BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Behera SK, Park SY, Gierschner J. Dual Emission: Classes, Mechanisms, and Conditions. Angew Chem Int Ed Engl 2020. [PMID: 32783293 DOI: 10.1002/anie.202009789] [Cited by in Crossref: 55] [Cited by in F6Publishing: 56] [Article Influence: 18.3] [Reference Citation Analysis]
Number Citing Articles
1 Zheng C, Tao S, Yang B. Polymer–Structure‐Induced Room‐Temperature Phosphorescence of Carbon Dot Materials. Small Structures 2023. [DOI: 10.1002/sstr.202200327] [Reference Citation Analysis]
2 Liu C, Xiao X, Ni X. Hyperconjugation in light-switched intramolecular charge transfer of anthrapyridinium derivatives: New insight into molecular motion and fluorescent materials. Dyes and Pigments 2023. [DOI: 10.1016/j.dyepig.2023.111152] [Reference Citation Analysis]
3 Shen Y, An Z, Liu H, Yang B, Zhang Y. Excitation-Dependent Multicolour Luminescence of Organic Materials: Internal Mechanism and Potential Applications. Angew Chem Int Ed Engl 2023;62:e202214483. [PMID: 36346193 DOI: 10.1002/anie.202214483] [Reference Citation Analysis]
4 Wu X, Peng X, Chen L, Tang BZ, Zhao Z. Through-Space Conjugated Molecule with Dual Delayed Fluorescence and Room-Temperature Phosphorescence for High-Performance OLEDs. ACS Materials Lett 2023. [DOI: 10.1021/acsmaterialslett.2c01170] [Reference Citation Analysis]
5 Li Q, Wang X, Huang Q, Li Z, Tang BZ, Mao S. Molecular-level enhanced clusterization-triggered emission of nonconventional luminophores in dilute aqueous solution. Nat Commun 2023;14:409. [PMID: 36697406 DOI: 10.1038/s41467-023-36115-w] [Reference Citation Analysis]
6 Bergmann K, Hojo R, Hudson ZM. Uncovering the Mechanism of Thermally Activated Delayed Fluorescence in Coplanar Emitters Using Potential Energy Surface Analysis. J Phys Chem Lett 2023;14:310-7. [PMID: 36602966 DOI: 10.1021/acs.jpclett.2c03425] [Reference Citation Analysis]
7 Kalita KJ, Mondal S, Reddy CM, Vijayaraghavan RK. Temperature-Regulated Dual Phosphorescence and Mechanical Strain-Induced Luminescence Modulation in a Plastically Bendable and Twistable Organic Crystal. Chem Mater 2023. [DOI: 10.1021/acs.chemmater.2c03399] [Reference Citation Analysis]
8 Fujii T, Kusukawa T, Imoto H, Naka K. Pnictogen-Bridged Diphenyl Sulfones as Photoinduced Pnictogen Bond Forming Emission Motifs. Chemistry 2023;29:e202202572. [PMID: 36125391 DOI: 10.1002/chem.202202572] [Reference Citation Analysis]
9 Bhuin S, Sharma P, Chakraborty P, Kulkarni OP, Chakravarty M. Solid-state emitting twisted π-conjugate as AIE-active DSE-gen: in vitro anticancer properties against FaDu and 4T1 with biocompatibility and bioimaging. J Mater Chem B 2022;11:188-203. [PMID: 36477106 DOI: 10.1039/d2tb02078e] [Reference Citation Analysis]
10 Xu W, Qin Y, Niu J, Xu W, Chen Y, Zhang H, Liu Y. Dual‐Rotor Luminescence Based on Supramolecular Secondary Reassembly. Advanced Optical Materials 2022. [DOI: 10.1002/adom.202202431] [Reference Citation Analysis]
11 Berezin AS, Selivanov B, Danilenko A, Sukhikh A, Komarovskikh A. Manganese(II) Bromide Compound with Diprotonated 1-Hydroxy-2-(pyridin-2-yl)-4,5,6,7-tetrahydrobenzimidazole: Dual Emission and the Effect of Proton Transfers. Inorganics 2022;10:245. [DOI: 10.3390/inorganics10120245] [Reference Citation Analysis]
12 Liu Y, Xie Y, Cheng Y, Tian X, Hua L, Ying S, Yan S, Ren Z. High-efficiency emissive dendritic phosphorescent iridium (III) complex with thermally activated delayed fluorescence molecules as functional light-harvesting moieties. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.140747] [Reference Citation Analysis]
13 Li J, Zhao M, Huang J, Liu P, Luo X, Zhang Y, Yan C, Zhu W, Guo Z. A “crossbreeding” dyad strategy for bright and small-molecular weight near-infrared fluorogens: From the structural design to boost aggregation-induced emission. Coordination Chemistry Reviews 2022;473:214813. [DOI: 10.1016/j.ccr.2022.214813] [Reference Citation Analysis]
14 Yang L, Zhang Q, Huang Y, Luo C, Quan Z, Li H, Sun S, Xu Y. A sequential dual-lock strategy for generation of room-temperature phosphorescence of boron doped carbon dots for dynamic anti-counterfeiting. Journal of Colloid and Interface Science 2022. [DOI: 10.1016/j.jcis.2022.11.062] [Reference Citation Analysis]
15 Wang K, Hu R, Wang J, Zhang J, Liu J, Zhou L, Zhou L, Li B. Fine Tuning the Energetics of 2-(2′-Hydroxyphenyl)oxazoles to Obtain Highly Efficient Organic White-Light-Emitting Devices. ACS Materials Lett 2022. [DOI: 10.1021/acsmaterialslett.2c00702] [Reference Citation Analysis]
16 Lipin KV, Ievlev MY, Ershova AI, Ershov OV. Dual-State Emission of 2-(Butylamino)Cinchomeronic Dinitrile Derivatives. Molecules 2022;27:7144. [DOI: 10.3390/molecules27217144] [Reference Citation Analysis]
17 Luo L, Liu Z, Du X, Jin R. Near-Infrared Dual Emission from the Au42(SR)32 Nanocluster and Tailoring of Intersystem Crossing. J Am Chem Soc 2022. [PMID: 36239690 DOI: 10.1021/jacs.2c09107] [Reference Citation Analysis]
18 Huang R, Wang C, Tan D, Wang K, Zou B, Shao Y, Liu T, Peng H, Liu X, Fang Y. Single‐Fluorophore‐Based Organic Crystals with Distinct Conformers Enabling Wide‐Range Excitation‐Dependent Emissions. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202211106] [Reference Citation Analysis]
19 Shekhovtsov NA, Nikolaenkova EB, Berezin AS, Plyusnin VF, Vinogradova KA, Naumov DY, Pervukhina NV, Tikhonov AY, Bushuev MB. Tuning ESIPT-coupled luminescence by expanding π-conjugation of a proton acceptor moiety in ESIPT-capable zinc(II) complexes with 1-hydroxy-1H-imidazole-based ligands. Dalton Trans 2022. [PMID: 36129344 DOI: 10.1039/d2dt02460h] [Reference Citation Analysis]
20 Veys K, Escudero D. Anti-Kasha Fluorescence in Molecular Entities: Central Role of Electron-Vibrational Coupling. Acc Chem Res 2022;55:2698-707. [PMID: 36048561 DOI: 10.1021/acs.accounts.2c00453] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
21 Yang M, Guo X, Mou F, Guan J. Lighting up Micro-/Nanorobots with Fluorescence. Chem Rev . [DOI: 10.1021/acs.chemrev.2c00062] [Reference Citation Analysis]
22 Shekhovtsov NA, Bushuev MB. Anomalous emission of an ESIPT-capable zinc(II) complex: an interplay of TADF, TICT and anti-Kasha behaviour. Journal of Photochemistry and Photobiology A: Chemistry 2022. [DOI: 10.1016/j.jphotochem.2022.114195] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Shukla A, Mai VTN, Divya VV, Suresh CH, Paul M, Karunakaran V, McGregor SKM, Allison I, Narayanan Unni KN, Ajayaghosh A, Namdas EB, Lo SC. Amplified Spontaneous Emission from Zwitterionic Excited-State Intramolecular Proton Transfer. J Am Chem Soc 2022. [PMID: 35862745 DOI: 10.1021/jacs.2c02163] [Reference Citation Analysis]
24 Thamarappalli A, Ranasinghe CSK, Jang J, Gao M, Burn PL, Puttock EV, Shaw PE. Properties of Dual Emissive Dendrimers Based on ThermallyActivated Delayed Fluorescence Dendrons and a Phosphorescent Ir(ppy) 3 Core. Adv Funct Materials. [DOI: 10.1002/adfm.202205077] [Reference Citation Analysis]
25 Camero DM, Grinalds NJ, Kornman CT, Barba S, Li L, Weldeab AO, Castellano RK, Xue J. Thin-Film Morphology and Optical Properties of Photoisomerizable Donor-Acceptor Oligothiophenes. ACS Appl Mater Interfaces 2022. [PMID: 35766151 DOI: 10.1021/acsami.2c05946] [Reference Citation Analysis]
26 Shekhovtsov NA, Vinogradova KA, Vorobyova SN, Berezin AS, Plyusnin VF, Naumov DY, Pervukhina NV, Nikolaenkova EB, Tikhonov AY, Bushuev MB. N-Hydroxy-N-oxide photoinduced tautomerization and excitation wavelength dependent luminescence of ESIPT-capable zinc(II) complexes with a rationally designed 1-hydroxy-2,4-di(pyridin-2-yl)-1H-imidazole ESIPT-ligand. Dalton Trans 2022;51:9818-35. [PMID: 35708132 DOI: 10.1039/d2dt01232d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Artem'ev AV, Davydova MP, Berezin AS, Samsonenko DG, Bagryanskaya IY, Brel VK, Hei X, Brylev KA, Artyushin OI, Zelenkov LE, Shishkin II, Li J. New Approach toward Dual-Emissive Organic-Inorganic Hybrids by Integrating Mn(II) and Cu(I) Emission Centers in Ionic Crystals. ACS Appl Mater Interfaces 2022. [PMID: 35758694 DOI: 10.1021/acsami.2c06438] [Reference Citation Analysis]
28 Blancafort L. Switching between emission and photochemistry in an aggregation‐induced emitter with extended conjugation. Aggregate 2022;3. [DOI: 10.1002/agt2.238] [Reference Citation Analysis]
29 Behera SK, Kainda R, Basu S, Chaudhary YS. Single organic molecular systems for white light emission and their classification with associated emission mechanism. Applied Materials Today 2022;27:101407. [DOI: 10.1016/j.apmt.2022.101407] [Reference Citation Analysis]
30 Wu Z, Dinkelbach F, Kerner F, Friedrich A, Ji L, Stepanenko V, Würthner F, Marian CM, Marder TB. Aggregation‐Induced Dual Phosphorescence from ( o ‐Bromophenyl)‐Bis(2,6‐Dimethylphenyl)Borane at Room Temperature. Chemistry A European J 2022;28. [DOI: 10.1002/chem.202200525] [Reference Citation Analysis]
31 Konidena RK, Oh S, Kang S, Park SS, Lee H, Park J. Indolo[3,2,1-jk]carbazole-Derived Narrowband Violet-Blue Fluorophores: Tuning the Optical and Electroluminescence Properties by Chromophore Juggling. J Org Chem 2022. [PMID: 35512315 DOI: 10.1021/acs.joc.2c00322] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Li ZJ, Wang X, Zhu L, Ju Y, Wang Z, Zhao Q, Zhang ZH, Duan T, Qian Y, Wang JQ, Lin J. Hydrolytically Stable Zr-Based Metal-Organic Framework as a Highly Sensitive and Selective Luminescent Sensor of Radionuclides. Inorg Chem 2022. [PMID: 35514048 DOI: 10.1021/acs.inorgchem.2c00545] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
33 Liu K, Li S, Fu L, Lei Y, Liao Q, Fu H. Cocrystallization tailoring radiative decay pathways for thermally activated delayed fluorescence and room-temperature phosphorescence emission. Nanoscale 2022;14:6305-11. [PMID: 35420117 DOI: 10.1039/d2nr00757f] [Reference Citation Analysis]
34 Ochi J, Yuhara K, Tanaka K, Chujo Y. Controlling the Dual-Emission Character of Aryl-Modified o-Carboranes by Intramolecular CH⋅⋅⋅O Interaction Sites. Chemistry 2022;28:e202200155. [PMID: 35170101 DOI: 10.1002/chem.202200155] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
35 Wu Z, Roldao JC, Rauch F, Friedrich A, Ferger M, Würthner F, Gierschner J, Marder TB. Pure Boric Acid Does Not Show Room-Temperature Phosphorescence (RTP). Angew Chem Int Ed Engl 2022;61:e202200599. [PMID: 35104020 DOI: 10.1002/anie.202200599] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
36 Tao Y, Liu C, Xiang Y, Wang Z, Xue X, Li P, Li H, Xie G, Huang W, Chen R. Resonance-Induced Stimuli-Responsive Capacity Modulation of Organic Ultralong Room Temperature Phosphorescence. J Am Chem Soc 2022. [PMID: 35316606 DOI: 10.1021/jacs.2c01669] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 11.0] [Reference Citation Analysis]
37 Dey S, Hasan M, Shukla A, Acharya N, Upadhyay M, Lo S, Namdas EB, Ray D. Thermally Activated Delayed Fluorescence and Room-Temperature Phosphorescence in Asymmetric Phenoxazine-Quinoline (D2–A) Conjugates and Dual Electroluminescence. J Phys Chem C. [DOI: 10.1021/acs.jpcc.2c00512] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Zheng Y, Meana Y, Mazza MMA, Baker JD, Minnett PJ, Raymo FM. Fluorescence Switching for Temperature Sensing in Water. J Am Chem Soc 2022. [PMID: 35262338 DOI: 10.1021/jacs.2c00820] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
39 Bortoluzzi M, Castro J, Ferraro V. Dual emission from Mn(II) complexes with carbazolyl-substituted phosphoramides. Inorganica Chimica Acta 2022. [DOI: 10.1016/j.ica.2022.120896] [Reference Citation Analysis]
40 Wu Z, Roldao JC, Rauch F, Friedrich A, Ferger M, Würthner F, Gierschner J, Marder TB. Pure Boric Acid Does Not Show Room‐Temperature Phosphorescence (RTP). Angewandte Chemie. [DOI: 10.1002/ange.202200599] [Reference Citation Analysis]
41 Yamakado T, Saito S. Ratiometric Flapping Force Probe That Works in Polymer Gels. J Am Chem Soc 2022. [PMID: 35108003 DOI: 10.1021/jacs.1c12955] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
42 Acharya N, Dey S, Deka R, Ray D. Molecular-Level Understanding of Dual-RTP via Host-Sensitized Multiple Triplet-to-Triplet Energy Transfers and Data Security Application. ACS Omega 2022;7:3722-30. [PMID: 35128280 DOI: 10.1021/acsomega.1c06390] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
43 Kotani R, Yokoyama S, Nobusue S, Yamaguchi S, Osuka A, Yabu H, Saito S. Bridging pico-to-nanonewtons with a ratiometric force probe for monitoring nanoscale polymer physics before damage. Nat Commun 2022;13:303. [PMID: 35027559 DOI: 10.1038/s41467-022-27972-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
44 Yamagata K, Ueta K, Nakai A, Osuka A, Tanaka T. Control of the dual emission behaviour of μ-oxo-bridged Si( iv ) corrole dimers by substituent bulkiness. Mater Chem Front 2022;6:2128-34. [DOI: 10.1039/d2qm00332e] [Reference Citation Analysis]
45 Yuhara K, Tanaka K, Chujo Y. Regulation of solid-state dual-emission properties by switching luminescence processes based on a bis- o -carborane-modified anthracene triad. Mater Chem Front . [DOI: 10.1039/d2qm00211f] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
46 Li Y, Wang Y, Feng X, Zhao Y. Spectroscopic and mechanistic insights into solvent mediated excited-state proton transfer and aggregation-induced emission: introduction of methyl group onto 2-(o-hydroxyphenyl)benzoxazole. Phys Chem Chem Phys 2022;24:26297-26306. [DOI: 10.1039/d2cp03007a] [Reference Citation Analysis]
47 Chen H, Cui R, Zhang Y, Gao Y, Chen H. Synthesis of 3,3′-bisindoles via demethylenation. Org Chem Front . [DOI: 10.1039/d2qo01010k] [Reference Citation Analysis]
48 Zhang J, Li J, Li X, Yuan S, Sun Y, Zou Y, Pan Y, Zhang K. Boosting organic afterglow efficiency via triplet–triplet annihilation and thermally-activated delayed fluorescence. J Mater Chem C 2022;10:4795-804. [DOI: 10.1039/d1tc04903h] [Reference Citation Analysis]
49 Xiong Y, Gong J, Liu J, Wang D, Wu H, Zhao Z, Fang M, Li Z, Wang D, Tang BZ. Achieving diversified emissive behaviors of AIE, TADF, RTP, dual-RTP and mechanoluminescence from simple organic molecules by positional isomerism. J Mater Chem C. [DOI: 10.1039/d2tc01857h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
50 English C, Kitzhaber Z, Williams J, Myrick M. Challenges of Spectrofluorometry Part 3: Sample-Specific Concerns. Spectroscopy 2021. [DOI: 10.56530/spectroscopy.xh2276b4] [Reference Citation Analysis]
51 Shekhovtsov NA, Ryadun AA, Bushuev MB. Luminescence of a Zinc(II) Complex with a Protonated 1‐Hydroxy‐1 H ‐imidazole ESIPT Ligand: Direct Excitation of a Tautomeric Form. ChemistrySelect 2021;6:12346-50. [DOI: 10.1002/slct.202103695] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
52 Malpicci D, Lucenti E, Giannini C, Forni A, Botta C, Cariati E. Prompt and Long-Lived Anti-Kasha Emission from Organic Dyes. Molecules 2021;26:6999. [PMID: 34834093 DOI: 10.3390/molecules26226999] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
53 Li F, Qian C, Lu J, Ma Y, Zhang KY, Liu S, Zhao Q. Color‐Tunable Dual Persistent Emission Via a Triplet Exciton Reservoir for Temperature Sensing and Anti‐Counterfeiting. Advanced Optical Materials 2022;10:2101773. [DOI: 10.1002/adom.202101773] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
54 Hu C, Huang S, Zhang Z, Yao H, Wu Y, Huang L, Yan X. Experimental and Computational Study on Photophysical Properties of Mesoionic Chalcogenones. Chem Asian J 2021. [PMID: 34729937 DOI: 10.1002/asia.202101157] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
55 Qian J, Lu H, Zheng Z, Xu M, Qian Y, Zhang ZH, Wang JQ, He MY, Lin J. Achieving colour tuneable and white-light luminescence in a large family of dual-emission lanthanide coordination polymers. Dalton Trans 2021;50:14325-31. [PMID: 34558579 DOI: 10.1039/d1dt01618k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
56 Goto Y, Omagari S, Sato R, Yamakado T, Achiwa R, Dey N, Suga K, Vacha M, Saito S. Dynamic Polymer Free Volume Monitored by Single-Molecule Spectroscopy of a Dual Fluorescent Flapping Dopant. J Am Chem Soc 2021;143:14306-13. [PMID: 34448563 DOI: 10.1021/jacs.1c06428] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
57 Freixa Z, Rivilla I, Monrabal F, Gómez-Cadenas JJ, Cossío FP. Bicolour fluorescent molecular sensors for cations: design and experimental validation. Phys Chem Chem Phys 2021;23:15440-57. [PMID: 34264251 DOI: 10.1039/d1cp01203g] [Reference Citation Analysis]
58 Ma YJ, Fang X, Xiao G, Lu B, Yan D. Triple-mode tunable long-persistent luminescence in a 3D zinc-organic hybrid. Chem Commun (Camb) 2021;57:6684-7. [PMID: 34132269 DOI: 10.1039/d1cc02389f] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
59 Li ZW, Peng LY, Song XF, Chen WK, Gao YJ, Fang WH, Cui G. Room-Temperature Phosphorescence and Thermally Activated Delayed Fluorescence in the Pd Complex: Mechanism and Dual Upconversion Channels. J Phys Chem Lett 2021;12:5944-50. [PMID: 34156849 DOI: 10.1021/acs.jpclett.1c01558] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
60 Chen J, Chen X, Liu Y, Li Y, Zhao J, Yang Z, Zhang Y, Chi Z. A color-tunable single-component luminescent molecule with multiple emission centers. Chem Sci 2021;12:9201-6. [PMID: 34276951 DOI: 10.1039/d1sc02094c] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
61 Xiao D, Jiang M, Luo X, Liu S, Li J, Chen Z, Li S. Sustainable Carbon Dot-Based AIEgens: Promising Light-Harvesting Materials for Enhancing Photosynthesis. ACS Sustainable Chem Eng 2021;9:4139-45. [DOI: 10.1021/acssuschemeng.0c09348] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
62 Fujiki M. Resonance in Chirogenesis and Photochirogenesis: Colloidal Polymers Meet Chiral Optofluidics. Symmetry 2021;13:199. [DOI: 10.3390/sym13020199] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
63 Tian Y, Yang X, Gong Y, Wang Y, Fang M, Yang J, Tang Z, Li Z. The initial attempt to reveal the emission processes of both mechanoluminescence and room temperature phosphorescence with the aid of circular dichroism in solid state. Sci China Chem 2021;64:445-51. [DOI: 10.1007/s11426-020-9907-9] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 13.5] [Reference Citation Analysis]
64 Qiu W, Cai X, Li M, Wang L, He Y, Xie W, Chen Z, Liu M, Su S. Dynamic adjustment of emission from both singlets and triplets: the role of excited state conformation relaxation and charge transfer in phenothiazine derivates. J Mater Chem C 2021;9:1378-86. [DOI: 10.1039/d0tc05343k] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
65 Tabuchi A, Hayakawa T, Kuwata S, Ishige R, Ando S. Full-colour solvatochromic fluorescence emitted from a semi-aromatic imide compound based on ESIPT and anion formation. Mater Adv 2021;2:5629-38. [DOI: 10.1039/d1ma00308a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
66 Liu J, Ma Z, Li Z, Liu Y, Fu X, Jiang H, Ma Z, Jia X. Room-temperature white and color-tunable afterglow by manipulating multi-mode triplet emissions. J Mater Chem C 2021;9:3257-63. [DOI: 10.1039/d0tc05816e] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
67 Kapusta DP, Mulashkin FD, Khrenova MG. Keto‐enol tautomerism of the 4,5‐dimethyl‐2‐(2′‐hydroxyphenyl)imidazole in water solution: Modeling equilibrium between neutral forms and accurate assignment of the absorption bands. Int J Quantum Chem 2021;121. [DOI: 10.1002/qua.26577] [Reference Citation Analysis]