BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Luo M, Li X, Ding L, Baryshnikov G, Shen S, Zhu M, Zhou L, Zhang M, Lu J, Ågren H, Wang X, Zhu L. Integrating Time‐Resolved Imaging Information by Single‐Luminophore Dual Thermally Activated Delayed Fluorescence. Angew Chem Int Ed 2020;59:17018-25. [DOI: 10.1002/anie.202009077] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 18.5] [Reference Citation Analysis]
Number Citing Articles
1 Li Y, Baryshnikov GV, Siddique F, Wei P, Wu H, Yi T. Vibration‐Regulated Multi‐State Long‐Lived Emission from Star‐Shaped Molecules. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202213051] [Reference Citation Analysis]
2 Li W, Zhang J, Gao Z, Qi J, Ding D. Advancing biomedical applications via manipulating intersystem crossing. Coordination Chemistry Reviews 2022;471:214754. [DOI: 10.1016/j.ccr.2022.214754] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Liang W, He S, Wu S. Fluorescence Imaging in Second Near‐infrared Window: Developments, Challenges, and Opportunities. Advanced NanoBiomed Research 2022. [DOI: 10.1002/anbr.202200087] [Reference Citation Analysis]
4 Liu XW, Zhao W, Wu Y, Meng Z, He Z, Qi X, Ren Y, Yu ZQ, Tang BZ. Photo-thermo-induced room-temperature phosphorescence through solid-state molecular motion. Nat Commun 2022;13:3887. [PMID: 35794103 DOI: 10.1038/s41467-022-31481-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Zhou L, Wu B, Shi B, Zhu X, Shen S, Zhu L. Ultralong-Lived Up-Conversional Room-Temperature Afterglow Materials with a Polyvinyl Alcohol Substrate. Polymers (Basel) 2022;14:2414. [PMID: 35745990 DOI: 10.3390/polym14122414] [Reference Citation Analysis]
6 Teng X, Sun X, Pan W, Song Z, Wang J. Carbon Dots Confined in Silica Nanoparticles for Triplet-to-Singlet Föster Resonance Energy-Transfer-Induced Delayed Fluorescence. ACS Appl Nano Mater 2022;5:5168-75. [DOI: 10.1021/acsanm.2c00208] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Song F, Ou X, Chou TY, Liu J, Gao H, Zhang R, Huang X, Zhao Z, Sun J, Chen S, Lam JWY, Tang BZ. Oxygen Quenching-Resistant Nanoaggregates with Aggregation-Induced Delayed Fluorescence for Time-Resolved Mapping of Intracellular Microviscosity. ACS Nano 2022. [PMID: 35318852 DOI: 10.1021/acsnano.1c11661] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Mo L, Liu H, Liu Z, Xu X, Lei B, Zhuang J, Liu Y, Hu C. Cascade Resonance Energy Transfer for the Construction of Nanoparticles with Multicolor Long Afterglow in Aqueous Solutions for Information Encryption and Bioimaging. Advanced Optical Materials 2022;10:2102666. [DOI: 10.1002/adom.202102666] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
9 Yu M, Zhao W, Ni F, Zhao Q, Yang C. Photoswitchable Thermally Activated Delayed Fluorescence Nanoparticles for “Double‐Check” Confocal and Time‐Resolved Luminescence Bioimaging. Advanced Optical Materials 2022;10:2102437. [DOI: 10.1002/adom.202102437] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
10 Barman D, Narang K, Parui R, Zehra N, Khatun MN, Adil LR, Iyer PK. Review on recent trends and prospects in π‐conjugated luminescent aggregates for biomedical applications. Aggregate. [DOI: 10.1002/agt2.172] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Xu W, Chen Y, Lu Y, Qin Y, Zhang H, Xu X, Liu Y. Tunable Second‐Level Room‐Temperature Phosphorescence of Solid Supramolecules between Acrylamide–Phenylpyridium Copolymers and Cucurbit[7]uril. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202115265] [Reference Citation Analysis]
12 Fang F, Yuan Y, Wan Y, Li J, Song Y, Chen WC, Zhao D, Chi Y, Li M, Lee CS, Zhang J. Near-Infrared Thermally Activated Delayed Fluorescence Nanoparticle: A Metal-Free Photosensitizer for Two-Photon-Activated Photodynamic Therapy at the Cell and Small Animal Levels. Small 2022;18:e2106215. [PMID: 35018711 DOI: 10.1002/smll.202106215] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 19.0] [Reference Citation Analysis]
13 Jaiswal S, Das S, Kundu S, Rawal I, Anand P, Patra A. Progress and perspectives: fluorescent to long-lived emissive multifunctional probes for intracellular sensing and imaging. J Mater Chem C 2022;10:6141-95. [DOI: 10.1039/d2tc00241h] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Zhu A, Yu J, Zhou T, Zhang K, Qiu S, Ban X, Wang Y, Shen Z, Da S, Gao X. Rational design of multi-functional thermally activated delayed fluorescence emitters for both sensor and OLED applications. New J Chem 2022;46:10940-50. [DOI: 10.1039/d2nj00770c] [Reference Citation Analysis]
15 Xu WW, Chen Y, Lu YL, Qin YX, Zhang H, Xu X, Liu Y. Tunable Second-Level Room-Temperature Phosphorescence of Solid Supramolecules between Acrylamide-Phenylpyridium Copolymers and Cucurbit[7]uril. Angew Chem Int Ed Engl 2021;:e202115265. [PMID: 34874598 DOI: 10.1002/anie.202115265] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
16 Gužauskas M, Narbutaitis E, Volyniuk D, Baryshnikov GV, Minaev BF, Ågren H, Chao Y, Chang C, Rutkis M, Grazulevicius JV. Polymorph acceptor-based triads with photoinduced TADF for UV sensing. Chemical Engineering Journal 2021;425:131549. [DOI: 10.1016/j.cej.2021.131549] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Fang F, Zhu L, Li M, Song Y, Sun M, Zhao D, Zhang J. Thermally Activated Delayed Fluorescence Material: An Emerging Class of Metal-Free Luminophores for Biomedical Applications. Adv Sci (Weinh) 2021;8:e2102970. [PMID: 34705318 DOI: 10.1002/advs.202102970] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 22.0] [Reference Citation Analysis]
18 Malpicci D, Lucenti E, Giannini C, Forni A, Botta C, Cariati E. Prompt and Long-Lived Anti-Kasha Emission from Organic Dyes. Molecules 2021;26:6999. [PMID: 34834093 DOI: 10.3390/molecules26226999] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
19 Barman D, Parui R, Narang K, Gogoi R, Iyer PK. Aggregation induced bright organic luminogens: Design strategies, advanced bio-imaging and theranostic applications. Prog Mol Biol Transl Sci 2021;185:75-112. [PMID: 34782108 DOI: 10.1016/bs.pmbts.2021.07.001] [Reference Citation Analysis]
20 Li F, Qian C, Lu J, Ma Y, Zhang KY, Liu S, Zhao Q. Color‐Tunable Dual Persistent Emission Via a Triplet Exciton Reservoir for Temperature Sensing and Anti‐Counterfeiting. Advanced Optical Materials 2022;10:2101773. [DOI: 10.1002/adom.202101773] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
21 Nakae T, Nishio M, Usuki T, Ikeya M, Nishimoto C, Ito S, Nishihara H, Hattori M, Hayashi S, Yamada T, Yamanoi Y. Luminescent Behavior Elucidation of a Disilane‐Bridged D–A–D Triad Composed of Phenothiazine and Thienopyrazine. Angewandte Chemie 2021;133:23053-23060. [DOI: 10.1002/ange.202108089] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Nakae T, Nishio M, Usuki T, Ikeya M, Nishimoto C, Ito S, Nishihara H, Hattori M, Hayashi S, Yamada T, Yamanoi Y. Luminescent Behavior Elucidation of a Disilane-Bridged D-A-D Triad Composed of Phenothiazine and Thienopyrazine. Angew Chem Int Ed Engl 2021;60:22871-8. [PMID: 34427025 DOI: 10.1002/anie.202108089] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
23 Smith PO, Black DJ, Pal R, Avó J, Dias FB, Linthwaite VL, Cann MJ, Pålsson LO. Applying TADF Emitters in Bioimaging and Sensing-A Novel Approach Using Liposomes for Encapsulation and Cellular Uptake. Front Chem 2021;9:743928. [PMID: 34540809 DOI: 10.3389/fchem.2021.743928] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Wang Q, Qi Z, Chen M, Qu D. Out‐of‐equilibrium supramolecular self‐assembling systems driven by chemical fuel. Aggregate 2021;2. [DOI: 10.1002/agt2.110] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
25 Behera SK, Park SY, Gierschner J. Duale Emission: Klassen, Mechanismen und Bedingungen. Angew Chem 2021;133:22804-20. [DOI: 10.1002/ange.202009789] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
26 Lv F, Liu D, Zheng W, Zhao Y, Song F. BOPHY-Based Aggregation-Induced-Emission Nanoparticle Photosensitizers for Photodynamic Therapy. ACS Appl Nano Mater 2021;4:6012-9. [DOI: 10.1021/acsanm.1c00862] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
27 Kalaiselvan A, Spergen A, Krishna ISV, Reddy VS, Gokulnath S. Double intramolecular hydrogen transfer assisted dual emission in a carbazole-embedded porphyrin-like macrocycle. Chem Commun (Camb) 2021;57:4420-3. [PMID: 33949463 DOI: 10.1039/d1cc00868d] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Xing Y, Wang Y, Zhou L, Zhu L. Highly tunable aggregate-induced phosphorescence properties in persulfurated arenes. Dyes and Pigments 2021;186:109032. [DOI: 10.1016/j.dyepig.2020.109032] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
29 Li X, Shen S, Zhang C, Liu M, Lu J, Zhu L. Small-molecule based thermally activated delayed fluorescence materials with dual-emission characteristics. Sci China Chem 2021;64:534-46. [DOI: 10.1007/s11426-020-9908-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
30 Arsenyan P, Vigante B, Leitonas K, Volyniuk D, Andruleviciene V, Skhirtladze L, Belyakov S, Grazulevicius JV. Dual versus normal TADF of pyridines ornamented with multiple donor moieties and their performance in OLEDs. J Mater Chem C 2021;9:3928-38. [DOI: 10.1039/d0tc05745b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Kitagawa Y, Naito A, Fushimi K, Hasegawa Y. Bright sky-blue fluorescence with high color purity: assembly of luminescent diphenyl-anthracene lutetium-based coordination polymer. RSC Adv 2021;11:6604-6606. [DOI: 10.1039/d0ra10795f] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
32 Kukhta NA, Bryce MR. Dual emission in purely organic materials for optoelectronic applications. Mater Horiz 2021;8:33-55. [DOI: 10.1039/d0mh01316a] [Cited by in Crossref: 63] [Cited by in F6Publishing: 67] [Article Influence: 63.0] [Reference Citation Analysis]
33 Zhao B, Wang H, Xie M, Han C, Yang H, Zhao W, Zhao Q, Xu H. Phosphine Oxides Manipulate Aggregation‐Induced Delayed Fluorescence for Time‐Resolved Bioimaging. Adv Photo Res 2021;2:2000096. [DOI: 10.1002/adpr.202000096] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
34 Fecková M, Kalis IK, Roisnel T, le Poul P, Pytela O, Klikar M, Robin-le Guen F, Bureš F, Fakis M, Achelle S. Photophysics of 9,9-Dimethylacridan-Substituted Phenylstyrylpyrimidines Exhibiting Long-Lived Intramolecular Charge-Transfer Fluorescence and Aggregation-Induced Emission Characteristics. Chemistry 2021;27:1145-59. [PMID: 33016475 DOI: 10.1002/chem.202004328] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
35 Izumi S, Nyga A, de Silva P, Tohnai N, Minakata S, Data P, Takeda Y. Revealing Topological Influence of Phenylenediamine Unit on Physicochemical Properties of Donor-Acceptor-Donor-Acceptor Thermally Activated Delayed Fluorescent Macrocycles. Chem Asian J 2020;15:4098-103. [PMID: 33094560 DOI: 10.1002/asia.202001173] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Behera SK, Park SY, Gierschner J. Dual Emission: Classes, Mechanisms, and Conditions. Angew Chem Int Ed Engl 2020. [PMID: 32783293 DOI: 10.1002/anie.202009789] [Cited by in Crossref: 55] [Cited by in F6Publishing: 56] [Article Influence: 27.5] [Reference Citation Analysis]