BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bergholt MS, Albro MB, Stevens MM. Online quantitative monitoring of live cell engineered cartilage growth using diffuse fiber-optic Raman spectroscopy. Biomaterials 2017;140:128-37. [PMID: 28649013 DOI: 10.1016/j.biomaterials.2017.06.015] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Kandel S, Querido W, Falcon JM, Reiners DJ, Pleshko N. Approaches for In Situ Monitoring of Matrix Development in Hydrogel-Based Engineered Cartilage. Tissue Eng Part C Methods 2020;26:225-38. [PMID: 32131710 DOI: 10.1089/ten.TEC.2020.0014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
2 Bielajew BJ, Hu JC, Athanasiou KA. Collagen: quantification, biomechanics, and role of minor subtypes in cartilage. Nat Rev Mater 2020;5:730-47. [PMID: 33996147 DOI: 10.1038/s41578-020-0213-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
3 Castro NJ, Babakhanova G, Hu J, Athanasiou KA. Nondestructive testing of native and tissue-engineered medical products: adding numbers to pictures. Trends Biotechnol 2021:S0167-7799(21)00151-7. [PMID: 34315621 DOI: 10.1016/j.tibtech.2021.06.009] [Reference Citation Analysis]
4 Hall GN, Tam WL, Andrikopoulos KS, Casas-Fraile L, Voyiatzis GA, Geris L, Luyten FP, Papantoniou I. Patterned, organoid-based cartilaginous implants exhibit zone specific functionality forming osteochondral-like tissues in vivo. Biomaterials 2021;273:120820. [PMID: 33872857 DOI: 10.1016/j.biomaterials.2021.120820] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Choi JS, Ilin Y, Kraft ML, Harley BAC. Tracing Hematopoietic Progenitor Cell Neutrophilic Differentiation via Raman Spectroscopy. Bioconjug Chem 2018;29:3121-8. [PMID: 30148625 DOI: 10.1021/acs.bioconjchem.8b00459] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
6 Suhito IR, Angeline N, Choo SS, Woo HY, Paik T, Lee T, Kim TH. Nanobiosensing Platforms for Real-Time and Non-Invasive Monitoring of Stem Cell Pluripotency and Differentiation. Sensors (Basel) 2018;18:E2755. [PMID: 30134637 DOI: 10.3390/s18092755] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
7 Power LJ, Fasolato C, Barbero A, Wendt DJ, Wixmerten A, Martin I, Asnaghi MA. Sensing tissue engineered cartilage quality with Raman spectroscopy and statistical learning for the development of advanced characterization assays. Biosensors and Bioelectronics 2020;166:112467. [DOI: 10.1016/j.bios.2020.112467] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
8 Middendorf JM, Dugopolski C, Kennedy S, Blahut E, Cohen I, Bonassar LJ. Heterogeneous matrix deposition in human tissue engineered cartilage changes the local shear modulus and resistance to local construct buckling. J Biomech 2020;105:109760. [PMID: 32276782 DOI: 10.1016/j.jbiomech.2020.109760] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
9 Kim M, Kino‐oka M. Designing a blueprint for next‐generation stem cell bioprocessing development. Biotechnology and Bioengineering 2019;117:832-43. [DOI: 10.1002/bit.27228] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
10 Yu C, Zhao B, Li Y, Zang H, Li L. Vibrational Spectroscopy in Assessment of Early Osteoarthritis-A Narrative Review. Int J Mol Sci 2021;22:5235. [PMID: 34063436 DOI: 10.3390/ijms22105235] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Armstrong JPK, Stevens MM. Emerging Technologies for Tissue Engineering: From Gene Editing to Personalized Medicine. Tissue Eng Part A 2019;25:688-92. [PMID: 30794069 DOI: 10.1089/ten.TEA.2019.0026] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
12 Cai Y, Yang C, Xu D, Gui W. Baseline correction for Raman spectra using penalized spline smoothing based on vector transformation. Anal Methods 2018;10:3525-33. [DOI: 10.1039/c8ay00914g] [Cited by in Crossref: 11] [Article Influence: 2.8] [Reference Citation Analysis]
13 Sherlock BE, Chen J, Mansfield JC, Green E, Winlove CP. Biophotonic tools for probing extracellular matrix mechanics. Matrix Biol Plus 2021;12:100093. [PMID: 34934939 DOI: 10.1016/j.mbplus.2021.100093] [Reference Citation Analysis]
14 Park S, Ahn JW, Jo Y, Kang H, Kim HJ, Cheon Y, Kim JW, Park Y, Lee S, Park K. Label-Free Tomographic Imaging of Lipid Droplets in Foam Cells for Machine-Learning-Assisted Therapeutic Evaluation of Targeted Nanodrugs. ACS Nano 2020;14:1856-65. [DOI: 10.1021/acsnano.9b07993] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
15 Suhito IR, Han Y, Min J, Son H, Kim T. In situ label-free monitoring of human adipose-derived mesenchymal stem cell differentiation into multiple lineages. Biomaterials 2018;154:223-33. [DOI: 10.1016/j.biomaterials.2017.11.005] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 7.0] [Reference Citation Analysis]
16 Kroupa KR, Wu MI, Zhang J, Jensen M, Wong W, Engiles JB, Grinstaff MW, Snyder BD, Bergholt MS, Albro MB. Raman needle arthroscopy for in vivo molecular assessment of cartilage. J Orthop Res 2021. [PMID: 34370873 DOI: 10.1002/jor.25155] [Reference Citation Analysis]
17 Høgset H, Horgan CC, Armstrong JPK, Bergholt MS, Torraca V, Chen Q, Keane TJ, Bugeon L, Dallman MJ, Mostowy S, Stevens MM. In vivo biomolecular imaging of zebrafish embryos using confocal Raman spectroscopy. Nat Commun 2020;11:6172. [PMID: 33268772 DOI: 10.1038/s41467-020-19827-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
18 Higgins SG, Becce M, Belessiotis-Richards A, Seong H, Sero JE, Stevens MM. High-Aspect-Ratio Nanostructured Surfaces as Biological Metamaterials. Adv Mater 2020;32:e1903862. [PMID: 31944430 DOI: 10.1002/adma.201903862] [Cited by in Crossref: 59] [Cited by in F6Publishing: 41] [Article Influence: 29.5] [Reference Citation Analysis]
19 Albro MB, Bergholt MS, St-Pierre JP, Vinals Guitart A, Zlotnick HM, Evita EG, Stevens MM. Raman spectroscopic imaging for quantification of depth-dependent and local heterogeneities in native and engineered cartilage. NPJ Regen Med 2018;3:3. [PMID: 29449966 DOI: 10.1038/s41536-018-0042-7] [Cited by in Crossref: 35] [Cited by in F6Publishing: 27] [Article Influence: 8.8] [Reference Citation Analysis]
20 Bergholt MS, Serio A, Albro MB. Raman Spectroscopy: Guiding Light for the Extracellular Matrix. Front Bioeng Biotechnol 2019;7:303. [PMID: 31737621 DOI: 10.3389/fbioe.2019.00303] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 8.7] [Reference Citation Analysis]
21 Gao T, Boys AJ, Zhao C, Chan K, Estroff LA, Bonassar LJ. Non-Destructive Spatial Mapping of Glycosaminoglycan Loss in Native and Degraded Articular Cartilage Using Confocal Raman Microspectroscopy. Front Bioeng Biotechnol 2021;9:744197. [PMID: 34778225 DOI: 10.3389/fbioe.2021.744197] [Reference Citation Analysis]
22 Querido W, Kandel S, Pleshko N. Applications of Vibrational Spectroscopy for Analysis of Connective Tissues. Molecules 2021;26:922. [PMID: 33572384 DOI: 10.3390/molecules26040922] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Endo T, Yamada H, Yamada K. Template Stripping Method-Based Au Nanoarray for Surface-Enhanced Raman Scattering Detection of Antiepileptic Drug. Micromachines (Basel) 2020;11:E936. [PMID: 33066672 DOI: 10.3390/mi11100936] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]