BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Steinegger A, Wolfbeis OS, Borisov SM. Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications. Chem Rev 2020;120:12357-489. [PMID: 33147405 DOI: 10.1021/acs.chemrev.0c00451] [Cited by in Crossref: 137] [Cited by in F6Publishing: 150] [Article Influence: 68.5] [Reference Citation Analysis]
Number Citing Articles
1 Orellana G, Darder MDM, Quílez-alburquerque J. Luminescence-Based Sensors for Water Quality Analysis. Encyclopedia of Sensors and Biosensors 2023. [DOI: 10.1016/b978-0-12-822548-6.00116-3] [Reference Citation Analysis]
2 Khan Z, Sekar N. Far-red to NIR emitting xanthene-based fluorophores. Dyes and Pigments 2022;208:110735. [DOI: 10.1016/j.dyepig.2022.110735] [Reference Citation Analysis]
3 Merl T, Rasmussen MR, Koch LR, Søndergaard JV, Bust FF, Koren K. Measuring soil pH at in situ like conditions using optical pH sensors (pH-optodes). Soil Biology and Biochemistry 2022;175:108862. [DOI: 10.1016/j.soilbio.2022.108862] [Reference Citation Analysis]
4 Ali R. Dual Optical Nanosensor Based on Ormosil Nanoparticles for Monitoring O2 and pH. Biosensors 2022;12:1011. [DOI: 10.3390/bios12111011] [Reference Citation Analysis]
5 Bakov VV, Georgiev NI, Bojinov VB. A Novel Fluorescent Probe for Determination of pH and Viscosity Based on a Highly Water-Soluble 1,8-Naphthalimide Rotor. Molecules 2022;27:7556. [DOI: 10.3390/molecules27217556] [Reference Citation Analysis]
6 Sen R, Li L, Zhdanov AV, Gaspar RD, Papkovsky DB. Phosphorescence lifetime measurements with sensor materials: Comparison of the four different detection platforms. Sensors and Actuators B: Chemical 2022;371:132496. [DOI: 10.1016/j.snb.2022.132496] [Reference Citation Analysis]
7 Liu H, Li H, Xia S, Yu S, Duan Y, Wang L, Zhu H, He H. Design of a cellulose nanocrystal-based upconversion ratiometric fluorescent nanoprobe for pH monitoring and imaging. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.140456] [Reference Citation Analysis]
8 Chen F, Jin Y, Luo J, Wei L, Jiang B, Guo S, Wei C, Gong Y. Poly-L-aspartic acid based nonconventional luminescent biomacromolecules with efficient emission in dilute solutions for Al3+ detection. International Journal of Biological Macromolecules 2022. [DOI: 10.1016/j.ijbiomac.2022.11.251] [Reference Citation Analysis]
9 Metelitsa AV, Chernyshev AV, Demidov OP, Makarova NI, Rostovtseva IA, Voloshin NA, Solov'eva EV, Tupaeva IO, Mukhanov EL, Gaeva EB. Molecular platform based on a spiroindolinonaphthopyran of the diphenyloxazole series for the creation of polychromogenic molecular systems. Dyes and Pigments 2022;207:110703. [DOI: 10.1016/j.dyepig.2022.110703] [Reference Citation Analysis]
10 Borah J, Rahman A, Baruah A, Dutta P, Khakhlary P. 8-Hydroxyquinoline-BODIPY based dual mode pH probe: Intuits acidic and basic environments through two different mechanisms. Journal of Photochemistry and Photobiology A: Chemistry 2022. [DOI: 10.1016/j.jphotochem.2022.114423] [Reference Citation Analysis]
11 Lee KJ, Capon PK, Ebendorff-heidepriem H, Keenan E, Brownfoot F, Schartner EP. Influence of the photopolymerization matrix on the indicator response of optical fiber pH sensors. Sensors and Actuators B: Chemical 2022. [DOI: 10.1016/j.snb.2022.132999] [Reference Citation Analysis]
12 Simonyan TR, Protasova EA, Mamontova AV, Shakhov AM, Lukyanov KA, Maksimov EG, Bogdanov AM. A Single Fluorescent Protein-Based Indicator with a Time-Resolved Fluorescence Readout for Precise pH Measurements in the Alkaline Range. IJMS 2022;23:12907. [DOI: 10.3390/ijms232112907] [Reference Citation Analysis]
13 Xia N, Chang Y, Zhou Q, Ding S, Gao F. An Overview of the Design of Metal-Organic Frameworks-Based Fluorescent Chemosensors and Biosensors. Biosensors 2022;12:928. [DOI: 10.3390/bios12110928] [Reference Citation Analysis]
14 Melnikov P, Bobrov A, Marfin Y. On the Use of Polymer-Based Composites for the Creation of Optical Sensors: A Review. Polymers 2022;14:4448. [DOI: 10.3390/polym14204448] [Reference Citation Analysis]
15 Choi SS, Wang D, Nam S, Jung W. Electrically reconfigurable optical color filters using heterogeneous chiral liquid crystals.. [DOI: 10.21203/rs.3.rs-2169955/v1] [Reference Citation Analysis]
16 Xu J, Huang M, Li T, Pang H, Ma X, Xu X, Jiao L, Tian H, Duan R, Yu G, Wu Q. Halogen atoms induced reversible supramolecular assembly and pH-response of the fluorescence properties: Low driving force triggered fluorescence switch with high SNR and high stability. Journal of Molecular Structure 2022;1265:133319. [DOI: 10.1016/j.molstruc.2022.133319] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Zhang J, Li X, Yang Z. Simulation and compensation method of temperature drift of evanescent wave organic matter sensor. Sustainable Energy Technologies and Assessments 2022;53:102655. [DOI: 10.1016/j.seta.2022.102655] [Reference Citation Analysis]
18 Steininger F, Wiorek A, Crespo GA, Koren K, Cuartero M. Imaging Sample Acidification Triggered by Electrochemically Activated Polyaniline. Anal Chem 2022. [PMID: 36166620 DOI: 10.1021/acs.analchem.2c03409] [Reference Citation Analysis]
19 Vedernikova AA, Miruschenko MD, Arefina IA, Babaev AA, Stepanidenko EA, Cherevkov SA, Spiridonov IG, Danilov DV, Koroleva AV, Zhizhin EV, Ushakova EV. Dual-Purpose Sensing Nanoprobe Based on Carbon Dots from o-Phenylenediamine: pH and Solvent Polarity Measurement. Nanomaterials 2022;12:3314. [DOI: 10.3390/nano12193314] [Reference Citation Analysis]
20 Mazumdar AK, Nanda GP, Yadav N, Deori U, Acharyya U, Sk B, Rajamalli P. Thermally activated delayed fluorescence (TADF) emitters: sensing and boosting spin-flipping by aggregation. Beilstein J Org Chem 2022;18:1177-87. [DOI: 10.3762/bjoc.18.122] [Reference Citation Analysis]
21 Vimala A, Vandrangi SK. Development of porous materials based resistance pressure sensors and their biomedical applications: a review. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2022.2118275] [Reference Citation Analysis]
22 Sánchez F, Gutiérrez M, Douhal A. Novel Approach for Detecting Vapors of Acids and Bases with Proton-Transfer Luminescent Dyes Encapsulated within Metal-Organic Frameworks. ACS Appl Mater Interfaces 2022. [PMID: 36067454 DOI: 10.1021/acsami.2c10573] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Cai H, Liang Y, Huang L, Wang J. Relay detection of Cu2+ and bovine serum albumin by a dansyl derivative-based fluorescent probe. Spectrochim Acta A Mol Biomol Spectrosc 2022;277:121281. [PMID: 35472704 DOI: 10.1016/j.saa.2022.121281] [Reference Citation Analysis]
24 Metelitsa AV, Chernyshev AV, Voloshin NA, Solov'eva EV, Dorogan IV. Chromogenic properties of heterocyclic compounds: Barochromic effect of indoline spiropyrans in the gas phase. Journal of Photochemistry and Photobiology A: Chemistry 2022;430:113982. [DOI: 10.1016/j.jphotochem.2022.113982] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Lin Z, Hu F, He G, Yang Y, Liao Y, Luo X, Wang X. Highly Photostable and pH−Sensitive Nanosensors. Chemosensors 2022;10:354. [DOI: 10.3390/chemosensors10090354] [Reference Citation Analysis]
26 Ermakova EV, Cheprakov AV, Bessmertnykh-lemeune A. Aminoquinoxaline-Based Dual Colorimetric and Fluorescent Sensors for pH Measurement in Aqueous Media. Chemosensors 2022;10:342. [DOI: 10.3390/chemosensors10080342] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Hassoun A, Alhaj Abdullah N, Aït-Kaddour A, Ghellam M, Beşir A, Zannou O, Önal B, Aadil RM, Lorenzo JM, Mousavi Khaneghah A, Regenstein JM. Food traceability 4.0 as part of the fourth industrial revolution: key enabling technologies. Crit Rev Food Sci Nutr 2022;:1-17. [PMID: 35950635 DOI: 10.1080/10408398.2022.2110033] [Reference Citation Analysis]
28 Li L, Zhdanov AV, Papkovsky DB. Advanced multimodal solid-state optochemical pH and dual pH/O2 sensors for cell analysis. Sensors and Actuators B: Chemical 2022. [DOI: 10.1016/j.snb.2022.132486] [Reference Citation Analysis]
29 Park YK, Oh HJ, Lee HD, Lee JJ, Kim JH, Lee W. Facile and Eco-friendly Fabrication of a Colorimetric Textile Sensor by UV-induced Photografting for Acidic Gas Detection. Journal of Environmental Chemical Engineering 2022. [DOI: 10.1016/j.jece.2022.108508] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
30 Costa AR, de Andrade KN, Moreira ML, Oliveira VG, Carneiro JW, da C. S. Boechat F, de Souza MC, Fiorot RG, Teixeira RI, de Lucas NC, Batalha PN. Unveiling the photophysical properties of 3-acyl-6-amino-4-quinolones and their use as proton probe. Dyes and Pigments 2022. [DOI: 10.1016/j.dyepig.2022.110692] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
31 Koda K, Keller S, Kojima R, Kamiya M, Urano Y. Measuring the pH of Acidic Vesicles in Live Cells with an Optimized Fluorescence Lifetime Imaging Probe. Anal Chem 2022. [PMID: 35913787 DOI: 10.1021/acs.analchem.2c01840] [Reference Citation Analysis]
32 Wang L, Nawrocki P, Nielsen LG, Grenier L, Sørensen TJ. A europium(III)-based nanooptode for bicarbonate sensing - a multicomponent approach to sensor materials. Chem Commun (Camb) 2022. [PMID: 35894692 DOI: 10.1039/d2cc02956a] [Reference Citation Analysis]
33 Umeno T, Seto R, Matsumoto S, Fujihara M, Karasawa S. Basic Fluorescent Protonation-Type pH Probe Sensitive to Small ΔpKa of Methanol and Ethanol. Anal Chem 2022. [PMID: 35829731 DOI: 10.1021/acs.analchem.2c01415] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Pan M, Cruz GM, Grazon C, Kechkeche D, Renault LH, Clavier G, Méallet-renault R. Luminescence-Sensitive Surfaces Bearing Ratiometric Nanoparticles for Bacteria Growth Detection. ACS Appl Polym Mater . [DOI: 10.1021/acsapm.2c00549] [Reference Citation Analysis]
35 Zhang C, Li L, Xu L, Ye C, Han P, Wang M, Liu R, Chen S, Wang X, Song Y. Micellar Ratiometric Fluorescent Blood pH Probe Based on Triplet-Sensitized Upconversion and Energy-Transfer Behaviors. J Phys Chem Lett 2022;13:5758-65. [PMID: 35715231 DOI: 10.1021/acs.jpclett.2c00874] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Georgiev NI, Krasteva PV, Bakov VV, Bojinov VB. A Highly Water-Soluble and Solid State Emissive 1,8-Naphthalimide as a Fluorescent PET Probe for Determination of pHs, Acid/Base Vapors, and Water Content in Organic Solvents. Molecules 2022;27:4229. [DOI: 10.3390/molecules27134229] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
37 Cho H, Lee S, Han MS. Investigation of a benzodiazaborine library to identify new pH-responsive fluorophores. Org Biomol Chem 2022;20:4986-92. [PMID: 35678608 DOI: 10.1039/d2ob00817c] [Reference Citation Analysis]
38 Srivastava P, Tavernaro I, Genger C, Welker P, Hübner O, Resch-Genger U. Multicolor Polystyrene Nanosensors for the Monitoring of Acidic, Neutral, and Basic pH Values and Cellular Uptake Studies. Anal Chem 2022. [PMID: 35731967 DOI: 10.1021/acs.analchem.2c00944] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Rocco D, Tognazzi A, Gandolfi M, Carletti L, Angelis CD, Locatelli A, Cino AC. Refractive index sensing by a silicon metasurface. 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON) 2022. [DOI: 10.1109/melecon53508.2022.9842969] [Reference Citation Analysis]
40 Romero AH, Cerecetto HE. High CT-Fluorophore Featuring a Basic Moiety into D-A Chain as a pKa Probe. J Org Chem 2022. [PMID: 35671375 DOI: 10.1021/acs.joc.1c03104] [Reference Citation Analysis]
41 Li T, Pang H, Wu Q, Huang M, Xu J, Zheng L, Wang B, Qiao Y. Rigid Schiff Base Complex Supermolecular Aggregates as a High-Performance pH Probe: Study on the Enhancement of the Aggregation-Caused Quenching (ACQ) Effect via the Substitution of Halogen Atoms. Int J Mol Sci 2022;23:6259. [PMID: 35682938 DOI: 10.3390/ijms23116259] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
42 de Graaf G, Vriesendorp MF, Hassan HMA, French PJ. Opto-Chemical pH Detection of Myocardial Ischaemia Using Fluorescent Hydrogels. IEEE Sensors J 2022;22:10901-9. [DOI: 10.1109/jsen.2022.3166709] [Reference Citation Analysis]
43 Boček I, Hranjec M, Vianello R. Imidazo[4,5-b]pyridine derived iminocoumarins as potential pH probes: Synthesis, spectroscopic and computational studies of their protonation equilibria. Journal of Molecular Liquids 2022;355:118982. [DOI: 10.1016/j.molliq.2022.118982] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Wang L, Jensen K, Hatzakis N, Zhang M, Sørensen TJ. Robust Dual Optical Sensor for pH and Dissolved Oxygen. ACS Sens 2022;7:1506-13. [PMID: 35535664 DOI: 10.1021/acssensors.2c00242] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Corsi M, Paghi A, Mariani S, Golinelli G, Debrassi A, Egri G, Leo G, Vandini E, Vilella A, Dähne L, Giuliani D, Barillaro G. Bioresorbable Nanostructured Chemical Sensor for Monitoring of pH Level In Vivo. Adv Sci (Weinh) 2022;:e2202062. [PMID: 35618637 DOI: 10.1002/advs.202202062] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
46 Rizzo R, Onesto V, Forciniti S, Chandra A, Prasad S, Iuele H, Colella F, Gigli G, Del Mercato LL. A pH-sensor scaffold for mapping spatiotemporal gradients in three-dimensional in vitro tumour models. Biosens Bioelectron 2022;212:114401. [PMID: 35617754 DOI: 10.1016/j.bios.2022.114401] [Reference Citation Analysis]
47 Tariq A, Garnier U, Ghasemi R, Pierre Lefevre J, Mongin C, Brosseau A, Frédéric Audibert J, Pansu R, Dauzères A, Leray I. Perylene based PET Fluorescent molecular probes for pH monitoring. Journal of Photochemistry and Photobiology A: Chemistry 2022. [DOI: 10.1016/j.jphotochem.2022.114035] [Reference Citation Analysis]
48 Zhu G, Cheng S, Zhou Z, Du B, Shen Y, Yu B. Bisligand-coordinated cadmium organic frameworks as fluorescent sensors to detect Ions, antibiotics and pesticides in aqueous solutions. Polyhedron 2022;217:115759. [DOI: 10.1016/j.poly.2022.115759] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
49 Sargazi S, Fatima I, Hassan Kiani M, Mohammadzadeh V, Arshad R, Bilal M, Rahdar A, Díez-Pascual AM, Behzadmehr R. Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review. Int J Biol Macromol 2022;206:115-47. [PMID: 35231532 DOI: 10.1016/j.ijbiomac.2022.02.137] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 15.0] [Reference Citation Analysis]
50 Dervisevic E, Dervisevic M, Ang B, Carthew J, Tuck KL, Voelcker NH, Cadarso VJ. Integrated microfluidic device to monitor unseen Escherichia coli contamination in mammalian cell culture. Sensors and Actuators B: Chemical 2022;359:131522. [DOI: 10.1016/j.snb.2022.131522] [Reference Citation Analysis]
51 Wei Y, Tang X, Zhang T, Su W, Xu L, Cui H, Qian Z, Zhang T, Wang J. Reduced temporal activation during a verbal fluency test in clinical high risk of psychosis: a functional near-infrared spectroscopy-based study. Gen Psych 2022;35:e100702. [DOI: 10.1136/gpsych-2021-100702] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
52 Lazuardi M, Hestianah EP, Restiadi TI. Designing prototype rapid test device at qualitative performance to detect residue of tetracycline in chicken carcass. Vet World. [DOI: 10.14202/vetworld.2022.1058-1065] [Reference Citation Analysis]
53 Mao G, Wu G, Chen M, Yan C, Tang J, Ma Y, Zhang X. Synthesis of Dual-Emitting CdZnSe/Mn:ZnS Quantum Dots for Sensing the pH Change in Live Cells. Anal Chem . [DOI: 10.1021/acs.analchem.1c04811] [Reference Citation Analysis]
54 Liu Q, Yang M, Meng X, Han X, Nazare M, Xu Y, Hu HY, Zhang Q. Donor manipulation for constructing a pH sensing thermally activated delayed fluorescent probe to detect alkaliphiles. Talanta 2022;246:123493. [PMID: 35489098 DOI: 10.1016/j.talanta.2022.123493] [Reference Citation Analysis]
55 Zhang H, Wei X, Chan-park MB, Wang M. Colorimetric Sensors Based on Multifunctional Polymers for Highly Sensitive Detection of Food Spoilage. ACS Food Sci Technol 2022;2:703-711. [DOI: 10.1021/acsfoodscitech.2c00019] [Reference Citation Analysis]
56 Han Z, Yu X, Sang Y, Xu Y, Zhao A, Lu X. Aromaticity-Enhanced pH-Responsive Electrochemiluminescence of Cyclopentadienols. Anal Chem 2022. [PMID: 35384644 DOI: 10.1021/acs.analchem.2c00717] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
57 Michelis S, Danglot L, Vauchelles R, Klymchenko AS, Collot M. Imaging and Measuring Vesicular Acidification with a Plasma Membrane-Targeted Ratiometric pH Probe. Anal Chem 2022. [PMID: 35377610 DOI: 10.1021/acs.analchem.2c00574] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
58 Fattahi Z, Hasanzadeh M. Nanotechnology-assisted microfluidic systems platform for chemical and bioanalysis. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116637] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
59 Qiu K, Seino R, Han G, Ishiyama M, Ueno Y, Tian Z, Sun Y, Diao J. De Novo Design of A Membrane-Anchored Probe for Multidimensional Quantification of Endocytic Dynamics. Adv Healthc Mater 2022;11:e2102185. [PMID: 35032365 DOI: 10.1002/adhm.202102185] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
60 Malik M, Narwal V, Pundir C. Ascorbic acid biosensing methods: a review. Process Biochemistry 2022. [DOI: 10.1016/j.procbio.2022.03.028] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
61 Shojaeifard Z, Hemmateenejad B. Deep and dip: Immobilization on paper substrate using Deep Eutectic solvent to fabricate reusable dip immersion colorimetric sensor arrays. Sensors and Actuators B: Chemical 2022;356:131379. [DOI: 10.1016/j.snb.2022.131379] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
62 Schroter A, Märkl S, Weitzel N, Hirsch T. Upconversion Nanocrystals with High Lanthanide Content: Luminescence Loss by Energy Migration versus Luminescence Enhancement by Increased NIR Absorption. Adv Funct Materials. [DOI: 10.1002/adfm.202113065] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
63 Jeong H, Jung BJ, Kim JH, Choi S, Lee YJ, Kim KS. Instant pH sensor based on the functionalized cellulose for detecting strong acid leaks. R Soc open sci 2022;9:211660. [DOI: 10.1098/rsos.211660] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
64 Zhang X, Pan L, Guo R, Zhang Y, Li F, Li M, Li J, Shi J, Qu F, Zuo X, Mao X. DNA origami nanocalipers for pH sensing at the nanoscale. Chem Commun (Camb) 2022;58:3673-6. [PMID: 35225310 DOI: 10.1039/d1cc06701j] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
65 Zhou ZD, Li SQ, Liu Y, Du B, Shen YY, Yu BY, Wang CC. Two bis-ligand-coordinated Zn(ii)-MOFs for luminescent sensing of ions, antibiotics and pesticides in aqueous solutions. RSC Adv 2022;12:7780-8. [PMID: 35424721 DOI: 10.1039/d2ra00376g] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
66 Zhou J, Jiang B, Gao C, Zhu K, Xu W, Song D. Stable, reusable, and rapid response smart pH-responsive cotton fabric based on covalently immobilized with naphthalimide-rhodamine probe. Sensors and Actuators B: Chemical 2022;355:131310. [DOI: 10.1016/j.snb.2021.131310] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
67 Petek N, Erjavec B, Slapšak D, Gaber A, Grošelj U, Požgan F, Ričko S, Štefane B, Klemenčič M, Svete J. 2-Acyl-1-aryl-6,7-dihydro-1H,5H-pyrazolo[1,2-a]pyrazole derivatives: Versatile fluorescent probes with remarkably large Stokes shift. Dyes and Pigments 2022. [DOI: 10.1016/j.dyepig.2022.110224] [Reference Citation Analysis]
68 Zhdanov AV, Li L, Yang P, Shkirdova AO, Tang S, Yashunsky DV, Ponomarev GV, Zamilatskov IA, Papkovsky DB. Advanced multi-modal, multi-analyte optochemical sensing platform for cell analysis. Sensors and Actuators B: Chemical 2022;355:131116. [DOI: 10.1016/j.snb.2021.131116] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
69 Wu C, Chen J, Su C. 4D-printed pH sensing claw. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.339733] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
70 Lou K, Hu Z, Zhang H, Li Q, Ji X. Information Storage Based on Stimuli‐Responsive Fluorescent 3D Code Materials. Adv Funct Materials 2022;32:2113274. [DOI: 10.1002/adfm.202113274] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
71 Wang X, Feng Y, Liu J, Cheng K, Liu Y, Yang W, Zhang H, Peng H. Fluorescein isothiocyanate-doped conjugated polymer nanoparticles for two-photon ratiometric fluorescent imaging of intracellular pH fluctuations. Spectrochim Acta A Mol Biomol Spectrosc 2022;267:120477. [PMID: 34662780 DOI: 10.1016/j.saa.2021.120477] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
72 Kasi V, Sedaghat S, Alcaraz AM, Maruthamuthu MK, Heredia-Rivera U, Nejati S, Nguyen J, Rahimi R. Low-Cost Flexible Glass-Based pH Sensor via Cold Atmospheric Plasma Deposition. ACS Appl Mater Interfaces 2022. [PMID: 35142483 DOI: 10.1021/acsami.1c19805] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
73 Zhou J, Li J, Zhang KY, Liu S, Zhao Q. Phosphorescent iridium(III) complexes as lifetime-based biological sensors for photoluminescence lifetime imaging microscopy. Coordination Chemistry Reviews 2022;453:214334. [DOI: 10.1016/j.ccr.2021.214334] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
74 Xu Z, Li Q, Zhang L, Chen M, Tu J, Chen W, Zhu Y, Cheng Y. Target-modulated UCNPs-AChE assembly equipped with microenvironment-responsive immunosensor. Sensors and Actuators B: Chemical 2022;352:131050. [DOI: 10.1016/j.snb.2021.131050] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
75 Bonnel M, Marzouk I, Riassetto D, Morand A, Bucci D, Langlet M. Setting Up and Assessing a New Micro-Structured Waveguiding Fluorescent Architecture on Glass Entirely Elaborated by Sol-Gel Processing. Materials (Basel) 2022;15:979. [PMID: 35160925 DOI: 10.3390/ma15030979] [Reference Citation Analysis]
76 Razavi B, Roghani-mamaqani H, Salami-kalajahi M. Development of highly sensitive metal-ion chemosensor and key-lock anticounterfeiting technology based on oxazolidine. Sci Rep 2022;12. [DOI: 10.1038/s41598-022-05098-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
77 Perin N, Babić D, Kassal P, Čikoš A, Hranjec M, Vianello R. Spectroscopic and Computational Study of the Protonation Equilibria of Amino-Substituted benzo[b]thieno[2,3-b]pyrido[1,2-a]benzimidazoles as Novel pH-Sensing Materials. Chemosensors 2022;10:21. [DOI: 10.3390/chemosensors10010021] [Reference Citation Analysis]
78 Gambino F, Cicatiello P, Giaquinto M, Micco A, Aliberti A, Cusano AM, Ricciardi A, Cusano A. Cavity enhanced lab-on-fiber optrode for ultra-sensitive pH monitoring. Sens Diagn 2022;1:534-540. [DOI: 10.1039/d1sd00071c] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
79 Xu S, Zheng G, Zhou K. Versatile scaffold applications based on MoS2 quantum dots for imaging mitochondrial pH in living cells. Analytical Biochemistry 2022. [DOI: 10.1016/j.ab.2021.114545] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
80 Giaquinto M, Gambino F, Cicatiello P, Micco A, Aliberti A, Cusano AM, Ricciardi A, Cusano A. Multifunctional lab-on-fiber smart cavity for biochemical sensing. Biophotonics Congress: Biomedical Optics 2022 (Translational, Microscopy, OCT, OTS, BRAIN) 2022. [DOI: 10.1364/translational.2022.tw3b.6] [Reference Citation Analysis]
81 Bartoš D, Rewers M, Wang L, Sørensen TJ. Incorporating fluorescent nanomaterials in organically modified sol–gel materials – creating single composite optical pH sensors. Sens Diagn 2022;1:185-92. [DOI: 10.1039/d1sd00002k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
82 Francés-soriano L, Hildebrandt N, Charbonnière LJ. Lanthanides as luminescence imaging reagents. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering 2022. [DOI: 10.1016/b978-0-12-823144-9.00095-9] [Reference Citation Analysis]
83 Magnaghi LR, Alberti G, Pazzi BM, Zanoni C, Biesuz R. A green-PAD array combined with chemometrics for pH measurements. New J Chem 2022;46:19460-19467. [DOI: 10.1039/d2nj03675d] [Reference Citation Analysis]
84 Zhou H, Zhao Y, Chen X, Zhang S. Ultrafast Spectroscopic Studies of the pH responsive 9-Acridinecarboxylic Acid as a Ratiometric and Fluorescence Lifetime pH Indicator. Microchemical Journal 2022. [DOI: 10.1016/j.microc.2022.107240] [Reference Citation Analysis]
85 Gautam YK, Sharma K, Tyagi S, Kumar A, Singh BP. Applications of green nanomaterials in coatings. Green Nanomaterials for Industrial Applications 2022. [DOI: 10.1016/b978-0-12-823296-5.00014-9] [Reference Citation Analysis]
86 Giaquinto M, Gambino F, Cicatiello P, Micco A, Aliberti A, Cusano AM, Ricciardi A, Cusano A. Multiresponsive smart cavity based lab-on-fiber optrode. 27th International Conference on Optical Fiber Sensors 2022. [DOI: 10.1364/ofs.2022.th1.2] [Reference Citation Analysis]
87 Kniec K, Marciniak L. A ratiometric luminescence pH sensor based on YAG:V 3+ ,V 5+ nanoparticles. New J Chem 2022;46:11562-9. [DOI: 10.1039/d2nj01595a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
88 Selli GI, Bonatto AET, Bonatto FT, Anzanello MJ, Bergmann CP. Nanosensors in Forensic Sciences. Environmental Applications of Nanomaterials 2022. [DOI: 10.1007/978-3-030-86822-2_13] [Reference Citation Analysis]
89 Solomatina AI, Kozina DO, Porsev VV, Tunik SP. pH-Responsive N^C-Cyclometalated Iridium(III) Complexes: Synthesis, Photophysical Properties, Computational Results, and Bioimaging Application. Molecules 2021;27:232. [PMID: 35011464 DOI: 10.3390/molecules27010232] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
90 De Marchi S, García-Lojo D, Bodelón G, Pérez-Juste J, Pastoriza-Santos I. Plasmonic Au@Ag@mSiO2 Nanorattles for In Situ Imaging of Bacterial Metabolism by Surface-Enhanced Raman Scattering Spectroscopy. ACS Appl Mater Interfaces 2021;13:61587-97. [PMID: 34927427 DOI: 10.1021/acsami.1c21812] [Reference Citation Analysis]
91 Sousa RPCL, Figueira RB, Gomes BR, Sousa S, Ferreira RCM, Costa SPG, Raposo MMM. Hybrid Sol-Gel Matrices Doped with Colorimetric/Fluorimetric Imidazole Derivatives. Nanomaterials (Basel) 2021;11:3401. [PMID: 34947750 DOI: 10.3390/nano11123401] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
92 Santos TT, Lourenço LR, de Lima SR, Goulart LR, Messias DN, Andrade AA, Pilla V. Fluorescence quantum yields and lifetimes of annatto aqueous solutions dependent on hydrogen potential: Applications in adulterated milk. Journal of Photochemistry and Photobiology 2021;8:100080. [DOI: 10.1016/j.jpap.2021.100080] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
93 Alsamman MT, Sánchez J. Recent advances on hydrogels based on chitosan and alginate for the adsorption of dyes and metal ions from water. Arabian Journal of Chemistry 2021;14:103455. [DOI: 10.1016/j.arabjc.2021.103455] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
94 Zou X, Li M, Xiao H, Zhou S, Chen C, Zhao Y. Simulation study on real laminar assembly of g-C3N4 high performance free standing membrane with bio-based materials. Separation and Purification Technology 2021;278:119598. [DOI: 10.1016/j.seppur.2021.119598] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
95 Lin B, Liu Y, Zhang X, Fan L, Shu Y, Wang J. Membrane-Activated Fluorescent Probe for High-Fidelity Imaging of Mitochondrial Membrane Potential. ACS Sens 2021;6:4009-18. [PMID: 34757720 DOI: 10.1021/acssensors.1c01390] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
96 Li WD, Ke K, Jia J, Pu JH, Zhao X, Bao RY, Liu ZY, Bai L, Zhang K, Yang MB, Yang W. Recent Advances in Multiresponsive Flexible Sensors towards E-skin: A Delicate Design for Versatile Sensing. Small 2021;:e2103734. [PMID: 34825473 DOI: 10.1002/smll.202103734] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
97 Placer L, Estévez L, Lavilla I, Pena-Pereira F, Bendicho C. Assessing citric acid-derived luminescent probes for pH and ammonia sensing: A comprehensive experimental and theoretical study. Anal Chim Acta 2021;1186:339125. [PMID: 34756267 DOI: 10.1016/j.aca.2021.339125] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
98 Cepeda E, Narváez K. Molecular Photoacoustic Imaging. RB 2021;6:2351-2355. [DOI: 10.21931/rb/2021.06.04.34] [Reference Citation Analysis]
99 Shen B, Ding R, Dai J, Ji Y, Wang Q, Wang Y, Huang H, Zhang X. Encapsulating nitroreductase into metal-organic framework: Boosting industrial performance for the reduction of nitro-aromatics. Green Synthesis and Catalysis 2021;2:367-73. [DOI: 10.1016/j.gresc.2021.09.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
100 Zheng K, Chen H, Xiao Y, Liu X, Yan J, Zhang N. A Novel Strategy to Design and Construct AIE-active Mechanofluorochromic Materials via Regulation of Molecular Structure. Chemistry 2021;27:14964-70. [PMID: 34427954 DOI: 10.1002/chem.202102578] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
101 Tung CH, Han MS, Shen Z, Gray BD, Pak KY, Wang J. Near-Infrared Fluorogenic Spray for Rapid Tumor Sensing. ACS Sens 2021;6:3657-66. [PMID: 34549942 DOI: 10.1021/acssensors.1c01370] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
102 Diana R, Sessa L, Concilio S, Piotto S, Panunzi B. Luminescent Zn (II)-Based Nanoprobes: A Highly Symmetric Supramolecular Platform for Sensing of Biological Targets and Living Cell Imaging. Front Mater 2021;8:750247. [DOI: 10.3389/fmats.2021.750247] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
103 Dong H, Zhao L, Zhou Y, Wei X, Xu C, Zhang Y, Xu M. Novel Self-Calibrating Amperometric and Ratiometric Electrochemical Nanotip Microsensor for pH Measurement in Rat Brain. Anal Chem 2021;93:13815-22. [PMID: 34609844 DOI: 10.1021/acs.analchem.1c02436] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
104 Damodara S, Zhu Y, Selvaganapathy PR. Patterned threads as solid-state reagent storage and delivery medium for automated periodic colorimetric monitoring of the environment. Microfluid Nanofluid 2021;25. [DOI: 10.1007/s10404-021-02496-x] [Reference Citation Analysis]
105 Săcărescu L, Cojocaru C, Roman G, Săcărescu G, Simionescu M, Samoilă P, Chibac-scutaru AL. Nano-assembly and optical properties of difluoroboron dibenzoylmethane-polysilane. Polymer 2021;232:124188. [DOI: 10.1016/j.polymer.2021.124188] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
106 Arafa AA, Nada AA, Ibrahim AY, Zahran MK, Hakeim OA. Greener therapeutic pH-sensing wound dressing based on Curcuma Longa and cellulose hydrogel. European Polymer Journal 2021;159:110744. [DOI: 10.1016/j.eurpolymj.2021.110744] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
107 Liao S, Tsai K, Lin J, Ching CT, Wu Y. Characterizations of a nanocomposite biochemical-sensing membrane of γ-APTES incorporated with silica nanoparticles prepared by ultrasonic liquid atomizer spray. Jpn J Appl Phys 2021;60:101006. [DOI: 10.35848/1347-4065/ac26a8] [Reference Citation Analysis]
108 Kim H, Lee S, Min JS, Kim E, Choi J, Ko J, Kim E. Fluorescent sensor array for high-precision pH classification with machine learning-supported mobile devices. Dyes and Pigments 2021;193:109492. [DOI: 10.1016/j.dyepig.2021.109492] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
109 Rasouli Z, Maeder M, Abdollahi H. Using chemical modeling for designing of optimal pH sensor based on analytical sensitivity enhancement. Microchemical Journal 2021;168:106450. [DOI: 10.1016/j.microc.2021.106450] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
110 Georgiev NI, Bryaskova RG, Ismail SR, Philipova ND, Uzunova VP, Bakov VV, Tzoneva RD, Bojinov VB. Aggregation induced emission in 1,8-naphthalimide embedded nanomicellar architecture as a platform for fluorescent ratiometric pH-probe with biomedical applications. Journal of Photochemistry and Photobiology A: Chemistry 2021;418:113380. [DOI: 10.1016/j.jphotochem.2021.113380] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
111 Li G, Wang Q, Liu J, Wu M, Ji H, Qin Y, Zhou X, Wu L. Innovative strategies for enhanced tumor photodynamic therapy. J Mater Chem B 2021. [PMID: 34382629 DOI: 10.1039/d1tb01466h] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
112 Ling L, Tian F, Zhenghe G, Cheng H, Yuanyuan L, Tao Y. Preparation and properties of a novel polystyrene solid-phase fluorescence pH sensor based on a naphthalimide derivative. Journal of Chemical Research 2021;45:950-6. [DOI: 10.1177/17475198211035474] [Reference Citation Analysis]
113 Lu F, Wright R, Lu P, Cvetic PC, Ohodnicki PR. Distributed fiber optic pH sensors using sol-gel silica based sensitive materials. Sensors and Actuators B: Chemical 2021;340:129853. [DOI: 10.1016/j.snb.2021.129853] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
114 Podrazký O, Mrázek J, Proboštová J, Vytykáčová S, Kašík I, Pitrová Š, Jasim AA. Ex-Vivo Measurement of the pH in Aqueous Humor Samples by a Tapered Fiber-Optic Sensor. Sensors (Basel) 2021;21:5075. [PMID: 34372310 DOI: 10.3390/s21155075] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
115 Zhou Z, Shu T, Sun Y, Si H, Peng P, Su L, Zhang X. Luminescent wearable biosensors based on gold nanocluster networks for "turn-on" detection of Uric acid, glucose and alcohol in sweat. Biosens Bioelectron 2021;192:113530. [PMID: 34325319 DOI: 10.1016/j.bios.2021.113530] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 14.0] [Reference Citation Analysis]
116 Voskoboynikova O, Sukhanov A, Duerkop A. Optical pH Sensing in Milk: A Small Puzzle of Indicator Concentrations and the Best Detection Method. Chemosensors 2021;9:177. [DOI: 10.3390/chemosensors9070177] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
117 Werner J, Belz M, Klein KF, Sun T, Grattan KTV. Characterization of a fast response fiber-optic pH sensor and illustration in a biological application. Analyst 2021;146:4811-21. [PMID: 34195717 DOI: 10.1039/d1an00631b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
118 Mayer L, Müller TJJ. 3,10‐Diaryl Phenothiazines – One‐pot Synthesis and Conformational Tuning of Ground and Excited State Electronics. Eur J Org Chem 2021;2021:3516-27. [DOI: 10.1002/ejoc.202100659] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
119 Mukherjee A, Saha PC, Das RS, Bera T, Guha S. Acidic pH-Activatable Visible to Near-Infrared Switchable Ratiometric Fluorescent Probe for Live-Cell Lysosome Targeted Imaging. ACS Sens 2021;6:2141-6. [PMID: 34125510 DOI: 10.1021/acssensors.1c00961] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 12.0] [Reference Citation Analysis]
120 Yang SL, Li G, Guo MY, Liu WS, Bu R, Gao EQ. Positive Cooperative Protonation of a Metal-Organic Framework: pH-Responsive Fluorescence and Proton Conduction. J Am Chem Soc 2021;143:8838-48. [PMID: 34076423 DOI: 10.1021/jacs.1c03432] [Cited by in Crossref: 39] [Cited by in F6Publishing: 30] [Article Influence: 39.0] [Reference Citation Analysis]
121 Fuchs S, Johansson S, Tjell AØ, Werr G, Mayr T, Tenje M. In-Line Analysis of Organ-on-Chip Systems with Sensors: Integration, Fabrication, Challenges, and Potential. ACS Biomater Sci Eng 2021;7:2926-48. [PMID: 34133114 DOI: 10.1021/acsbiomaterials.0c01110] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 28.0] [Reference Citation Analysis]
122 Blaszczak W, Tan Z, Swietach P. Cost-Effective Real-Time Metabolic Profiling of Cancer Cell Lines for Plate-Based Assays. Chemosensors 2021;9:139. [DOI: 10.3390/chemosensors9060139] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
123 Ma W, Lu H, Yan B. A new strategy to fabricate multifunctional luminescent MOFs, extending their application range from pH sensing to amino acid information coding. J Colloid Interface Sci 2021;601:427-36. [PMID: 34090023 DOI: 10.1016/j.jcis.2021.05.136] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
124 Werner J, Belz M, Klein K, Sun T, Grattan K. Fiber optic sensor designs and luminescence-based methods for the detection of oxygen and pH measurement. Measurement 2021;178:109323. [DOI: 10.1016/j.measurement.2021.109323] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
125 Koren K, Zieger SE. Optode Based Chemical Imaging-Possibilities, Challenges, and New Avenues in Multidimensional Optical Sensing. ACS Sens 2021;6:1671-80. [PMID: 33905234 DOI: 10.1021/acssensors.1c00480] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
126 Yoshida Y, Kitagawa H. Chromic Ionic Liquids. ACS Appl Electron Mater 2021;3:2468-82. [DOI: 10.1021/acsaelm.1c00334] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
127 Huynh GT, Henderson EC, Frith JE, Meagher L, Corrie SR. Stability and Performance Study of Fluorescent Organosilica pH Nanosensors. Langmuir 2021;37:6578-87. [PMID: 34009994 DOI: 10.1021/acs.langmuir.1c00936] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
128 Di Costanzo L, Panunzi B. Visual pH Sensors: From a Chemical Perspective to New Bioengineered Materials. Molecules 2021;26:2952. [PMID: 34065629 DOI: 10.3390/molecules26102952] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
129 Nakata E, Hirose H, Gerelbaatar K, Arafiles JVV, Zhang Z, Futaki S, Morii T. A facile combinatorial approach to construct a ratiometric fluorescent sensor: application for the real-time sensing of cellular pH changes. Chem Sci 2021;12:8231-40. [PMID: 34194714 DOI: 10.1039/d1sc01575c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
130 Dmitriev RI, Intes X, Barroso MM. Luminescence lifetime imaging of three-dimensional biological objects. J Cell Sci 2021;134:1-17. [PMID: 33961054 DOI: 10.1242/jcs.254763] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
131 Ohno PE, Qin Y, Ye J, Wang J, Bertram AK, Martin ST. Fluorescence Aerosol Flow Tube Spectroscopy to Detect Liquid–Liquid Phase Separation. ACS Earth Space Chem 2021;5:1223-32. [DOI: 10.1021/acsearthspacechem.1c00061] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
132 Peng X, Ai F, Yan L, Ha E, Hu X, He S, Hu J. Synthesis strategies and biomedical applications for doped inorganic semiconductor nanocrystals. Cell Reports Physical Science 2021;2:100436. [DOI: 10.1016/j.xcrp.2021.100436] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
133 Peng J, Chen H, Sun M, Yu H, Hou J, Wang S. A benzooxazine-based ratiometric fluorescent probe for pH imaging in living cells and bacteria. Sensors and Actuators B: Chemical 2021;335:129711. [DOI: 10.1016/j.snb.2021.129711] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
134 Theerasilp M, Crespy D. Halochromic Polymer Nanosensors for Simple Visual Detection of Local pH in Coatings. Nano Lett 2021;21:3604-10. [PMID: 33818088 DOI: 10.1021/acs.nanolett.1c00620] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
135 Scales JL, Koroma DC, Oancea E. Single organelle measurements of melanosome pH using the novel ratiometric indicator RpHiMEL. Methods Enzymol 2021;654:315-44. [PMID: 34120720 DOI: 10.1016/bs.mie.2021.03.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
136 Jasińska L, Szostak K, Czok M, Malecha K, Słobodzian P. A Stripline-Based Integrated Microfluidic-Microwave Module. Energies 2021;14:2439. [DOI: 10.3390/en14092439] [Reference Citation Analysis]
137 Zan X, Bai H. Review—Novel Carbon Nanomaterials Based Flexible Electrochemical Biosensors. J Electrochem Soc 2021;168:027504. [DOI: 10.1149/1945-7111/abdddd] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
138 Andresen E, Radunz S, Resch-genger U. Novel PET-pperated rosamine pH-sensor dyes with substitution pattern-tunable p Ka values and temperature sensitivity. New J Chem 2021;45:13934-40. [DOI: 10.1039/d1nj02505h] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
139 Srivastava P, Fürstenwerth PC, Witte JF, Resch-genger U. Synthesis and spectroscopic characterization of a fluorescent phenanthrene-rhodamine dyad for ratiometric measurements of acid pH values. New J Chem 2021;45:13755-62. [DOI: 10.1039/d1nj01573g] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
140 Tabasi ZA, Walsh JC, Bodwell GJ, Thompson DW, Zhao Y. Comparative study of the photophysical and crystallographic properties of 4-(9H-pyreno[4,5-d]imidazol-10-yl)phenol and its alkylated derivatives. New J Chem 2021;45:7647-7658. [DOI: 10.1039/d1nj01102b] [Reference Citation Analysis]
141 Wang T, Sun F, Jiang Z, Wang J, Ma Y, Lin H, Lv H, Xu S, Li J, Zhou G. Blue/red ratiometric pH sensors without background signals based on 808 nm-excited core–triple shell up-conversion nanoparticles. J Mater Chem C 2021;9:17451-17460. [DOI: 10.1039/d1tc04640c] [Reference Citation Analysis]
142 Schwamb S, Engel M, Werner T, Wiedemann P. Industrial Monitoring of Cell Culture. Cell Engineering 2021. [DOI: 10.1007/978-3-030-79871-0_17] [Reference Citation Analysis]