BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang B, Sun Z, Yu J, Waterhouse GIN, Lu S, Yang B. Cross‐linking enhanced room‐temperature phosphorescence of carbon dots. SmartMat. [DOI: 10.1002/smm2.1123] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
Number Citing Articles
1 Zheng C, Tao S, Yang B. Polymer–Structure‐Induced Room‐Temperature Phosphorescence of Carbon Dot Materials. Small Structures 2023. [DOI: 10.1002/sstr.202200327] [Reference Citation Analysis]
2 He P, Zhu Y, Bai J, Qin F, Wang X, Wu S, Yu X, Ren L. Constructing matrix-free solid-state carbon dots with efficient room-temperature phosphorescence. Journal of Luminescence 2023;253:119454. [DOI: 10.1016/j.jlumin.2022.119454] [Reference Citation Analysis]
3 Li R, Wang Y, Li Q, Sun G. Photo-stimuli responsive phosphorescence from carbon dots in porous gelatin. Journal of Luminescence 2023. [DOI: 10.1016/j.jlumin.2023.119725] [Reference Citation Analysis]
4 Wang D, Shi Y, Zhang Z, Shen S, Wang Z. Modulating Emission of Organic Emitters from Fluorescence to Red Afterglow through Boric Acid-Assisted Energy Transfer. J Phys Chem C 2022. [DOI: 10.1021/acs.jpcc.2c07138] [Reference Citation Analysis]
5 Jiang T, Huang J, Ran G, Song Q, Wang C. A colorimetric and fluorometric dual-mode carbon dots probe derived from phenanthroline precursor for the selective detection of Fe2+ and Fe3+. ANAL SCI 2022. [DOI: 10.1007/s44211-022-00236-x] [Reference Citation Analysis]
6 Wang W, Li J, Ma S, Chai Z, Huang S, Zhao Y, Wang S, Chen Y, Azad F, Chen H, Yue D, Xu B, Su S. Color-tunable and high-quantum-yield afterglow of carbon dots by covalent fixation. Journal of Luminescence 2022;252:119399. [DOI: 10.1016/j.jlumin.2022.119399] [Reference Citation Analysis]
7 Zhang Y, Li M, Lu S. Rational Design of Covalent Bond Engineered Encapsulation Structure toward Efficient, Long‐Lived Multicolored Phosphorescent Carbon Dots. Small 2022. [DOI: 10.1002/smll.202206080] [Reference Citation Analysis]
8 Ru Y, Waterhouse GIN, Lu S. Aggregation in carbon dots. Aggregate 2022. [DOI: 10.1002/agt2.296] [Reference Citation Analysis]
9 Yang T, Li Y, Zhao Z, Yuan WZ. Clustering-triggered phosphorescence of nonconventional luminophores. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1378-4] [Reference Citation Analysis]
10 Wang B, Xing G, Zhang J, Sheng M, Wang J, Wang Z. Relationship between wet coating thickness and nanoparticle loadings based on the performance of mixed matrix composite membranes. Journal of Membrane Science 2022. [DOI: 10.1016/j.memsci.2022.121167] [Reference Citation Analysis]
11 Wang B, Waterhouse GI, Lu S. Carbon dots: mysterious past, vibrant present, and expansive future. Trends in Chemistry 2022. [DOI: 10.1016/j.trechm.2022.10.005] [Reference Citation Analysis]
12 Chao T, Dong X, Wang J, Song R, Xie Z, Zhou S. Enhanced Aggregation-Induced Phosphorescence of Carbon Dots for Information Encryption Applications. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c03785] [Reference Citation Analysis]
13 Li Y, Li Q, Meng S, Qin Y, Cheng D, Gu H, Wang Z, Ye Y, Tan J. Ultrabroad-band, white light emission from carbon dot-based materials with hybrid fluorescence/phosphorescence for single component white light-emitting diodes. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.107794] [Reference Citation Analysis]