BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liang F, Qian P, Su KH, Baydoun A, Leisser A, Van Hedent S, Kuo JW, Zhao K, Parikh P, Lu Y, Traughber BJ, Muzic RF. Abdominal, multi-organ, auto-contouring method for online adaptive magnetic resonance guided radiotherapy: An intelligent, multi-level fusion approach. Artif Intell Med. 2018;90:34-41. [PMID: 30054121 DOI: 10.1016/j.artmed.2018.07.001] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 6.3] [Reference Citation Analysis]
Number Citing Articles
1 Enriquez JS, Chu Y, Pudakalakatti S, Hsieh KL, Salmon D, Dutta P, Millward NZ, Lurie E, Millward S, McAllister F, Maitra A, Sen S, Killary A, Zhang J, Jiang X, Bhattacharya PK, Shams S. Hyperpolarized Magnetic Resonance and Artificial Intelligence: Frontiers of Imaging in Pancreatic Cancer. JMIR Med Inform 2021;9:e26601. [PMID: 34137725 DOI: 10.2196/26601] [Reference Citation Analysis]
2 Cusumano D, Boldrini L, Dhont J, Fiorino C, Green O, Güngör G, Jornet N, Klüter S, Landry G, Mattiucci GC, Placidi L, Reynaert N, Ruggieri R, Tanadini-Lang S, Thorwarth D, Yadav P, Yang Y, Valentini V, Verellen D, Indovina L. Artificial Intelligence in magnetic Resonance guided Radiotherapy: Medical and physical considerations on state of art and future perspectives. Phys Med 2021;85:175-91. [PMID: 34022660 DOI: 10.1016/j.ejmp.2021.05.010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Tchelebi LT, Zaorsky NG, Rosenberg JC, Sharma NK, Tuanquin LC, Mackley HB, Ellis RJ. Reducing the Toxicity of Radiotherapy for Pancreatic Cancer With Magnetic Resonance-guided Radiotherapy. Toxicol Sci 2020;175:19-23. [PMID: 32053201 DOI: 10.1093/toxsci/kfaa021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Qian P, Chen Y, Kuo JW, Zhang YD, Jiang Y, Zhao K, Al Helo R, Friel H, Baydoun A, Zhou F, Heo JU, Avril N, Herrmann K, Ellis R, Traughber B, Jones RS, Wang S, Su KH, Muzic RF. mDixon-Based Synthetic CT Generation for PET Attenuation Correction on Abdomen and Pelvis Jointly Using Transfer Fuzzy Clustering and Active Learning-Based Classification. IEEE Trans Med Imaging 2020;39:819-32. [PMID: 31425065 DOI: 10.1109/TMI.2019.2935916] [Cited by in Crossref: 30] [Cited by in F6Publishing: 6] [Article Influence: 15.0] [Reference Citation Analysis]
5 Qian P, Zheng J, Zheng Q, Liu Y, Wang T, Al Helo R, Baydoun A, Avril N, Ellis RJ, Friel H, Traughber MS, Devaraj A, Traughber B, Muzic RF. Transforming UTE-mDixon MR Abdomen-Pelvis Images Into CT by Jointly Leveraging Prior Knowledge and Partial Supervision. IEEE/ACM Trans Comput Biol Bioinform 2021;18:70-82. [PMID: 32175868 DOI: 10.1109/TCBB.2020.2979841] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
6 Güngör G, Serbez İ, Temur B, Gür G, Kayalılar N, Mustafayev TZ, Korkmaz L, Aydın G, Yapıcı B, Atalar B, Özyar E. Time Analysis of Online Adaptive Magnetic Resonance-Guided Radiation Therapy Workflow According to Anatomical Sites. Pract Radiat Oncol 2021;11:e11-21. [PMID: 32739438 DOI: 10.1016/j.prro.2020.07.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
7 Lin H, Xue X, Wang X, Dang S, Gu M. Application of artificial intelligence for the diagnosis, treatment, and prognosis of pancreatic cancer. AIG 2020;1:19-29. [DOI: 10.35712/aig.v1.i1.19] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Galimova RM, Buzaev IV, Ramilevich KA, Yuldybaev LK, Shaykhulova AF. Artificial intelligence-Developments in medicine in the last two years. Chronic Dis Transl Med 2019;5:64-8. [PMID: 30993265 DOI: 10.1016/j.cdtm.2018.11.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Chin S, Eccles CL, Mcwilliam A, Chuter R, Walker E, Whitehurst P, Berresford J, Van Herk M, Hoskin PJ, Choudhury A. Magnetic resonance‐guided radiation therapy: A review. J Med Imaging Radiat Oncol 2020;64:163-77. [DOI: 10.1111/1754-9485.12968] [Cited by in Crossref: 35] [Cited by in F6Publishing: 18] [Article Influence: 17.5] [Reference Citation Analysis]
10 Pillai M, Adapa K, Das SK, Mazur L, Dooley J, Marks LB, Thompson RF, Chera BS. Using Artificial Intelligence to Improve the Quality and Safety of Radiation Therapy. Journal of the American College of Radiology 2019;16:1267-72. [DOI: 10.1016/j.jacr.2019.06.001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
11 Liu Z, Liu X, Guan H, Zhen H, Sun Y, Chen Q, Chen Y, Wang S, Qiu J. Development and validation of a deep learning algorithm for auto-delineation of clinical target volume and organs at risk in cervical cancer radiotherapy. Radiotherapy and Oncology 2020;153:172-9. [DOI: 10.1016/j.radonc.2020.09.060] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
12 Chun J, Zhang H, Gach HM, Olberg S, Mazur T, Green O, Kim T, Kim H, Kim JS, Mutic S, Park JC. MRI super‐resolution reconstruction for MRI‐guided adaptive radiotherapy using cascaded deep learning: In the presence of limited training data and unknown translation model. Med Phys 2019;46:4148-64. [DOI: 10.1002/mp.13717] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]