, Solovyev A, Polanski K, Bacon W, Chazarra R, Talavera-López C, Doyle MA, Marnier G, Grüning B, Rasche H, George N, Fexova SK, Alibi M, Miao Z, Perez-Riverol Y, Haeussler M, Brazma A, Teichmann S, Meyer KB, Papatheodorou I. User-friendly, scalable tools and workflows for single-cell RNA-seq analysis. Nat Methods 2021;18:327-8. [PMID: 33782609 DOI: 10.1038/s41592-021-01102-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
15 Huang Y, Zhang P. Evaluation of machine learning approaches for cell-type identification from single-cell transcriptomics data. Brief Bioinform 2021:bbab035. [PMID: 33611343 DOI: 10.1093/bib/bbab035] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 [DOI: 10.1101/2020.08.02.233569] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
17 Zhang Y, Ma Y, Huang Y, Zhang Y, Jiang Q, Zhou M, Su J. Benchmarking algorithms for pathway activity transformation of single-cell RNA-seq data. Comput Struct Biotechnol J 2020;18:2953-61. [PMID: 33209207 DOI: 10.1016/j.csbj.2020.10.007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]