BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ai H, Wu X, Zhang L, Qi M, Zhao Y, Zhao Q, Zhao J, Liu H. QSAR modelling study of the bioconcentration factor and toxicity of organic compounds to aquatic organisms using machine learning and ensemble methods. Ecotoxicol Environ Saf 2019;179:71-8. [PMID: 31026752 DOI: 10.1016/j.ecoenv.2019.04.035] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
Number Citing Articles
1 Jiao Z, Hu P, Xu H, Wang Q. Machine Learning and Deep Learning in Chemical Health and Safety: A Systematic Review of Techniques and Applications. ACS Chem Health Saf 2020;27:316-34. [DOI: 10.1021/acs.chas.0c00075] [Cited by in Crossref: 18] [Cited by in F6Publishing: 1] [Article Influence: 9.0] [Reference Citation Analysis]
2 Wu J, D’ambrosi S, Ammann L, Stadnicka-michalak J, Schirmer K, Baity-jesi M. Predicting chemical hazard across taxa through machine learning. Environment International 2022;163:107184. [DOI: 10.1016/j.envint.2022.107184] [Reference Citation Analysis]
3 Choudhary S, Herdt D, Spoor E, García Molina JF, Nachtmann M, Rädle M. Incremental Learning in Modelling Process Analysis Technology (PAT)-An Important Tool in the Measuring and Control Circuit on the Way to the Smart Factory. Sensors (Basel) 2021;21:3144. [PMID: 34062767 DOI: 10.3390/s21093144] [Reference Citation Analysis]
4 Wang J, Zhang D, Liang L. A Classification Model with Cognitive Reasoning Ability. Symmetry 2022;14:1034. [DOI: 10.3390/sym14051034] [Reference Citation Analysis]
5 Huang R, Ma C, Ma J, Huangfu X, He Q. Machine learning in natural and engineered water systems. Water Res 2021;205:117666. [PMID: 34560616 DOI: 10.1016/j.watres.2021.117666] [Reference Citation Analysis]
6 Zhang K, Zhang H. Predicting Solute Descriptors for Organic Chemicals by a Deep Neural Network (DNN) Using Basic Chemical Structures and a Surrogate Metric. Environ Sci Technol 2022. [PMID: 34995441 DOI: 10.1021/acs.est.1c05398] [Reference Citation Analysis]
7 Toropova AP, Duchowicz PR, Saavedra LM, Castro EA, Toropov AA. The Use of the Index of Ideality of Correlation to Build Up Models for Bioconcentration Factor. Mol Inf 2020;39:1900070. [DOI: 10.1002/minf.201900070] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
8 Zhang Y, Han Z, Gao Q, Bai X, Zhang C, Hou H. Prediction of K562 Cells Functional Inhibitors Based on Machine Learning Approaches. Curr Pharm Des 2019;25:4296-302. [PMID: 31696803 DOI: 10.2174/1381612825666191107092214] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
9 Cui X, Yang R, Li S, Liu J, Wu Q, Li X. Modeling and insights into molecular basis of low molecular weight respiratory sensitizers. Mol Divers 2021;25:847-59. [PMID: 32166484 DOI: 10.1007/s11030-020-10069-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
10 Seo M, Lim C, Kwon H. In silico prediction models for thyroid peroxidase inhibitors and their application to synthetic flavors. Food Sci Biotechnol. [DOI: 10.1007/s10068-022-01041-y] [Reference Citation Analysis]