BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ni F, Li N, Zhan L, Yang C. Organic Thermally Activated Delayed Fluorescence Materials for Time‐Resolved Luminescence Imaging and Sensing. Adv Optical Mater 2020;8:1902187. [DOI: 10.1002/adom.201902187] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 25.0] [Reference Citation Analysis]
Number Citing Articles
1 Li W, Zhang J, Gao Z, Qi J, Ding D. Advancing biomedical applications via manipulating intersystem crossing. Coordination Chemistry Reviews 2022;471:214754. [DOI: 10.1016/j.ccr.2022.214754] [Reference Citation Analysis]
2 Mayder DM, Christopherson CJ, Primrose WL, Lin AS, Hudson ZM. Polymer dots and glassy organic dots using dibenzodipyridophenazine dyes as water-dispersible TADF probes for cellular imaging. J Mater Chem B 2022;10:6496-506. [PMID: 35979840 DOI: 10.1039/d2tb01252a] [Reference Citation Analysis]
3 Sun XW, Peng LY, Gao YJ, Fang Q, Cui G. Thermally Activated Delayed Fluorescence of a Pyromellitic Diimide Derivative in the Film Environment Investigated by Combined QM/MM and MS-CASPT2 Methods. J Phys Chem A 2022. [PMID: 35737507 DOI: 10.1021/acs.jpca.2c02145] [Reference Citation Analysis]
4 Li S, Liu K, Feng X, Li Z, Zhang Z, Wang B, Li M, Bai Y, Cui L, Li C. Synthesis and macrocyclization-induced emission enhancement of benzothiadiazole-based macrocycle. Nat Commun 2022;13. [DOI: 10.1038/s41467-022-30121-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Liu Q, Yang M, Meng X, Han X, Nazare M, Xu Y, Hu HY, Zhang Q. Donor manipulation for constructing a pH sensing thermally activated delayed fluorescent probe to detect alkaliphiles. Talanta 2022;246:123493. [PMID: 35489098 DOI: 10.1016/j.talanta.2022.123493] [Reference Citation Analysis]
6 Zhou HY, Zhang DW, Li M, Chen CF. A Calix[3]acridan-Based Host-Guest Cocrystal Exhibiting Efficient Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2022;61:e202117872. [PMID: 35146858 DOI: 10.1002/anie.202117872] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Qian W, Zuo M, Niu P, Hu X, Wang L. The construction of aggregation-induced charge transfer emission systems in aqueous solution directed by supramolecular strategy. Chinese Chemical Letters 2022;33:1975-8. [DOI: 10.1016/j.cclet.2021.09.070] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Fang M, Yang J, Li Z. Light emission of organic luminogens: Generation, mechanism and application. Progress in Materials Science 2022;125:100914. [DOI: 10.1016/j.pmatsci.2021.100914] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
9 Song F, Ou X, Chou TY, Liu J, Gao H, Zhang R, Huang X, Zhao Z, Sun J, Chen S, Lam JWY, Tang BZ. Oxygen Quenching-Resistant Nanoaggregates with Aggregation-Induced Delayed Fluorescence for Time-Resolved Mapping of Intracellular Microviscosity. ACS Nano 2022. [PMID: 35318852 DOI: 10.1021/acsnano.1c11661] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Yu M, Zhao W, Ni F, Zhao Q, Yang C. Photoswitchable Thermally Activated Delayed Fluorescence Nanoparticles for “Double‐Check” Confocal and Time‐Resolved Luminescence Bioimaging. Advanced Optical Materials 2022;10:2102437. [DOI: 10.1002/adom.202102437] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
11 Barman D, Narang K, Parui R, Zehra N, Khatun MN, Adil LR, Iyer PK. Review on recent trends and prospects in π‐conjugated luminescent aggregates for biomedical applications. Aggregate. [DOI: 10.1002/agt2.172] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Hall D, Stavrou K, Duda E, Danos A, Bagnich S, Warriner S, Slawin AMZ, Beljonne D, Köhler A, Monkman A, Olivier Y, Zysman-Colman E. Diindolocarbazole - achieving multiresonant thermally activated delayed fluorescence without the need for acceptor units. Mater Horiz 2022. [PMID: 35067689 DOI: 10.1039/d1mh01383a] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
13 Liu D, Zhang M, Tian W, Jiang W, Sun Y, Zhao Z, Tang BZ. Molecular core–shell structure design: Facilitating delayed fluorescence in aggregates toward highly efficient solution‐processed OLEDs. Aggregate. [DOI: 10.1002/agt2.164] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
14 Ruduss A, Turovska B, Belyakov S, Stucere KA, Vembris A, Traskovskis K. Carbene-Metal Complexes As Molecular Scaffolds for Construction of through-Space Thermally Activated Delayed Fluorescence Emitters. Inorg Chem 2022. [PMID: 35038860 DOI: 10.1021/acs.inorgchem.1c03371] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Danos A, Gudeika D, Kukhta NA, Lygaitis R, Colella M, Higginbotham HF, Bismillah AN, Mcgonigal PR, Grazulevicius JV, Monkman AP. Not the sum of their parts: understanding multi-donor interactions in symmetric and asymmetric TADF emitters. J Mater Chem C 2022;10:4737-47. [DOI: 10.1039/d1tc04171a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
16 Polgar AM, Huang SH, Hudson ZM. Donor modification of thermally activated delayed fluorescence photosensitizers for organocatalyzed atom transfer radical polymerization. Polym Chem . [DOI: 10.1039/d2py00470d] [Reference Citation Analysis]
17 Jaiswal S, Das S, Kundu S, Rawal I, Anand P, Patra A. Progress and perspectives: fluorescent to long-lived emissive multifunctional probes for intracellular sensing and imaging. J Mater Chem C 2022;10:6141-95. [DOI: 10.1039/d2tc00241h] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Congrave DG, Drummond BH, Gu Q, Montanaro S, Francis H, Riesgo-gonzález V, Zeng W, Matthews CSB, Dowland S, Wright IA, Grey CP, Friend RH, Bronstein H. A solution-processable near-infrared thermally activated delayed fluorescent dye with a fused aromatic acceptor and aggregation induced emission behavior. J Mater Chem C 2022;10:4831-6. [DOI: 10.1039/d1tc04753a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Huang Z, Huang C, Tang Y, Xiao Z, Li N, Hua T, Cao X, Zhou C, Wu C, Yang C. Chiral thermally activated delayed fluorescence emitters for circularly polarized luminescence and efficient deep blue OLEDs. Dyes and Pigments 2022;197:109860. [DOI: 10.1016/j.dyepig.2021.109860] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
20 Xia H, Tang Y, Zhang Y, Ni F, Qiu Y, Huang C, Wu C, Yang C. Highly efficient blue electroluminescence based on TADF emitters with spiroacridine donors: methyl group effect on photophysical properties. J Mater Chem C. [DOI: 10.1039/d1tc04939a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Tsiko U, Bezvikonnyi O, Volyniuk D, Minaev BF, Keruckas J, Cekaviciute M, Jatautiene E, Andruleviciene V, Dabuliene A, Grazulevicius JV. TADF quenching properties of phenothiazine or phenoxazine-substituted benzanthrones emitting in deep-red/near-infrared region towards oxygen sensing. Dyes and Pigments 2022;197:109952. [DOI: 10.1016/j.dyepig.2021.109952] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
22 Xiong Y, Gong J, Liu J, Wang D, Wu H, Zhao Z, Fang M, Li Z, Wang D, Tang BZ. Achieving diversified emissive behaviors of AIE, TADF, RTP, dual-RTP and mechanoluminescence from simple organic molecules by positional isomerism. J Mater Chem C. [DOI: 10.1039/d2tc01857h] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Gužauskas M, Narbutaitis E, Volyniuk D, Baryshnikov GV, Minaev BF, Ågren H, Chao Y, Chang C, Rutkis M, Grazulevicius JV. Polymorph acceptor-based triads with photoinduced TADF for UV sensing. Chemical Engineering Journal 2021;425:131549. [DOI: 10.1016/j.cej.2021.131549] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
24 Fang F, Zhu L, Li M, Song Y, Sun M, Zhao D, Zhang J. Thermally Activated Delayed Fluorescence Material: An Emerging Class of Metal-Free Luminophores for Biomedical Applications. Adv Sci (Weinh) 2021;8:e2102970. [PMID: 34705318 DOI: 10.1002/advs.202102970] [Cited by in Crossref: 10] [Cited by in F6Publishing: 18] [Article Influence: 10.0] [Reference Citation Analysis]
25 Bie B, Guo L, Zhang M, Ma Y, Yang C. Metal–Organic Framework Based Thermally Activated Delayed Fluorescence Emitter with Oxygen‐Insensitivity for Cell Imaging. Advanced Optical Materials 2022;10:2101992. [DOI: 10.1002/adom.202101992] [Reference Citation Analysis]
26 Hu L, Zhang M, Dong J, Dong R, Yu C, Gong S, Yan Z. A neoteric dual-channel spectral sensor for wide-range pH detection based on variables in UV-vis peak and intensity. Anal Methods 2021;13:5224-30. [PMID: 34698732 DOI: 10.1039/d1ay01141c] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Chen M, Song J, Zhu J, Hong G, An J, Feng E, Peng X, Song F. A Dual-Nanozyme-Catalyzed Cascade Reactor for Enhanced Photodynamic Oncotherapy against Tumor Hypoxia. Adv Healthc Mater 2021;10:e2101049. [PMID: 34494723 DOI: 10.1002/adhm.202101049] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
28 Duan Y, Gao Y, Pan Q, Zhao Z, Wu Y, Zhao L, Geng Y, Su Z. Whether the combination of AIE and TADF functional groups produces AIE-type TADF? –A theoretical study on the synergistic effect of TPE and carbazole donor group/thianthrene-tetraoxide acceptor group. Dyes and Pigments 2021;194:109547. [DOI: 10.1016/j.dyepig.2021.109547] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
29 Xiao Z, Li N, Yang W, Huang Z, Cao X, Huang T, Chen Z, Yang C. Saccharin-derived multifunctional emitters featuring concurrently room temperature phosphorescence, thermally activated delayed fluorescence and aggregation-induced enhanced emission. Chemical Engineering Journal 2021;419:129628. [DOI: 10.1016/j.cej.2021.129628] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
30 Bolle P, Benali T, Menet C, Puget M, Faulques E, Marrot J, Mialane P, Dolbecq A, Serier-Brault H, Oms O, Dessapt R. Tailoring the Solid-State Fluorescence of BODIPY by Supramolecular Assembly with Polyoxometalates. Inorg Chem 2021;60:12602-9. [PMID: 34337949 DOI: 10.1021/acs.inorgchem.1c01983] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
31 Christopherson CJ, Paisley NR, Xiao Z, Algar WR, Hudson ZM. Red-Emissive Cell-Penetrating Polymer Dots Exhibiting Thermally Activated Delayed Fluorescence for Cellular Imaging. J Am Chem Soc 2021;143:13342-9. [PMID: 34382775 DOI: 10.1021/jacs.1c06290] [Cited by in F6Publishing: 13] [Reference Citation Analysis]
32 Hasan N, Ma Z, Liu J, Li Z, Qian C, Liu Y, Chen M, Jiang H, Jia X, Ma Z. Selective Expression of a Carbazole-Phenothiazine Derivative Leads to Dual-mode AIEE, TADF and Distinctive Mechanochromism. Chemphyschem 2021. [PMID: 34318995 DOI: 10.1002/cphc.202100435] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
33 Eng J, Penfold TJ. Open questions on the photophysics of thermally activated delayed fluorescence. Commun Chem 2021;4. [DOI: 10.1038/s42004-021-00533-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
34 Comerford TA, Zysman-colman E. Supramolecular Assemblies Showing Thermally Activated Delayed Fluorescence. Small Science 2021;1:2100022. [DOI: 10.1002/smsc.202100022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
35 Zhou Y, Li Y, Zhang R, Zhao D, Yan Q. White Light Luminescence from a Homo-conjugated Molecule with Thermally Activated Delayed Fluorescence. Chem Asian J 2021;16:1893-6. [PMID: 34014616 DOI: 10.1002/asia.202100397] [Reference Citation Analysis]
36 Ma Y, Zhang K, Zhang Y, Song Y, Lin L, Wang CK, Fan J. Effects of Secondary Acceptors on Excited-State Properties of Sky-Blue Thermally Activated Delayed Fluorescence Molecules: Luminescence Mechanism and Molecular Design. J Phys Chem A 2021;125:175-86. [PMID: 33373223 DOI: 10.1021/acs.jpca.0c08994] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
37 Sych G, Pashazadeh R, Danyliv Y, Bezvikonnyi O, Volyniuk D, Lazauskas A, Grazulevicius JV. Reversibly Switchable Phase-Dependent Emission of Quinoline and Phenothiazine Derivatives towards Applications in Optical Sensing and Information Multicoding. Chemistry 2021;27:2826-36. [PMID: 33140873 DOI: 10.1002/chem.202004657] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
38 Li X, Shen S, Zhang C, Liu M, Lu J, Zhu L. Small-molecule based thermally activated delayed fluorescence materials with dual-emission characteristics. Sci China Chem 2021;64:534-46. [DOI: 10.1007/s11426-020-9908-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
39 Hu S, Huang B, Pu Y, Xia C, Zhang Q, Guo S, Wang Y, Huang X. A thermally activated delayed fluorescence photosensitizer for photodynamic therapy of oral squamous cell carcinoma under low laser intensity. J Mater Chem B 2021;9:5645-55. [PMID: 34190310 DOI: 10.1039/d1tb00719j] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
40 Xu Y, Gao X, Leng J, Fan J. Theoretical perspective on the luminescence mechanism of a hybridized local and charge transfer state emitter with aggregation induced emission: a QM/MM study. CrystEngComm 2021;23:3582-93. [DOI: 10.1039/d1ce00223f] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Ni F, Huang C, Tang Y, Chen Z, Wu Y, Xia S, Cao X, Hsu J, Lee W, Zheng K, Huang Z, Wu C, Yang C. Integrating molecular rigidity and chirality into thermally activated delayed fluorescence emitters for highly efficient sky-blue and orange circularly polarized electroluminescence. Mater Horiz 2021;8:547-55. [DOI: 10.1039/d0mh01521k] [Cited by in Crossref: 17] [Cited by in F6Publishing: 38] [Article Influence: 17.0] [Reference Citation Analysis]
42 Shang A, Lu T, Liu H, Du C, Liu F, Jiang D, Min J, Zhang H, Lu P. Study of configuration differentia and highly efficient deep-red thermally activated delayed fluorescent organic light-emitting diodes based on phenanthro[4,5- fgh ]quinoxaline derivatives. J Mater Chem C 2021;9:7392-9. [DOI: 10.1039/d1tc01562a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
43 Zhao B, Wang H, Xie M, Han C, Yang H, Zhao W, Zhao Q, Xu H. Phosphine Oxides Manipulate Aggregation‐Induced Delayed Fluorescence for Time‐Resolved Bioimaging. Adv Photo Res 2021;2:2000096. [DOI: 10.1002/adpr.202000096] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
44 Ma Y, Zhang K, Zhang Y, Song Y, Lin L, Wang C, Fan J. Intermolecular interaction on excited-state properties of fluoro-substituted thermally activated delayed fluorescence molecules with aggregation-induced emission: a theoretical perspective. Molecular Physics 2021;119:e1862931. [DOI: 10.1080/00268976.2020.1862931] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
45 Nguyen V, Kumar A, Lee MH, Yoon J. Recent advances in biomedical applications of organic fluorescence materials with reduced singlet–triplet energy gaps. Coordination Chemistry Reviews 2020;425:213545. [DOI: 10.1016/j.ccr.2020.213545] [Cited by in Crossref: 15] [Cited by in F6Publishing: 29] [Article Influence: 7.5] [Reference Citation Analysis]
46 Qi S, Kim S, Nguyen V, Kim Y, Niu G, Kim G, Kim S, Park S, Yoon J. Highly Efficient Aggregation-Induced Red-Emissive Organic Thermally Activated Delayed Fluorescence Materials with Prolonged Fluorescence Lifetime for Time-Resolved Luminescence Bioimaging. ACS Appl Mater Interfaces 2020;12:51293-301. [DOI: 10.1021/acsami.0c15936] [Cited by in Crossref: 13] [Cited by in F6Publishing: 29] [Article Influence: 6.5] [Reference Citation Analysis]
47 Teng T, Li K, Cheng G, Wang Y, Wang J, Li J, Zhou C, Liu H, Zou T, Xiong J, Wu C, Zhang HX, Che CM, Yang C. Lighting Silver(I) Complexes for Solution-Processed Organic Light-Emitting Diodes and Biological Applications via Thermally Activated Delayed Fluorescence. Inorg Chem 2020;59:12122-31. [PMID: 32845614 DOI: 10.1021/acs.inorgchem.0c01054] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
48 Kwok RTK, Liu B, Tang BZ. 20 Years of Aggregation‐Induced Emission Research. Adv Optical Mater 2020;8:2000855. [DOI: 10.1002/adom.202000855] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
49 Wu Y, Zhao Y, Zhou P, Zheng D, Wang H, Tang S, Tian J, Yang S, Deng W, Han K, Song F. Enhancing Intersystem Crossing to Achieve Thermally Activated Delayed Fluorescence in a Water-Soluble Fluorescein Derivative with a Flexible Propenyl Group. J Phys Chem Lett 2020;11:5692-8. [PMID: 32568552 DOI: 10.1021/acs.jpclett.0c01297] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
50 Xu S, Zhang Q, Han X, Wang Y, Wang X, Nazare M, Jiang JD, Hu HY. Dual-Mode Detection of Bacterial 16S Ribosomal RNA in Tissues. ACS Sens 2020;5:1650-6. [PMID: 32466642 DOI: 10.1021/acssensors.0c00252] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]