BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang X, Wolfbeis OS. Fiber-Optic Chemical Sensors and Biosensors (2015–2019). Anal Chem 2020;92:397-430. [DOI: 10.1021/acs.analchem.9b04708] [Cited by in Crossref: 111] [Cited by in F6Publishing: 121] [Article Influence: 37.0] [Reference Citation Analysis]
Number Citing Articles
1 Luo M, Chang X, Gao D, Wen X, Teng P, Zhu J, Ma H, Li A, Yang X, Li K, Copner N, Zhu Z. Optoelectrode based on fiber Fabry-Perot cavity functionalized by conductive indium tin oxide. Optical Fiber Technology 2023;75:103150. [DOI: 10.1016/j.yofte.2022.103150] [Reference Citation Analysis]
2 Li K, Wang J, Zhou W, Zeng S, Guo T, Wei L. Lab-in-a-fiber biosensors. Microfluidic Biosensors 2023. [DOI: 10.1016/b978-0-12-823846-2.00007-9] [Reference Citation Analysis]
3 Kuzhandai Shamlee J, Swamy V, S Rajamani A, Mukherji S, Satija J, Janakiraman V, Sai V. A U-bent fiberoptic absorbance biosensor array (ArFAB) for multiplexed analyte detection. Biosensors and Bioelectronics: X 2022;12:100271. [DOI: 10.1016/j.biosx.2022.100271] [Reference Citation Analysis]
4 Ahmad I, Aslam M, Jabeen U, Zafar MN, Malghani MNK, Alwadai N, Alshammari FH, Almuslem AS, Ullah Z. ZnO and Ni-doped ZnO photocatalysts: Synthesis, characterization and improved visible light driven photocatalytic degradation of methylene blue. Inorganica Chimica Acta 2022;543:121167. [DOI: 10.1016/j.ica.2022.121167] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Priyamvada VC, Udayan S, Bindiya ES, Thomas S, Bhat SG, Radhakrishnan P. Fibre Optic Silver Plasmonic U-Bent Real Time Sensing Response to Accelerated Protein Conformation Kinetics. Sens Imaging 2022;23:34. [DOI: 10.1007/s11220-022-00405-2] [Reference Citation Analysis]
6 Ando M, Kawasaki H, Tamura S, Haramoto Y, Shigeri Y. Recent Advances in Gas Sensing Technology Using Non-Oxide II-VI Semiconductors CdS, CdSe, and CdTe. Chemosensors 2022;10:482. [DOI: 10.3390/chemosensors10110482] [Reference Citation Analysis]
7 Vikas, Mishra SK, Mishra AK, Saccomandi P, Verma RK. Recent Advances in Lossy Mode Resonance-Based Fiber Optic Sensors: A Review. Micromachines 2022;13:1921. [DOI: 10.3390/mi13111921] [Reference Citation Analysis]
8 Chang X, Wen X, Gao D, Luo M, Teng P, Zhu Z, Zhang J, Li K, Copner N, Yang X. Optoelectrode based on conductive fiber Fabry-Perot probe for simultaneous electrochemical and optical sensing. Measurement 2022. [DOI: 10.1016/j.measurement.2022.112198] [Reference Citation Analysis]
9 Müller M, Cascales JP, Marks HL, Wang-evers M, Manstein D, Evans CL. Phosphorescent Microneedle Array for the Measurement of Oxygen Partial Pressure in Tissue. ACS Sens 2022. [DOI: 10.1021/acssensors.2c01775] [Reference Citation Analysis]
10 Chen X, Yao C, Li Z. Microarray-based chemical sensors and biosensors: Fundamentals and food safety applications. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116785] [Reference Citation Analysis]
11 Cennamo N, Arcadio F, Seggio M, Maniglio D, Zeni L, Bossi AM. Spoon-shaped polymer waveguides to excite multiple plasmonic phenomena: A multisensor based on antibody and molecularly imprinted nanoparticles to detect albumin concentrations over eight orders of magnitude. Biosens Bioelectron 2022;217:114707. [PMID: 36116224 DOI: 10.1016/j.bios.2022.114707] [Reference Citation Analysis]
12 Tan Q, Wu S, Liu Z, Wu X, Forsberg E, He S. High sensitivity detection of SARS-CoV-2 by an optofluidic hollow eccentric core fiber. Biomed Opt Express 2022;13:4592. [DOI: 10.1364/boe.465136] [Reference Citation Analysis]
13 Zhang J, Mai X, Hong X, Chen Y, Li X. Optical fiber SPR biosensor with a solid-phase enzymatic reaction device for glucose detection. Sensors and Actuators B: Chemical 2022;366:131984. [DOI: 10.1016/j.snb.2022.131984] [Reference Citation Analysis]
14 Maksymov IS, Huy Nguyen BQ, Suslov SA. Biomechanical Sensing Using Gas Bubbles Oscillations in Liquids and Adjacent Technologies: Theory and Practical Applications. Biosensors 2022;12:624. [DOI: 10.3390/bios12080624] [Reference Citation Analysis]
15 Han J, Lee SL, Kim J, Seo G, Lee YW. SARS-CoV-2 spike protein detection using slightly tapered no-core fiber-based optical transducer. Mikrochim Acta 2022;189:321. [PMID: 35932379 DOI: 10.1007/s00604-022-05413-3] [Reference Citation Analysis]
16 Renganathan B, Krishna Rao S, Ganesan A, Deepak A. Performance study of Ce doped ZnO Clad modified fiber optic Glucose sensor for blood sugar detection at various temperatures. Microchemical Journal 2022. [DOI: 10.1016/j.microc.2022.107890] [Reference Citation Analysis]
17 Liu T, Ding L, Fang Y. Real-time and wireless monitoring platforms for vital chemicals toward wearable applications. Matter 2022;5:2508-10. [DOI: 10.1016/j.matt.2022.06.040] [Reference Citation Analysis]
18 Rajamani AS, Manoharan H, Danny CG, Kishore P, Sai V. Step-etched U-bent silica fiber optic probes – Design and optimum geometry for refractive index sensing. Sensors and Actuators A: Physical 2022;342:113615. [DOI: 10.1016/j.sna.2022.113615] [Reference Citation Analysis]
19 Liu L, Korposh S, Morgan SP. Dual parameter simultaneous sensing of ammonia and humidity utilising dye-encapsulated extrinsic Fabry–Pérot interferometer. 2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP) 2022. [DOI: 10.1109/csndsp54353.2022.9908026] [Reference Citation Analysis]
20 Elsherif M, Salih AE, Muñoz MG, Alam F, Alqattan B, Antonysamy DS, Zaki MF, Yetisen AK, Park S, Wilkinson TD, Butt H. Optical Fiber Sensors: Working Principle, Applications, and Limitations. Advanced Photonics Research 2022. [DOI: 10.1002/adpr.202100371] [Reference Citation Analysis]
21 Lan Y, He B, Tan CS, Ming D. Applications of Smartphone-Based Aptasensor for Diverse Targets Detection. Biosensors 2022;12:477. [DOI: 10.3390/bios12070477] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
22 Niu P, Jiang J, Liu K, Wang S, Wang T, Liu Y, Zhang X, Ding Z, Liu T. High-sensitive and disposable myocardial infarction biomarker immunosensor with optofluidic microtubule lasing. Nanophotonics 2022;0. [DOI: 10.1515/nanoph-2022-0208] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Zhang X, Qin F, Li L, Liu T, Zhang H, Zhao H, Zhang Z. A high sensitivity optical thermometry on the basis of the intensity ratio between the fluorescence and phosphorescence in lutecium porphyrin. Journal of Luminescence 2022;246:118823. [DOI: 10.1016/j.jlumin.2022.118823] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Huang R, Li M, Lin D, Shao Y, Shang C, Liu Q, Liu G, Li N, Miao R, Peng H, Tang Y, Fang Y. A fluorescent film sensor for high‐performance detection of Listeria monocytogenes via vapor sampling. Aggregate. [DOI: 10.1002/agt2.203] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Kumar DN, Baider Z, Elad D, Blum SE, Shtenberg G. Botulinum Neurotoxin C Dual Detection through Immunological Recognition and Endopeptidase Activity Using Porous Silicon Interferometers. Anal Chem 2022. [PMID: 35385264 DOI: 10.1021/acs.analchem.2c00255] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
26 Wang H, Chen D, Chen Y, Liu J, Xu J, Zhu A, Long F. Development of novel handheld optical fiber dissolved oxygen sensor and its applications. Analytica Chimica Acta 2022;1200:339587. [DOI: 10.1016/j.aca.2022.339587] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Adam KM, Huang T, Yang Q, Guan W, Hu J, Jia Y, Qu W, Shi B, Wei T, Yao H, Zhang Y, Lin Q. Selective fluorescent detection toluene in water by a novel and simple tetra-hydrazone-biphenol-based chemosensor. Dyes and Pigments 2022. [DOI: 10.1016/j.dyepig.2022.110342] [Reference Citation Analysis]
28 Smith DL, Nguyen LV, Ottaway DJ, Cabral TD, Fujiwara E, Cordeiro CMB, Warren-Smith SC. Machine learning for sensing with a multimode exposed core fiber specklegram sensor. Opt Express 2022;30:10443-55. [PMID: 35473011 DOI: 10.1364/OE.443932] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Arcadio F, Zeni L, Cennamo N. Exploiting Plasmonic Phenomena in Polymer Optical Fibers to Realize a Force Sensor. Sensors 2022;22:2391. [DOI: 10.3390/s22062391] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
30 Cai S, Ju Y, Wang Y, Li X, Guo T, Zhong H, Huang L. Fast-Response Oxygen Optical Fiber Sensor based on PEA2 SnI4 Perovskite with Extremely Low Limit of Detection. Adv Sci (Weinh) 2022;9:e2104708. [PMID: 35038240 DOI: 10.1002/advs.202104708] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Werner J, Belz M, Klein K, Sun T, Grattan K. Design and comprehensive characterization of novel fiber-optic sensor systems using fast-response luminescence-based O2 probes. Measurement 2022;189:110670. [DOI: 10.1016/j.measurement.2021.110670] [Reference Citation Analysis]
32 Memon SF, Wang R, Strunz B, Chowdhry BS, Pembroke JT, Lewis E. A Review of Optical Fibre Ethanol Sensors: Current State and Future Prospects. Sensors (Basel) 2022;22:950. [PMID: 35161695 DOI: 10.3390/s22030950] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
33 Caucheteur C, Villatoro J, Liu F, Loyez M, Guo T, Albert J. Mode-division and spatial-division optical fiber sensors. Adv Opt Photon 2022;14:1. [DOI: 10.1364/aop.444261] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
34 Luka G, Samiei E, Tasnim N, Dalili A, Najjaran H, Hoorfar M. Comprehensive review of conventional and state-of-the-art detection methods of Cryptosporidium. J Hazard Mater 2022;421:126714. [PMID: 34325293 DOI: 10.1016/j.jhazmat.2021.126714] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
35 Goo Lee S, Zarei M. “Lab-on-a-phone” project: Micro- and nanotechnology-enabled applications for portable miniaturized analytical systems. Micro- and Nanotechnology Enabled Applications for Portable Miniaturized Analytical Systems 2022. [DOI: 10.1016/b978-0-12-823727-4.00011-0] [Reference Citation Analysis]
36 Danny CG, Manoharan H, Yadav S, Sai VVR, Satija J. U-Bent Fiber Optic Plasmonic Sensors: Fundamentals, Applications, Challenges, and Future Directions. Lecture Notes in Nanoscale Science and Technology 2022. [DOI: 10.1007/978-3-030-99491-4_11] [Reference Citation Analysis]
37 Hou L, Li Y, Fu Y, Yang J, Xu W, Song X, Li J, Liu Y, Ran L. Ultra-Sensitive Optical Fiber Humidity Sensor via Au-Film-Assisted Polyvinyl Alcohol Micro-Cavity and Vernier Effect. IEEE Trans Instrum Meas 2022;71:1-9. [DOI: 10.1109/tim.2021.3139694] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Bawa G, Tripathi SM. Refractive Index Sensing Free From Critical Wavelength Referencing Using Fiber-Optic Directional Coupler. J Lightwave Technol 2022;40:284-90. [DOI: 10.1109/jlt.2021.3119283] [Reference Citation Analysis]
39 Ye F, Tian C, Ma C, Zhang ZF. Fiber optic sensors based on circular and elliptical polymer optical fiber for measuring refractive index of liquids. Optical Fiber Technology 2022;68:102812. [DOI: 10.1016/j.yofte.2021.102812] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
40 Gao J, Zu Q, Xu S, Yang W, Feng J, Liu R, Zha Z, Peng Q, Yue W, Huo Y, Jiang S, Fan X. Enhanced sensitivity of a surface plasmon resonance biosensor using hyperbolic metamaterial and monolayer graphene. Opt Express 2021;29:43766. [DOI: 10.1364/oe.447107] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
41 Jing J, Liu K, Jiang J, Xu T, Wang S, Ma J, Zhang Z, Zhang W, Liu T. Performance improvement approaches for optical fiber SPR sensors and their sensing applications. Photon Res 2022;10:126. [DOI: 10.1364/prj.439861] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
42 Cheng W, Zhang X, Duan N, Jiang L, Xu Y, Chen Y, Liu Y, Fan P. Direct-determination of high-concentration sulfate by serial differential spectrophotometry with multiple optical pathlengths. Sci Total Environ 2021;811:152121. [PMID: 34871678 DOI: 10.1016/j.scitotenv.2021.152121] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
43 Liu X, Han Y, Shu Y, Wang J, Qiu H. Fabrication and application of 2,4,6-trinitrophenol sensors based on fluorescent functional materials. J Hazard Mater 2021;425:127987. [PMID: 34896707 DOI: 10.1016/j.jhazmat.2021.127987] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
44 Moro G, Chiavaioli F, Liberi S, Zubiate P, Del Villar I, Angelini A, De Wael K, Baldini F, Moretto LM, Giannetti A. (INVITED)Nanocoated fiber label-free biosensing for perfluorooctanoic acid detection by lossy mode resonance. Results in Optics 2021;5:100123. [DOI: 10.1016/j.rio.2021.100123] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
45 Esposito F. (INVITED)Chemical sensors based on long period fiber gratings: A review. Results in Optics 2021;5:100196. [DOI: 10.1016/j.rio.2021.100196] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
46 Leal-junior AG, Marques C, Lee H, Nakamura K, Mizuno Y. Sensing Applications of Polymer Optical Fiber Fuse. Adv Photo Res. [DOI: 10.1002/adpr.202100210] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
47 Delfino I, Diano N, Lepore M. Advanced Optical Sensing of Phenolic Compounds for Environmental Applications. Sensors (Basel) 2021;21:7563. [PMID: 34833640 DOI: 10.3390/s21227563] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
48 Wang K, Dong X, Kienle P, Fink M, Kurz W, Köhler MH, Jakobi M, Koch AW. Optical Fiber Sensor for Temperature and Strain Measurement Based on Multimode Interference and Square-Core Fiber. Micromachines (Basel) 2021;12:1239. [PMID: 34683290 DOI: 10.3390/mi12101239] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
49 Gomes BR, Araújo R, Sousa T, Figueira RB. Sol-Gel Coating Membranes for Optical Fiber Sensors for Concrete Structures Monitoring. Coatings 2021;11:1245. [DOI: 10.3390/coatings11101245] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
50 Cennamo N, Arcadio F, Noel L, Zeni L, Soppera O. Flexible and Ultrathin Metal-Oxide Films for Multiresonance-Based Sensors in Plastic Optical Fibers. ACS Appl Nano Mater 2021;4:10902-10. [DOI: 10.1021/acsanm.1c02345] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
51 Bian Z, Zhao C, Feng S, Xue L, Hu A, Yang H, Chu F. Dissolved oxygen sensing characteristics of plastic optical fiber coated with hydrogel film. Optical Fiber Technology 2021;66:102659. [DOI: 10.1016/j.yofte.2021.102659] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
52 Kingsborough RP, Wrobel AT, Kunz RR. Colourimetry for the sensitive detection of vapour-phase chemicals: State of the art and future trends. TrAC Trends in Analytical Chemistry 2021;143:116397. [DOI: 10.1016/j.trac.2021.116397] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
53 Pham Thanh B, Nguyen TV, Pham VH, Bui H, Hoang THC, Do TC, Nguyen AT. Highly-sensitive Refractometer Based on a D-shaped Fiber Bragg Grating Integrated into A Loop-mirror Optical Fiber Laser. Comm in Phys 2021;32:11. [DOI: 10.15625/0868-3166/16014] [Reference Citation Analysis]
54 Jauregui-Vazquez D, Lozano-Sotomayor P, Mejía-Benavides JE, Díaz-Cervantes E. Binding Analysis of Functionalized Multimode Optical-Fiber Sandwich-like Structure with Organic Polymer and Its Sensing Application for Humidity and Breath Monitoring. Biosensors (Basel) 2021;11:324. [PMID: 34562914 DOI: 10.3390/bios11090324] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
55 Huang C, Zhou Y, Yu G, Zeng J, Li Q, Shen K, Wu X, Guo R, Zhang C, Zheng B, Wang J. Glutathione-functionalized long-period fiber gratings sensor based on surface plasmon resonance for detection of As3+ ions. Nanotechnology 2021;32. [PMID: 34359058 DOI: 10.1088/1361-6528/ac1b56] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
56 Martín FF, Llopis MV, Rodríguez JCC, Martínez AL, Cabezuelo AS, Fernández-arguelles MT, Costa-fernández JM. Optoelectronic Instrumentation and Measurement Strategies for Optical Chemical (Bio)Sensing. Applied Sciences 2021;11:7849. [DOI: 10.3390/app11177849] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Žuržul N, Stokke BT. DNA Aptamer Functionalized Hydrogels for Interferometric Fiber-Optic Based Continuous Monitoring of Potassium Ions. Biosensors (Basel) 2021;11:266. [PMID: 34436068 DOI: 10.3390/bios11080266] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Manoharan H, Kc D, Sai VVR. Highly Stable Plasmonic Nanostructures on a Nickel-Sputtered Glass and Polymeric Optical Fiber Sensors. Plasmonics 2021;16:1307-1318. [DOI: 10.1007/s11468-021-01400-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Halkare P, Punjabi N, Wangchuk J, Madugula S, Kondabagil K, Mukherji S. Label-Free Detection of Escherichia coli from Mixed Bacterial Cultures Using Bacteriophage T4 on Plasmonic Fiber-Optic Sensor. ACS Sens 2021;6:2720-7. [PMID: 34253020 DOI: 10.1021/acssensors.1c00801] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
60 Liyanage T, Lai M, Slaughter G. Label-free tapered optical fiber plasmonic biosensor. Anal Chim Acta 2021;1169:338629. [PMID: 34088366 DOI: 10.1016/j.aca.2021.338629] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
61 Das S, Agarwal DK, Mandal B, Rao VR, Kundu T. Detection of the Chilli Leaf Curl Virus Using an Attenuated Total Reflection-Mediated Localized Surface-Plasmon-Resonance-Based Optical Platform. ACS Omega 2021;6:17413-23. [PMID: 34278127 DOI: 10.1021/acsomega.1c01702] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
62 Burmistrova NA, Pidenko PS, Presnyakov KY, Drozd DD, Skibina YS, Pidenko SA, Goryacheva IY. Multicapillary Systems in Analytical Chemistry. J Anal Chem 2021;76:785-96. [DOI: 10.1134/s1061934821050087] [Reference Citation Analysis]
63 Chauhan M, Kumar Singh V. Review on recent experimental SPR/LSPR based fiber optic analyte sensors. Optical Fiber Technology 2021;64:102580. [DOI: 10.1016/j.yofte.2021.102580] [Cited by in Crossref: 25] [Cited by in F6Publishing: 30] [Article Influence: 25.0] [Reference Citation Analysis]
64 Werner J, Belz M, Klein KF, Sun T, Grattan KTV. Characterization of a fast response fiber-optic pH sensor and illustration in a biological application. Analyst 2021;146:4811-21. [PMID: 34195717 DOI: 10.1039/d1an00631b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
65 Jusková P, Schmitt S, Kling A, Rackus DG, Held M, Egli A, Dittrich PS. Real-Time Respiration Changes as a Viability Indicator for Rapid Antibiotic Susceptibility Testing in a Microfluidic Chamber Array. ACS Sens 2021;6:2202-10. [PMID: 33900065 DOI: 10.1021/acssensors.1c00020] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
66 Li Z, Yang X, Zhu H, Chiavaioli F. Sensing Performance of Fiber-Optic Combs Tuned by Nanometric Films: New Insights and Limits. IEEE Sensors J 2021;21:13305-15. [DOI: 10.1109/jsen.2021.3068445] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
67 Chiavaioli F, Janner D. Fiber Optic Sensing With Lossy Mode Resonances: Applications and Perspectives. J Lightwave Technol 2021;39:3855-70. [DOI: 10.1109/jlt.2021.3052137] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 20.0] [Reference Citation Analysis]
68 Chang Y, Wang S, Ko R, Hsu W. The use of a multiple roughening scheme to enhance sensing performance of pH sensors with NiO nanosheets/multi-walled carbon nanotubes on KOH-etched Si substrates. Jpn J Appl Phys 2021;60:SBBG09. [DOI: 10.35848/1347-4065/abe994] [Reference Citation Analysis]
69 Ran Y, Long J, Xu Z, Yin Y, Hu D, Long X, Zhang Y, Liang L, Liang H, Guan BO. Harmonic optical microfiber Bragg grating immunosensor for the accelerative test of cardiac biomarker (cTn-I). Biosens Bioelectron 2021;179:113081. [PMID: 33588296 DOI: 10.1016/j.bios.2021.113081] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 16.0] [Reference Citation Analysis]
70 Yang X, Gong C, Liu Y, Rao Y, Smietana M, Gong Y. Recent Progress in Fiber Optofluidic Lasing and Sensing. Photonic Sens 2021;11:262-78. [DOI: 10.1007/s13320-021-0622-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
71 Magna G, Mandoj F, Stefanelli M, Pomarico G, Monti D, Di Natale C, Paolesse R, Nardis S. Recent Advances in Chemical Sensors Using Porphyrin-Carbon Nanostructure Hybrid Materials. Nanomaterials (Basel) 2021;11:997. [PMID: 33924607 DOI: 10.3390/nano11040997] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
72 Qazi HH, Salim MRB, Bin Mohd Supa’at AS, Ahmed I, Abbasi MS, Ali MM, Idrus SM, Mohammad ABB, Sultan Irshad M, Yasmeen F. Modified fiber optic sensor for highly precise identification of mercuric ion (Hg 2+ ) concentrations in aqueous solution. Eng Res Express 2021;3:025001. [DOI: 10.1088/2631-8695/abea29] [Reference Citation Analysis]
73 Capon PK, Li J, Horsfall AJ, Yagoub S, Schartner EP, Khalid A, Kirk RW, Purdey MS, Dunning KR, Mclaughlin RA, Abell AD. A Silk‐Based Functionalization Architecture for Single Fiber Imaging and Sensing. Adv Funct Materials 2022;32:2010713. [DOI: 10.1002/adfm.202010713] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
74 Nguyen LV, Nguyen CC, Carneiro G, Ebendorff-heidepriem H, Warren-smith SC. Sensing in the presence of strong noise by deep learning of dynamic multimode fiber interference. Photon Res 2021;9:B109. [DOI: 10.1364/prj.415902] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
75 Liu J, Xing Y, Zhou X, Chen GY, Shi H. Light-sheet skew rays enhanced U-shaped fiber-optic fluorescent immunosensor for Microcystin-LR. Biosens Bioelectron 2021;176:112902. [PMID: 33341317 DOI: 10.1016/j.bios.2020.112902] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
76 Juste-Dolz A, Delgado-Pinar M, Avella-Oliver M, Fernández E, Pastor D, Andrés MV, Maquieira Á. BIO bragg gratings on microfibers for label-free biosensing. Biosens Bioelectron 2021;176:112916. [PMID: 33401145 DOI: 10.1016/j.bios.2020.112916] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
77 Yang J, Muhammad T, Pataer P, Yang X, Hoji A, Zhang S. Precise in-situ detection of adsorption kinetics based on fiber-optic sensing with a Y-shaped batch vessel. Instrumentation Science & Technology 2021;49:201-215. [DOI: 10.1080/10739149.2020.1811985] [Reference Citation Analysis]
78 Janik M, Brzozowska E, Czyszczoń P, Celebańska A, Koba M, Gamian A, Bock WJ, Śmietana M. Optical fiber aptasensor for label-free bacteria detection in small volumes. Sensors and Actuators B: Chemical 2021;330:129316. [DOI: 10.1016/j.snb.2020.129316] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 14.0] [Reference Citation Analysis]
79 Li C, Gao J, Shafi M, Liu R, Zha Z, Feng D, Liu M, Du X, Yue W, Jiang S. Optical fiber SPR biosensor complying with a 3D composite hyperbolic metamaterial and a graphene film. Photon Res 2021;9:379. [DOI: 10.1364/prj.416815] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 14.0] [Reference Citation Analysis]
80 Mirji R, Lobo B. Linear and non-linear optical parameters of polycarbonate reinforced inorganic bismuth nitrate pentahydrate salt composite. Optical Materials 2021;113:110862. [DOI: 10.1016/j.optmat.2021.110862] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
81 Li P, Lee GH, Kim SY, Kwon SY, Kim HR, Park S. From Diagnosis to Treatment: Recent Advances in Patient-Friendly Biosensors and Implantable Devices. ACS Nano 2021;15:1960-2004. [PMID: 33534541 DOI: 10.1021/acsnano.0c06688] [Cited by in Crossref: 63] [Cited by in F6Publishing: 73] [Article Influence: 63.0] [Reference Citation Analysis]
82 Huang Q, Lv C, Yuan X, He M, Lai J, Sun H. A novel fluorescent optical fiber sensor for highly selective detection of antibiotic ciprofloxacin based on replaceable molecularly imprinted nanoparticles composite hydrogel detector. Sensors and Actuators B: Chemical 2021;328:129000. [DOI: 10.1016/j.snb.2020.129000] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 24.0] [Reference Citation Analysis]
83 Wei Y, Zhou W, Wang Y, Li K, Wu Y. On-Demand Fabrication of Optical Microfiber Couplers With Precisely Controlled Dispersion Turning Points: Towards Sensing Application in Liquids. J Lightwave Technol 2021;39:667-73. [DOI: 10.1109/jlt.2020.3033660] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
84 Koštejnová L, Ondráček J, Majerová P, Koštejn M, Kuncová G, Trögl J. Cultivation of Saccharomyces cerevisiae with Feedback Regulation of Glucose Concentration Controlled by Optical Fiber Glucose Sensor. Sensors (Basel) 2021;21:E565. [PMID: 33466906 DOI: 10.3390/s21020565] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
85 Jusková P, Schmitt S, Kling A, Rackus DG, Held M, Egli A, Dittrich PS. Real-time respiration changes as a viability indicator for rapid antibiotic susceptibility testing in a microfluidic chamber array.. [DOI: 10.1101/2021.01.02.425088] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
86 Figueira RB, de Almeida JM, Ferreira B, Coelho L, Silva CJR. Optical fiber sensors based on sol–gel materials: design, fabrication and application in concrete structures. Mater Adv 2021;2:7237-76. [DOI: 10.1039/d1ma00456e] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
87 Gheorghe A, Lugier O, Ye B, Tanase S. Metal–organic framework based systems for CO 2 sensing. J Mater Chem C 2021;9:16132-42. [DOI: 10.1039/d1tc02249k] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
88 Wen HY, Wang SF, Li CH, Yeh YT, Chiang CC. Real-Time and Sensitive Immunosensor for Label-Free Detection of Specific Antigen with a Comb of Microchannel Long-Period Fiber Grating. Anal Chem 2020;92:15989-96. [PMID: 33269917 DOI: 10.1021/acs.analchem.0c03519] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
89 Chiavaioli F. Recent Development of Resonance-Based Optical Sensors and Biosensors. Optics 2020;1:255-8. [DOI: 10.3390/opt1030019] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
90 Kosowska M, Listewnik P, Majchrowicz D, Rycewicz M, Bechelany M, Fleger Y, Chen M, Fixler D, Dholakia K, Szczerska M. Microscale diamond protection for a ZnO coated fiber optic sensor. Sci Rep 2020;10:19141. [PMID: 33154464 DOI: 10.1038/s41598-020-76253-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
91 Leal-junior A, Theodosiou A, Fernandes AJ, Frizera A, Kalli K, Marques C. Perfluorinated fiber material properties following femtosecond laser inscription. Optical Materials 2020;109:110412. [DOI: 10.1016/j.optmat.2020.110412] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
92 Zhang S, Li X, Niu H, Yan Q, Sun C, Peng F, Ma Y, Zhang K, Geng T, Yang W, Sun W, Yuan L. Few-mode fiber-embedded long-period fiber grating for simultaneous measurement of refractive index and temperature. Appl Opt 2020;59:9248-53. [PMID: 33104639 DOI: 10.1364/AO.401444] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
93 Zhang F, Li S, Yan X, Zhang X, Wang F, Suzuki T, Ohishi Y, Cheng T. A Refractive Index Sensitive Liquid Level Monitoring Sensor Based on Multimode Interference. Photonics 2020;7:89. [DOI: 10.3390/photonics7040089] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
94 Nair AM, Dhawangale A, Chandra S, Shekhawat LK, Rathore AS, Mukherji S. Polymer-Coated Fiber Optic Sensor as a Process Analytical Tool for Biopharmaceutical Impurity Detection. IEEE Trans Instrum Meas 2020;69:7666-74. [DOI: 10.1109/tim.2020.2981982] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
95 Xia T, Jiang L, Zhang J, Wan Y, Yang Y, Gan J, Cui Y, Yang Z, Qian G. A fluorometric metal-organic framework oxygen sensor: from sensitive powder to portable optical fiber device. Microporous and Mesoporous Materials 2020;305:110396. [DOI: 10.1016/j.micromeso.2020.110396] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
96 Swetha B, Keshavamurthy K. Impact of thermal annealing time on luminescence properties of Eu3+ ions in silver nanoparticles embedded lanthanum sodium borate glasses. Applied Surface Science 2020;525:146505. [DOI: 10.1016/j.apsusc.2020.146505] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
97 Ran Y, Xiao P, Zhang Y, Hu D, Xu Z, Liang L, Guan B. A Miniature pH Probe Using Functional Microfiber Bragg Grating. Optics 2020;1:202-12. [DOI: 10.3390/opt1020016] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
98 Gong J, Tanner MG, Venkateswaran S, Stone JM, Zhang Y, Bradley M. A hydrogel-based optical fibre fluorescent pH sensor for observing lung tumor tissue acidity. Anal Chim Acta 2020;1134:136-43. [PMID: 33059859 DOI: 10.1016/j.aca.2020.07.063] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 8.5] [Reference Citation Analysis]
99 Leal-junior AG, Frizera A, Marques C. High Sensitive Ammonia Detection in Water With Fabry-Perot Interferometers. IEEE Photon Technol Lett 2020;32:863-6. [DOI: 10.1109/lpt.2020.3001421] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
100 Hu D, Xu Z, Long J, Xiao P, Liang L, Sun L, Liang H, Ran Y, Guan BO. Label-Free and Reproducible Chemical Sensor Using the Vertical-Fluid-Array Induced Optical Fiber Long Period Grating (VIOLIN). Sensors (Basel) 2020;20:E3415. [PMID: 32560450 DOI: 10.3390/s20123415] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
101 Walter JG, Eilers A, Alwis LSM, Roth BW, Bremer K. SPR Biosensor Based on Polymer Multi-Mode Optical Waveguide and Nanoparticle Signal Enhancement. Sensors (Basel) 2020;20:E2889. [PMID: 32443702 DOI: 10.3390/s20102889] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 14.0] [Reference Citation Analysis]
102 Okazaki T, Watanabe T, Kuramitz H. Evanescent-Wave Fiber Optic Sensing of the Anionic Dye Uranine Based on Ion Association Extraction. Sensors (Basel) 2020;20:E2796. [PMID: 32423008 DOI: 10.3390/s20102796] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
103 Masson JF. Portable and field-deployed surface plasmon resonance and plasmonic sensors. Analyst 2020;145:3776-800. [PMID: 32374303 DOI: 10.1039/d0an00316f] [Cited by in Crossref: 65] [Cited by in F6Publishing: 67] [Article Influence: 32.5] [Reference Citation Analysis]
104 Janik M, Koba M, Król K, Mikulic P, Bock WJ, Śmietana M. Combined Long-Period Fiber Grating and Microcavity In-Line Mach-Zehnder Interferometer for Refractive Index Measurements with Limited Cross-Sensitivity. Sensors (Basel) 2020;20:E2431. [PMID: 32344713 DOI: 10.3390/s20082431] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
105 González-león K, Beltrán-pérez G, Muñoz-aguirre S, López -Gayou V, Castillo-mixcoatl J, Alatriste V, Delgado-macuil R. Experimental characterization of a biosensor based on a tapered optical fiber for kisspeptin detection. Appl Opt 2020;59:D131. [DOI: 10.1364/ao.383487] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
106 Dillingham PW, Alsaedi BSO, Granados-Focil S, Radu A, McGraw CM. Establishing Meaningful Limits of Detection for Ion-Selective Electrodes and Other Nonlinear Sensors. ACS Sens 2020;5:250-7. [PMID: 31845574 DOI: 10.1021/acssensors.9b02133] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
107 Zhu G, Cheng L, Qi R, Zhang M, Zhao J, Zhu L, Dong M. A metal-organic zeolitic framework with immobilized urease for use in a tapered optical fiber urea biosensor. Microchim Acta 2020;187. [DOI: 10.1007/s00604-019-4026-0] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]