BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liberti MV, Dai Z, Wardell SE, Baccile JA, Liu X, Gao X, Baldi R, Mehrmohamadi M, Johnson MO, Madhukar NS, Shestov AA, Chio IIC, Elemento O, Rathmell JC, Schroeder FC, McDonnell DP, Locasale JW. A Predictive Model for Selective Targeting of the Warburg Effect through GAPDH Inhibition with a Natural Product. Cell Metab. 2017;26:648-659.e8. [PMID: 28918937 DOI: 10.1016/j.cmet.2017.08.017] [Cited by in Crossref: 87] [Cited by in F6Publishing: 62] [Article Influence: 21.8] [Reference Citation Analysis]
Number Citing Articles
1 Yadav S, Pandey SK, Goel Y, Temre MK, Singh SM. Diverse Stakeholders of Tumor Metabolism: An Appraisal of the Emerging Approach of Multifaceted Metabolic Targeting by 3-Bromopyruvate. Front Pharmacol 2019;10:728. [PMID: 31333455 DOI: 10.3389/fphar.2019.00728] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
2 Abeywardana T, Oh M, Jiang L, Yang Y, Kong M, Song J, Yang Y. CARM1 suppresses de novo serine synthesis by promoting PKM2 activity. J Biol Chem 2018;293:15290-303. [PMID: 30131339 DOI: 10.1074/jbc.RA118.004512] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
3 Schilf P, Schmitz M, Derenda-hell A, Thieme M, Bremer T, Vaeth M, Zillikens D, Sadik CD. Inhibition of Glucose Metabolism Abrogates the Effector Phase of Bullous Pemphigoid-Like Epidermolysis Bullosa Acquisita. Journal of Investigative Dermatology 2021;141:1646-1655.e3. [DOI: 10.1016/j.jid.2021.01.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Bose S, Allen AE, Locasale JW. The Molecular Link from Diet to Cancer Cell Metabolism. Mol Cell 2020;78:1034-44. [PMID: 32504556 DOI: 10.1016/j.molcel.2020.05.018] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 18.0] [Reference Citation Analysis]
5 Cao L, Wu J, Qu X, Sheng J, Cui M, Liu S, Huang X, Xiang Y, Li B, Zhang X, Cui R. Glycometabolic rearrangements--aerobic glycolysis in pancreatic cancer: causes, characteristics and clinical applications. J Exp Clin Cancer Res 2020;39:267. [PMID: 33256814 DOI: 10.1186/s13046-020-01765-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
6 Almeida L, Dhillon-LaBrooy A, Carriche G, Berod L, Sparwasser T. CD4+ T-cell differentiation and function: Unifying glycolysis, fatty acid oxidation, polyamines NAD mitochondria. J Allergy Clin Immunol 2021;148:16-32. [PMID: 33966898 DOI: 10.1016/j.jaci.2021.03.033] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Mondragón L, Mhaidly R, De Donatis GM, Tosolini M, Dao P, Martin AR, Pons C, Chiche J, Jacquin M, Imbert V, Proïcs E, Boyer L, Doye A, Luciano F, Neels JG, Coutant F, Fabien N, Sormani L, Rubio-Patiño C, Bossowski JP, Muller F, Marchetti S, Villa E, Peyron JF, Gaulard P, Lemonnier F, Asnafi V, Genestier L, Benhida R, Fournié JJ, Passeron T, Ricci JE, Verhoeyen E. GAPDH Overexpression in the T Cell Lineage Promotes Angioimmunoblastic T Cell Lymphoma through an NF-κB-Dependent Mechanism. Cancer Cell 2019;36:268-287.e10. [PMID: 31447347 DOI: 10.1016/j.ccell.2019.07.008] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
8 Locasale JW. New concepts in feedback regulation of glucose metabolism. Curr Opin Syst Biol 2018;8:32-8. [PMID: 31602417 DOI: 10.1016/j.coisb.2017.11.005] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
9 Ganapathy-Kanniappan S. Evolution of GAPDH as a druggable target of tumor glycolysis? Expert Opin Ther Targets 2018;22:295-8. [PMID: 29517391 DOI: 10.1080/14728222.2018.1449834] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 5.3] [Reference Citation Analysis]
10 Angelani CR, Carabias P, Cruz KM, Delfino JM, de Sautu M, Espelt MV, Ferreira-Gomes MS, Gómez GE, Mangialavori IC, Manzi M, Pignataro MF, Saffioti NA, Salvatierra Fréchou DM, Santos J, Schwarzbaum PJ. A metabolic control analysis approach to introduce the study of systems in biochemistry: the glycolytic pathway in the red blood cell. Biochem Mol Biol Educ 2018;46:502-15. [PMID: 30281891 DOI: 10.1002/bmb.21139] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Persi E, Duran-Frigola M, Damaghi M, Roush WR, Aloy P, Cleveland JL, Gillies RJ, Ruppin E. Systems analysis of intracellular pH vulnerabilities for cancer therapy. Nat Commun 2018;9:2997. [PMID: 30065243 DOI: 10.1038/s41467-018-05261-x] [Cited by in Crossref: 119] [Cited by in F6Publishing: 83] [Article Influence: 39.7] [Reference Citation Analysis]
12 Konishi H, Isozaki S, Kashima S, Moriichi K, Ichikawa S, Yamamoto K, Yamamura C, Ando K, Ueno N, Akutsu H, Ogawa N, Fujiya M. Probiotic Aspergillus oryzae produces anti-tumor mediator and exerts anti-tumor effects in pancreatic cancer through the p38 MAPK signaling pathway. Sci Rep 2021;11:11070. [PMID: 34040123 DOI: 10.1038/s41598-021-90707-4] [Reference Citation Analysis]
13 Alam H, Tang M, Maitituoheti M, Dhar SS, Kumar M, Han CY, Ambati CR, Amin SB, Gu B, Chen TY, Lin YH, Chen J, Muller FL, Putluri N, Flores ER, DeMayo FJ, Baseler L, Rai K, Lee MG. KMT2D Deficiency Impairs Super-Enhancers to Confer a Glycolytic Vulnerability in Lung Cancer. Cancer Cell 2020;37:599-617.e7. [PMID: 32243837 DOI: 10.1016/j.ccell.2020.03.005] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 29.0] [Reference Citation Analysis]
14 Cameron AM, Castoldi A, Sanin DE, Flachsmann LJ, Field CS, Puleston DJ, Kyle RL, Patterson AE, Hässler F, Buescher JM, Kelly B, Pearce EL, Pearce EJ. Inflammatory macrophage dependence on NAD+ salvage is a consequence of reactive oxygen species-mediated DNA damage. Nat Immunol 2019;20:420-32. [PMID: 30858618 DOI: 10.1038/s41590-019-0336-y] [Cited by in Crossref: 69] [Cited by in F6Publishing: 59] [Article Influence: 34.5] [Reference Citation Analysis]
15 Li W, Liao LP, Song N, Liu YJ, Ding YL, Zhang YY, Zhou XR, Sun ZY, Xiao SH, Wang HB, Lu J, Zhang NX, Jiang HL, Chen KX, Liu CP, Zheng J, Zhao KH, Luo C. Natural product 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose is a reversible inhibitor of glyceraldehyde 3-phosphate dehydrogenase. Acta Pharmacol Sin 2021. [PMID: 33850276 DOI: 10.1038/s41401-021-00653-0] [Reference Citation Analysis]
16 Pillai SR, Damaghi M, Marunaka Y, Spugnini EP, Fais S, Gillies RJ. Causes, consequences, and therapy of tumors acidosis. Cancer Metastasis Rev 2019;38:205-22. [PMID: 30911978 DOI: 10.1007/s10555-019-09792-7] [Cited by in Crossref: 81] [Cited by in F6Publishing: 69] [Article Influence: 81.0] [Reference Citation Analysis]
17 May JL, Kouri FM, Hurley LA, Liu J, Tommasini-Ghelfi S, Ji Y, Gao P, Calvert AE, Lee A, Chandel NS, Davuluri RV, Horbinski CM, Locasale JW, Stegh AH. IDH3α regulates one-carbon metabolism in glioblastoma. Sci Adv 2019;5:eaat0456. [PMID: 30613765 DOI: 10.1126/sciadv.aat0456] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 11.5] [Reference Citation Analysis]
18 Uo T, Sprenger CC, Plymate SR. Androgen Receptor Signaling and Metabolic and Cellular Plasticity During Progression to Castration Resistant Prostate Cancer. Front Oncol 2020;10:580617. [PMID: 33163409 DOI: 10.3389/fonc.2020.580617] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
19 Liberti MV, Allen AE, Ramesh V, Dai Z, Singleton KR, Guo Z, Liu JO, Wood KC, Locasale JW. Evolved resistance to partial GAPDH inhibition results in loss of the Warburg effect and in a different state of glycolysis. J Biol Chem 2020;295:111-24. [PMID: 31748414 DOI: 10.1074/jbc.RA119.010903] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
20 Ferraris DM, Gelardi ELM, Garavaglia S, Miggiano R, Rizzi M. Targeting NAD-dependent dehydrogenases in drug discovery against infectious diseases and cancer. Biochem Soc Trans 2020;48:693-707. [PMID: 32311017 DOI: 10.1042/BST20191261] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
21 Mu X, Shi W, Xu Y, Xu C, Zhao T, Geng B, Yang J, Pan J, Hu S, Zhang C, Zhang J, Wang C, Shen J, Che Y, Liu Z, Lv Y, Wen H, You Q. Tumor-derived lactate induces M2 macrophage polarization via the activation of the ERK/STAT3 signaling pathway in breast cancer. Cell Cycle 2018;17:428-38. [PMID: 29468929 DOI: 10.1080/15384101.2018.1444305] [Cited by in Crossref: 97] [Cited by in F6Publishing: 86] [Article Influence: 32.3] [Reference Citation Analysis]
22 Fakhri S, Moradi SZ, Farzaei MH, Bishayee A. Modulation of dysregulated cancer metabolism by plant secondary metabolites: A mechanistic review. Semin Cancer Biol 2020:S1044-579X(20)30040-7. [PMID: 32081639 DOI: 10.1016/j.semcancer.2020.02.007] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
23 Patel CH, Leone RD, Horton MR, Powell JD. Targeting metabolism to regulate immune responses in autoimmunity and cancer. Nat Rev Drug Discov 2019;18:669-88. [PMID: 31363227 DOI: 10.1038/s41573-019-0032-5] [Cited by in Crossref: 77] [Cited by in F6Publishing: 60] [Article Influence: 38.5] [Reference Citation Analysis]
24 Liao ST, Han C, Xu DQ, Fu XW, Wang JS, Kong LY. 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects. Nat Commun 2019;10:5091. [PMID: 31704924 DOI: 10.1038/s41467-019-13078-5] [Cited by in Crossref: 47] [Cited by in F6Publishing: 42] [Article Influence: 23.5] [Reference Citation Analysis]
25 Ordway B, Tomaszewski M, Byrne S, Abrahams D, Swietach P, Gillies RJ, Damaghi M. Targeting of Evolutionarily Acquired Cancer Cell Phenotype by Exploiting pHi-Metabolic Vulnerabilities. Cancers (Basel) 2020;13:E64. [PMID: 33379345 DOI: 10.3390/cancers13010064] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Kornberg MD. The immunologic Warburg effect: Evidence and therapeutic opportunities in autoimmunity. Wiley Interdiscip Rev Syst Biol Med 2020;12:e1486. [PMID: 32105390 DOI: 10.1002/wsbm.1486] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 14.0] [Reference Citation Analysis]
27 Yan Y, Zang X, Jamieson CS, Lin HC, Houk KN, Zhou J, Tang Y. Biosynthesis of the fungal glyceraldehyde-3-phosphate dehydrogenase inhibitor heptelidic acid and mechanism of self-resistance. Chem Sci 2020;11:9554-62. [PMID: 34094220 DOI: 10.1039/d0sc03805a] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Cao JY, Poddar A, Magtanong L, Lumb JH, Mileur TR, Reid MA, Dovey CM, Wang J, Locasale JW, Stone E, Cole SPC, Carette JE, Dixon SJ. A Genome-wide Haploid Genetic Screen Identifies Regulators of Glutathione Abundance and Ferroptosis Sensitivity.Cell Rep. 2019;26:1544-1556.e8. [PMID: 30726737 DOI: 10.1016/j.celrep.2019.01.043] [Cited by in Crossref: 59] [Cited by in F6Publishing: 46] [Article Influence: 59.0] [Reference Citation Analysis]
29 Zheng D, Li B, Xu L, Zhang Q, Fan J, Li C, Zhang X. Normalizing Tumor Microenvironment Based on Photosynthetic Abiotic/Biotic Nanoparticles. ACS Nano 2018;12:6218-27. [DOI: 10.1021/acsnano.8b02977] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 12.3] [Reference Citation Analysis]
30 Jin C, Zhu X, Wu H, Wang Y, Hu X. Perturbation of phosphoglycerate kinase 1 (PGK1) only marginally affects glycolysis in cancer cells. J Biol Chem 2020;295:6425-46. [PMID: 32217690 DOI: 10.1074/jbc.RA119.012312] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
31 Godfrey WH, Kornberg MD. The Role of Metabolic Enzymes in the Regulation of Inflammation. Metabolites 2020;10:E426. [PMID: 33114536 DOI: 10.3390/metabo10110426] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Dai Z, Locasale JW. Thermodynamic constraints on the regulation of metabolic fluxes. J Biol Chem 2018;293:19725-39. [PMID: 30361440 DOI: 10.1074/jbc.RA118.004372] [Cited by in Crossref: 6] [Article Influence: 2.0] [Reference Citation Analysis]
33 Butera G, Mullappilly N, Masetto F, Palmieri M, Scupoli MT, Pacchiana R, Donadelli M. Regulation of Autophagy by Nuclear GAPDH and Its Aggregates in Cancer and Neurodegenerative Disorders. Int J Mol Sci 2019;20:E2062. [PMID: 31027346 DOI: 10.3390/ijms20092062] [Cited by in Crossref: 26] [Cited by in F6Publishing: 17] [Article Influence: 13.0] [Reference Citation Analysis]
34 Kuang Y, Han X, Xu M, Yang Q. Oxaloacetate induces apoptosis in HepG2 cells via inhibition of glycolysis. Cancer Med 2018;7:1416-29. [PMID: 29533007 DOI: 10.1002/cam4.1410] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
35 Harmon C, O'Farrelly C, Robinson MW. The Immune Consequences of Lactate in the Tumor Microenvironment. Adv Exp Med Biol 2020;1259:113-24. [PMID: 32578174 DOI: 10.1007/978-3-030-43093-1_7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
36 Sanderson SM, Locasale JW. Revisiting the Warburg Effect: Some Tumors Hold Their Breath. Cell Metab 2018;28:669-70. [PMID: 30403984 DOI: 10.1016/j.cmet.2018.10.011] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 11.0] [Reference Citation Analysis]
37 Leite ML, da Cunha NB, Costa FF. Antimicrobial peptides, nanotechnology, and natural metabolites as novel approaches for cancer treatment. Pharmacology & Therapeutics 2018;183:160-76. [DOI: 10.1016/j.pharmthera.2017.10.010] [Cited by in Crossref: 28] [Cited by in F6Publishing: 18] [Article Influence: 9.3] [Reference Citation Analysis]
38 Counihan JL, Grossman EA, Nomura DK. Cancer Metabolism: Current Understanding and Therapies. Chem Rev 2018;118:6893-923. [DOI: 10.1021/acs.chemrev.7b00775] [Cited by in Crossref: 71] [Cited by in F6Publishing: 52] [Article Influence: 23.7] [Reference Citation Analysis]
39 Kunjithapatham R, Ganapathy-Kanniappan S. GAPDH with NAD+-binding site mutation competitively inhibits the wild-type and affects glucose metabolism in cancer. Biochim Biophys Acta Gen Subj 2018;1862:2555-63. [PMID: 30077773 DOI: 10.1016/j.bbagen.2018.08.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
40 Liu S, Dai Z, Cooper DE, Kirsch DG, Locasale JW. Quantitative Analysis of the Physiological Contributions of Glucose to the TCA Cycle. Cell Metab 2020;32:619-628.e21. [PMID: 32961109 DOI: 10.1016/j.cmet.2020.09.005] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 12.0] [Reference Citation Analysis]
41 Ramesh V, Locasale JW. A reactive metabolite as an immune suppressant. Nat Immunol 2020;21:497-8. [PMID: 32327751 DOI: 10.1038/s41590-020-0664-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
42 Huang H, Tang S, Ji M, Tang Z, Shimada M, Liu X, Qi S, Locasale JW, Roeder RG, Zhao Y, Li X. p300-Mediated Lysine 2-Hydroxyisobutyrylation Regulates Glycolysis. Mol Cell 2018;70:663-678.e6. [PMID: 29775581 DOI: 10.1016/j.molcel.2018.04.011] [Cited by in Crossref: 46] [Cited by in F6Publishing: 33] [Article Influence: 23.0] [Reference Citation Analysis]
43 Lazarev VF, Guzhova IV, Margulis BA. Glyceraldehyde-3-phosphate Dehydrogenase is a Multifaceted Therapeutic Target. Pharmaceutics 2020;12:E416. [PMID: 32370188 DOI: 10.3390/pharmaceutics12050416] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
44 Galván-Peña S, Carroll RG, Newman C, Hinchy EC, Palsson-McDermott E, Robinson EK, Covarrubias S, Nadin A, James AM, Haneklaus M, Carpenter S, Kelly VP, Murphy MP, Modis LK, O'Neill LA. Malonylation of GAPDH is an inflammatory signal in macrophages. Nat Commun 2019;10:338. [PMID: 30659183 DOI: 10.1038/s41467-018-08187-6] [Cited by in Crossref: 41] [Cited by in F6Publishing: 36] [Article Influence: 20.5] [Reference Citation Analysis]
45 Schmidt DR, Patel R, Kirsch DG, Lewis CA, Vander Heiden MG, Locasale JW. Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J Clin 2021;71:333-58. [PMID: 33982817 DOI: 10.3322/caac.21670] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
46 Curcio C, Brugiapaglia S, Bulfamante S, Follia L, Cappello P, Novelli F. The Glycolytic Pathway as a Target for Novel Onco-Immunology Therapies in Pancreatic Cancer. Molecules 2021;26:1642. [PMID: 33804240 DOI: 10.3390/molecules26061642] [Reference Citation Analysis]
47 Wiel C, Le Gal K, Ibrahim MX, Jahangir CA, Kashif M, Yao H, Ziegler DV, Xu X, Ghosh T, Mondal T, Kanduri C, Lindahl P, Sayin VI, Bergo MO. BACH1 Stabilization by Antioxidants Stimulates Lung Cancer Metastasis. Cell 2019;178:330-345.e22. [PMID: 31257027 DOI: 10.1016/j.cell.2019.06.005] [Cited by in Crossref: 138] [Cited by in F6Publishing: 126] [Article Influence: 69.0] [Reference Citation Analysis]
48 Wu L, Hollinshead KER, Hao Y, Au C, Kroehling L, Ng C, Lin WY, Li D, Silva HM, Shin J, Lafaille JJ, Possemato R, Pacold ME, Papagiannakopoulos T, Kimmelman AC, Satija R, Littman DR. Niche-Selective Inhibition of Pathogenic Th17 Cells by Targeting Metabolic Redundancy. Cell 2020;182:641-654.e20. [PMID: 32615085 DOI: 10.1016/j.cell.2020.06.014] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 18.0] [Reference Citation Analysis]
49 Tanner LB, Goglia AG, Wei MH, Sehgal T, Parsons LR, Park JO, White E, Toettcher JE, Rabinowitz JD. Four Key Steps Control Glycolytic Flux in Mammalian Cells. Cell Syst 2018;7:49-62.e8. [PMID: 29960885 DOI: 10.1016/j.cels.2018.06.003] [Cited by in Crossref: 101] [Cited by in F6Publishing: 78] [Article Influence: 33.7] [Reference Citation Analysis]
50 Fox DB, Garcia NMG, McKinney BJ, Lupo R, Noteware LC, Newcomb R, Liu J, Locasale JW, Hirschey MD, Alvarez JV. NRF2 activation promotes the recurrence of dormant tumour cells through regulation of redox and nucleotide metabolism. Nat Metab 2020;2:318-34. [PMID: 32691018 DOI: 10.1038/s42255-020-0191-z] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 22.0] [Reference Citation Analysis]
51 Li X, Li J, Zhang B, Gu Y, Li Q, Gu G, Xiong J, Li Y, Yang X, Qian Z. Comparative peptidome profiling reveals critical roles for peptides in the pathology of pancreatic cancer. Int J Biochem Cell Biol 2020;120:105687. [PMID: 31927104 DOI: 10.1016/j.biocel.2020.105687] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
52 Allen AE, Locasale JW. Glucose Metabolism in Cancer: The Saga of Pyruvate Kinase Continues. Cancer Cell 2018;33:337-9. [PMID: 29533776 DOI: 10.1016/j.ccell.2018.02.008] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
53 Seth Nanda C, Venkateswaran SV, Patani N, Yuneva M. Defining a metabolic landscape of tumours: genome meets metabolism. Br J Cancer 2020;122:136-49. [PMID: 31819196 DOI: 10.1038/s41416-019-0663-7] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
54 Lin H, Xue X, Wang X, Dang S, Gu M. Application of artificial intelligence for the diagnosis, treatment, and prognosis of pancreatic cancer. AIG 2020;1:19-29. [DOI: 10.35712/aig.v1.i1.19] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Johnson MO, Wolf MM, Madden MZ, Andrejeva G, Sugiura A, Contreras DC, Maseda D, Liberti MV, Paz K, Kishton RJ, Johnson ME, de Cubas AA, Wu P, Li G, Zhang Y, Newcomb DC, Wells AD, Restifo NP, Rathmell WK, Locasale JW, Davila ML, Blazar BR, Rathmell JC. Distinct Regulation of Th17 and Th1 Cell Differentiation by Glutaminase-Dependent Metabolism. Cell 2018;175:1780-1795.e19. [PMID: 30392958 DOI: 10.1016/j.cell.2018.10.001] [Cited by in Crossref: 175] [Cited by in F6Publishing: 150] [Article Influence: 58.3] [Reference Citation Analysis]
56 Reid MA, Allen AE, Liu S, Liberti MV, Liu P, Liu X, Dai Z, Gao X, Wang Q, Liu Y, Lai L, Locasale JW. Serine synthesis through PHGDH coordinates nucleotide levels by maintaining central carbon metabolism. Nat Commun 2018;9:5442. [PMID: 30575741 DOI: 10.1038/s41467-018-07868-6] [Cited by in Crossref: 58] [Cited by in F6Publishing: 42] [Article Influence: 19.3] [Reference Citation Analysis]
57 Xu J, Zhang C, Wang X, Zhai L, Ma Y, Mao Y, Qian K, Sun C, Liu Z, Jiang S, Wang M, Feng L, Zhao L, Liu P, Wang B, Zhao X, Xie H, Yang X, Zhao L, Chang Y, Jia J, Wang X, Zhang Y, Wang Y, Yang Y, Wu Z, Yang L, Liu B, Zhao T, Ren S, Sun A, Zhao Y, Ying W, Wang F, Wang G, Zhang Y, Cheng S, Qin J, Qian X, Wang Y, Li J, He F, Xiao T, Tan M. Integrative Proteomic Characterization of Human Lung Adenocarcinoma. Cell 2020;182:245-261.e17. [DOI: 10.1016/j.cell.2020.05.043] [Cited by in Crossref: 48] [Cited by in F6Publishing: 35] [Article Influence: 48.0] [Reference Citation Analysis]
58 He Y, Chen X, Yu Y, Li J, Hu Q, Xue C, Chen J, Shen S, Luo Y, Ren F, Li C, Bao J, Yan J, Qian G, Ren Z, Sun R, Cui G. LDHA is a direct target of miR-30d-5p and contributes to aggressive progression of gallbladder carcinoma. Molecular Carcinogenesis 2018;57:772-83. [DOI: 10.1002/mc.22799] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 10.0] [Reference Citation Analysis]
59 Leone RD, Powell JD. Metabolism of immune cells in cancer. Nat Rev Cancer 2020;20:516-31. [PMID: 32632251 DOI: 10.1038/s41568-020-0273-y] [Cited by in Crossref: 69] [Cited by in F6Publishing: 52] [Article Influence: 69.0] [Reference Citation Analysis]
60 Zhu M, Wu Y, Wang Z, Lin M, Su B, Li C, Liang F, Chen X. miR-128-3p serves as an oncogenic microRNA in osteosarcoma cells by downregulating ZC3H12D. Oncol Lett 2021;21:152. [PMID: 33552270 DOI: 10.3892/ol.2020.12413] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Kornberg MD, Bhargava P, Kim PM, Putluri V, Snowman AM, Putluri N, Calabresi PA, Snyder SH. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science 2018;360:449-53. [PMID: 29599194 DOI: 10.1126/science.aan4665] [Cited by in Crossref: 221] [Cited by in F6Publishing: 185] [Article Influence: 73.7] [Reference Citation Analysis]
62 Matsushita M, Pearce EJ. Disrupting metabolism to treat autoimmunity. Science 2018;360:377-8. [DOI: 10.1126/science.aat4984] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]