BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kim H, Kim E, Lee I, Bae B, Park M, Nam H. Artificial Intelligence in Drug Discovery: A Comprehensive Review of Data-driven and Machine Learning Approaches. Biotechnol Bioprocess Eng 2020;25:895-930. [PMID: 33437151 DOI: 10.1007/s12257-020-0049-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Deng L, Deng W, Fan S, Chen M, Qi M, Lyu W, Qi Q, Tiwari AK, Chen J, Zhang D, Chen Z. m6A modification: recent advances, anticancer targeted drug discovery and beyond. Mol Cancer 2022;21. [DOI: 10.1186/s12943-022-01510-2] [Reference Citation Analysis]
2 Qin T, Zhu Z, Wang XS, Xia J, Wu S. Computational representations of protein-ligand interfaces for structure-based virtual screening. Expert Opin Drug Discov 2021;:1-18. [PMID: 34011222 DOI: 10.1080/17460441.2021.1929921] [Reference Citation Analysis]
3 Spjuth O, Frid J, Hellander A. The machine learning life cycle and the cloud: implications for drug discovery. Expert Opin Drug Discov 2021;16:1071-9. [PMID: 34057379 DOI: 10.1080/17460441.2021.1932812] [Reference Citation Analysis]
4 Mak KK, Balijepalli MK, Pichika MR. Success stories of AI in drug discovery - where do things stand? Expert Opin Drug Discov 2021;:1-14. [PMID: 34553659 DOI: 10.1080/17460441.2022.1985108] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Xu Y, Qu W. [ 11 C]HCN Radiochemistry: Recent Progress and Future Perspectives. Eur J Org Chem 2021;2021:4653-82. [DOI: 10.1002/ejoc.202100651] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Smith GF. Artificial Intelligence in Drug Safety and Metabolism. Methods Mol Biol 2022;2390:483-501. [PMID: 34731484 DOI: 10.1007/978-1-0716-1787-8_22] [Reference Citation Analysis]
7 Lagoutte-Renosi J, Allemand F, Ramseyer C, Yesylevskyy S, Davani S. Molecular modeling in cardiovascular pharmacology: Current state of the art and perspectives. Drug Discov Today 2021:S1359-6446(21)00533-X. [PMID: 34863931 DOI: 10.1016/j.drudis.2021.11.026] [Reference Citation Analysis]
8 Dhakal A, McKay C, Tanner JJ, Cheng J. Artificial intelligence in the prediction of protein-ligand interactions: recent advances and future directions. Brief Bioinform 2021:bbab476. [PMID: 34849575 DOI: 10.1093/bib/bbab476] [Reference Citation Analysis]
9 Chen J, Si YW, Un CW, Siu SWI. Chemical toxicity prediction based on semi-supervised learning and graph convolutional neural network. J Cheminform 2021;13:93. [PMID: 34838140 DOI: 10.1186/s13321-021-00570-8] [Reference Citation Analysis]
10 Lee S, Jeon H, Giri P, Lee U, Jung H, Lim S, Sarak S, Khobragade TP, Kim B, Yun H. The Reductive Amination of Carbonyl Compounds Using Native Amine Dehydrogenase from Laribacter hongkongensis. Biotechnol Bioproc E 2021;26:384-91. [DOI: 10.1007/s12257-021-0113-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Davidovic LM, Laketic D, Cumic J, Jordanova E, Pantic I. Application of artificial intelligence for detection of chemico-biological interactions associated with oxidative stress and DNA damage. Chem Biol Interact 2021;345:109533. [PMID: 34051207 DOI: 10.1016/j.cbi.2021.109533] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Kwofie SK, Agyenkwa-Mawuli K, Broni E, Miller Iii WA, Wilson MD. Prediction of antischistosomal small molecules using machine learning in the era of big data. Mol Divers 2021. [PMID: 34351547 DOI: 10.1007/s11030-021-10288-2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]