BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jiang P, Miao J, Cao X, Xia H, Pan K, Hua T, Lv X, Huang Z, Zou Y, Yang C. Quenching-Resistant Multiresonance TADF Emitter Realizes 40% External Quantum Efficiency in Narrowband Electroluminescence at High Doping Level. Adv Mater 2022;34:e2106954. [PMID: 34766672 DOI: 10.1002/adma.202106954] [Cited by in Crossref: 55] [Cited by in F6Publishing: 62] [Article Influence: 55.0] [Reference Citation Analysis]
Number Citing Articles
1 Liao XJ, Pu D, Yuan L, Tong J, Xing S, Tu ZL, Zuo JL, Zheng WH, Zheng YX. Planar Chiral Multiple Resonance Thermally Activated Delayed Fluorescence Materials for Efficient Circularly Polarized Electroluminescence. Angew Chem Int Ed Engl 2023;62:e202217045. [PMID: 36517419 DOI: 10.1002/anie.202217045] [Reference Citation Analysis]
2 Uemura S, Oda S, Hayakawa M, Kawasumi R, Ikeda N, Lee YT, Chan CY, Tsuchiya Y, Adachi C, Hatakeyama T. Sequential Multiple Borylation Toward an Ultrapure Green Thermally Activated Delayed Fluorescence Material. J Am Chem Soc 2023;145:1505-11. [PMID: 36547020 DOI: 10.1021/jacs.2c10946] [Reference Citation Analysis]
3 Chen G, Wang J, Chen W, Gong Y, Zhuang N, Liang H, Xing L, Liu Y, Ji S, Zhang H, Zhao Z, Huo Y, Tang BZ. Triphenylamine‐Functionalized Multiple‐Resonance TADF Emitters with Accelerated Reverse Intersystem Crossing and Aggregation‐Induced Emission Enhancement for Narrowband OLEDs. Adv Funct Materials 2023. [DOI: 10.1002/adfm.202211893] [Reference Citation Analysis]
4 Cao C, Tan JH, Zhu ZL, Lin JD, Tan HJ, Chen H, Yuan Y, Tse MK, Chen WC, Lee CS. Intramolecular Cyclization: A Convenient Strategy to Realize Efficient BT.2020 Blue Multi-Resonance Emitter for Organic Light-Emitting Diodes. Angew Chem Int Ed Engl 2023;:e202215226. [PMID: 36593222 DOI: 10.1002/anie.202215226] [Reference Citation Analysis]
5 Wang T, Li K, Yao B, Chen Y, Zhan H, Xie G, Xie Z, Cheng Y. Effect of molecular weight on photoluminescence and electroluminescence properties of thermally activated delayed fluorescence conjugated polymers. Chemical Engineering Journal 2023;452:139123. [DOI: 10.1016/j.cej.2022.139123] [Reference Citation Analysis]
6 Deng Y, Chen M, Mao L, Wang J, Chen L, Zhong L, Zhu Y, Liu Z, Tang J. Synergy of solid-state solvation and microcavity effects for efficient blue OLEDs based on green thermally activated delayed fluorescence emitter. Journal of Luminescence 2023;253:119443. [DOI: 10.1016/j.jlumin.2022.119443] [Reference Citation Analysis]
7 Wang Q, Xu Y, Yang T, Xue J, Wang Y. Precise Functionalization of a Multiple-Resonance Framework: Constructing Narrowband Organic Electroluminescent Materials with External Quantum Efficiency over 40. Adv Mater 2023;35:e2205166. [PMID: 36325646 DOI: 10.1002/adma.202205166] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Gao Y, Sun C, Su T. Design of highly stable thermally activated delayed fluorescence emitters via the overlap degree of HOMO-LUMO distributions. Journal of Molecular Structure 2023;1272:134213. [DOI: 10.1016/j.molstruc.2022.134213] [Reference Citation Analysis]
9 Huo Y, Lv J, Xie Y, Hua L, Liu Y, Ren Z, Li T, Ying S, Yan S. Structurally Regulated Carbazole-Pyridine Derivatives Based on Space-Crowded Theory for Efficient Narrowband Ultraviolet Nondoped Organic Light-Emitting Diodes from the High-Lying Reverse Intersystem Crossing Process. ACS Appl Mater Interfaces 2022;14:57092-101. [PMID: 36516406 DOI: 10.1021/acsami.2c20806] [Reference Citation Analysis]
10 Hu Y, Fan X, Huang F, Shi Y, Wang H, Cheng Y, Chen M, Wang K, Yu J, Zhang X. Novel Multiple Resonance Type TADF Emitter as Blue Component for Highly Efficient Blue‐Hazard‐Free White Organic Light‐Emitting Diodes. Advanced Optical Materials 2022. [DOI: 10.1002/adom.202202267] [Reference Citation Analysis]
11 Cao X, Pan K, Miao J, Lv X, Huang Z, Ni F, Yin X, Wei Y, Yang C. Manipulating Exciton Dynamics toward Simultaneous High-Efficiency Narrowband Electroluminescence and Photon Upconversion by a Selenium-Incorporated Multiresonance Delayed Fluorescence Emitter. J Am Chem Soc 2022. [DOI: 10.1021/jacs.2c09543] [Reference Citation Analysis]
12 Gao Y, Wu S, Shan G, Cheng G. Recent Progress in Blue Thermally Activated Delayed Fluorescence Emitters and Their Applications in OLEDs: Beyond Pure Organic Molecules with Twist D-π-A Structures. Micromachines (Basel) 2022;13. [PMID: 36557449 DOI: 10.3390/mi13122150] [Reference Citation Analysis]
13 Li G, Liu X, Wu M, Zeng R, Li Q, Yuan A, Shi C. Color-tunable donor-acceptor-type B-embedded dioxygen-bridged π-conjugated molecules: Synthesis, structures, and optical properties. Dyes and Pigments 2022;208:110805. [DOI: 10.1016/j.dyepig.2022.110805] [Reference Citation Analysis]
14 Zhou D, Tong GSM, Cheng G, Tang YK, Liu W, Ma D, Du L, Chen JR, Che CM. Stable Tetradentate Gold(III)-TADF Emitters with Close to Unity Quantum Yield and Radiative Decay Rate Constant of up to 2 × 10(6) s(-1) : High-Efficiency Green OLEDs with Operational Lifetime (LT(90) ) Longer than 1800 h at 1000 cd m(-2). Adv Mater 2022;34:e2206598. [PMID: 36208071 DOI: 10.1002/adma.202206598] [Reference Citation Analysis]
15 Liang J, Pan Z, Zhang K, Yang D, Tai J, Wang C, Fung M, Ma D, Fan J. A Facile Method to Achieve Red Thermally Activated Delayed Fluorescence Emitters with EQE Over 30% via Molecular Aspect Ratio Engineering. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.141074] [Reference Citation Analysis]
16 Xie M, Sun M, Xue S, Yang W. Recent progress of blue fluorescent organic light-emitting diodes with narrow full width at half maximum. Dyes and Pigments 2022;208:110799. [DOI: 10.1016/j.dyepig.2022.110799] [Reference Citation Analysis]
17 Chen L, Chang Y, Shu H, Li Q, Shi S, Wang S, Wang L. Achieving Efficient Solution‐Processed Blue Narrowband Emitting OLEDs with Small Efficiency Roll‐Off by Using a Bulky TADF Sensitizer with High Reverse Intersystem Crossing Rate. Advanced Optical Materials 2022. [DOI: 10.1002/adom.202201898] [Reference Citation Analysis]
18 Oda S, Kawakami B, Horiuchi M, Yamasaki Y, Kawasumi R, Hatakeyama T. Ultra-Narrowband Blue Multi-Resonance Thermally Activated Delayed Fluorescence Materials. Adv Sci (Weinh) 2022;10:e2205070. [PMID: 36394083 DOI: 10.1002/advs.202205070] [Reference Citation Analysis]
19 Luo Y, Zhang K, Ding Z, Chen P, Peng X, Zhao Y, Chen K, Li C, Zheng X, Huang Y, Pu X, Liu Y, Su S, Hou X, Lu Z. Ultra-fast triplet-triplet-annihilation-mediated high-lying reverse intersystem crossing triggered by participation of nπ*-featured excited states. Nat Commun 2022;13:6892. [DOI: 10.1038/s41467-022-34573-2] [Reference Citation Analysis]
20 Xie F, Li H, Zhang K, Shen Y, Zhao X, Li Y, Tang J. A Dislocated Twin‐Locking Acceptor‐Donor‐Acceptor Configuration for Efficient Delayed Fluorescence with Multiple Through‐Space Charge Transfer. Angew Chem Int Ed 2022. [DOI: 10.1002/anie.202213823] [Reference Citation Analysis]
21 Yang T, Liang J, Cui Y, Li Z, Peng X, Su S, Wang Y, Li C. Achieving 34.3% External Quantum Efficiency for Red Thermally Activated Delayed Fluorescence Organic Light‐Emitting Diode by Molecular Isomer Engineering. Advanced Optical Materials 2022. [DOI: 10.1002/adom.202201191] [Reference Citation Analysis]
22 Wang R, Lee C, Lu Z. Recent Development of Three-coordinated Boron-doped Aromatics for Optoelectronic Applications. Journal of Organometallic Chemistry 2022. [DOI: 10.1016/j.jorganchem.2022.122564] [Reference Citation Analysis]
23 Hu YX, Miao J, Hua T, Huang Z, Qi Y, Zou Y, Qiu Y, Xia H, Liu H, Cao X, Yang C. Efficient selenium-integrated TADF OLEDs with reduced roll-off. Nat Photon . [DOI: 10.1038/s41566-022-01083-y] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
24 Zhu Y, Qu C, Ye J, Xu Y, Zhang Z, Wang Y. Donor-Acceptor Type of Fused-Ring Thermally Activated Delayed Fluorescence Compounds Constructed through an Oxygen-Containing Six-Membered Ring. ACS Appl Mater Interfaces 2022. [PMID: 36219720 DOI: 10.1021/acsami.2c12778] [Reference Citation Analysis]
25 Luo X, Song S, Ni H, Ma H, Yang D, Ma D, Zheng Y, Zuo J. Multiple‐Resonance‐Induced Thermally Activated Delayed Fluorescence Materials Based on Indolo[3,2,1‐ jk ]carbazole with an Efficient Narrowband Pure‐Green Electroluminescence. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202209984] [Reference Citation Analysis]
26 Liu Y, Xiao X, Huang Z, Yang D, Ma D, Liu J, Lei B, Bin Z, You J. Space‐Confined Donor‐Acceptor Strategy Enables Fast Spin‐Flip of Multiple Resonance Emitters for Suppressing Efficiency Roll‐Off. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202210210] [Reference Citation Analysis]
27 Zhang Y, Zhang J, Shi C, Sun N, Wang Q. Dipyrido[3,2-a:2′,3′-c]phenazine acceptor based thermally activated delayed fluorescence emitters. Dyes and Pigments 2022;206:110634. [DOI: 10.1016/j.dyepig.2022.110634] [Reference Citation Analysis]
28 Kim HJ, Yasuda T. Narrowband Emissive Thermally Activated Delayed Fluorescence Materials. Advanced Optical Materials. [DOI: 10.1002/adom.202201714] [Reference Citation Analysis]
29 Konidena RK, Naveen KR. Boron‐Based Narrowband Multiresonance Delayed Fluorescent Emitters for Organic Light‐Emitting Diodes. Advanced Photonics Research 2022. [DOI: 10.1002/adpr.202200201] [Reference Citation Analysis]
30 Zhong D, Yang X, Deng X, Chen X, Sun Y, Tao P, Li Z, Zhang J, Zhou G, Wong W. Achieving highly efficient near-ultraviolet emitters via optimizing molecular configuration by the intramolecular-locked donor and acceptor. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.139480] [Reference Citation Analysis]
31 Heo S, Jung Y, Kim J, Kim I, Bae HJ, Son W, Choi H, You Y. High‐Performance Blue Electroluminescence Devices Based on Linear Gold(I) Complexes as Ultrafast Triplet Exciton Harvesters. Advanced Optical Materials. [DOI: 10.1002/adom.202201610] [Reference Citation Analysis]
32 Tang S, Lundberg P, Tsuchiya Y, Ràfols‐ribé J, Liu Y, Wang J, Adachi C, Edman L. Efficient and Bright Blue Thermally Activated Delayed Fluorescence from Light‐Emitting Electrochemical Cells. Adv Funct Materials. [DOI: 10.1002/adfm.202205967] [Reference Citation Analysis]
33 Lee H, Braveenth R, Park JD, Jeon CY, Lee HS, Kwon JH. Manipulating Spectral Width and Emission Wavelength towards Highly Efficient Blue Asymmetric Carbazole Fused Multi-Resonance Emitters. ACS Appl Mater Interfaces 2022. [PMID: 35920715 DOI: 10.1021/acsami.2c10127] [Reference Citation Analysis]
34 Park IS, Min H, Yasuda T. Ultrafast Triplet-Singlet Exciton Interconversion in Narrowband Blue Organoboron Emitters Doped with Heavy Chalcogens. Angew Chem Int Ed Engl 2022;61:e202205684. [PMID: 35618697 DOI: 10.1002/anie.202205684] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
35 Xu Y, Wang Q, Wei J, Peng X, Xue J, Wang Z, Su S, Wang Y. Constructing Organic Electroluminescent Material with Very High Color Purity and Efficiency Based on Polycyclization of the Multiple Resonance Parent Core. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202204652] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
36 Yang Y, Li N, Miao J, Cao X, Ying A, Pan K, Lv X, Ni F, Huang Z, Gong S, Yang C. Chiral Multi-Resonance TADF Emitters Exhibiting Narrowband Circularly Polarized Electroluminescence with an EQE of 37.2 . Angew Chem Int Ed Engl 2022;61:e202202227. [PMID: 35536020 DOI: 10.1002/anie.202202227] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Wang J, Miao J, Jiang C, Luo S, Yang C, Li K. Engineering Intramolecular π‐Stacking Interactions of Through‐Space Charge‐Transfer TADF Emitters for Highly Efficient OLEDs with Improved Color Purity. Advanced Optical Materials. [DOI: 10.1002/adom.202201071] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Lv X, Miao J, Liu M, Peng Q, Zhong C, Hu Y, Cao X, Wu H, Yang Y, Zhou C, Ma J, Zou Y, Yang C. Extending the π-Skeleton of Multi-Resonance TADF Materials towards High-Efficiency Narrowband Deep-Blue Emission. Angew Chem Int Ed Engl 2022;61:e202201588. [PMID: 35536106 DOI: 10.1002/anie.202201588] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
39 Xue W, Yan H, He Y, Wu L, Zhang X, Wu Y, Xu J, He J, Yan C, Meng H. Identifying the Molecular Origins of Green BN‐TADF Material Degradation and Device Stability via in situ Raman Spectroscopy. Chemistry A European J 2022;28. [DOI: 10.1002/chem.202201006] [Reference Citation Analysis]
40 Huang F, Fan XC, Cheng YC, Wu H, Shi YZ, Yu J, Wang K, Lee CS, Zhang XH. Distinguishing the respective determining factors for spectral broadening and concentration quenching in multiple resonance type TADF emitter systems. Mater Horiz 2022. [PMID: 35748653 DOI: 10.1039/d2mh00511e] [Reference Citation Analysis]
41 Qin X, Yang N, Yao F, Chen H, Wang J, Kong M, Qian Y, Fan Q. Concentration‐Induced Phase Separation to Suppress Energy Transfer for High‐Temperature Ratiometric Sensing in Organic Films. Advanced Optical Materials. [DOI: 10.1002/adom.202200702] [Reference Citation Analysis]
42 Yang Y, Li N, Miao J, Cao X, Ying A, Pan K, Lv X, Ni F, Huang Z, Gong S, Yang C. Chiral Multi‐Resonance TADF Emitters Exhibiting Narrowband Circularly Polarized Electroluminescence with an EQE of 37.2 %. Angewandte Chemie. [DOI: 10.1002/ange.202202227] [Reference Citation Analysis]
43 Geng Z, Zhang Y, Zhang Y, Quan Y, Cheng Y. Amplified Circularly Polarized Electroluminescence Behavior Triggered by Helical Nanofibers from Chiral Co-assembly Polymers. Angew Chem Int Ed Engl 2022;61:e202202718. [PMID: 35318788 DOI: 10.1002/anie.202202718] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
44 Cai X, Xue J, Li C, Liang B, Ying A, Tan Y, Gong S, Wang Y. Achieving 37.1% Green Electroluminescent Efficiency and 0.09 eV Full Width at Half Maximum Based on a Ternary Boron-Oxygen-Nitrogen Embedded Polycyclic Aromatic System. Angew Chem Int Ed Engl 2022;61:e202200337. [PMID: 35302704 DOI: 10.1002/anie.202200337] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
45 Bian J, Chen S, Qiu L, Zhang N, Zhang J, Duan C, Han C, Xu H. Synergetic Insulation and Induction Effects Selectively Optimize Multiresonance Thermally Activated Delayed Fluorescence. Research 2022;2022:1-10. [DOI: 10.34133/2022/9838120] [Reference Citation Analysis]
46 Chen H, Zeng J, Huang R, Wang J, He J, Liu H, Yang D, Ma D, Zhao Z, Tang BZ. An efficient aggregation‐enhanced delayed fluorescence luminogen created with spiro donors and carbonyl acceptor for applications as an emitter and sensitizer in high‐performance organic light‐emitting diodes. Aggregate. [DOI: 10.1002/agt2.244] [Reference Citation Analysis]
47 Lv X, Miao J, Liu M, Peng Q, Zhong C, Hu Y, Cao X, Wu H, Yang Y, Zhou C, Ma J, Zou Y, Yang C. Extending the π‐Skeleton of Multi‐Resonance TADF Materials towards High‐Efficiency Narrowband Deep‐Blue Emission. Angewandte Chemie. [DOI: 10.1002/ange.202201588] [Reference Citation Analysis]
48 Zou Y, Hu J, Yu M, Miao J, Xie Z, Qiu Y, Cao X, Yang C. High-Performance Narrowband Pure-Red OLEDs with External Quantum Efficiencies up to 36.1% and Ultralow Efficiency Roll-Off. Adv Mater 2022;:e2201442. [PMID: 35588162 DOI: 10.1002/adma.202201442] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 12.0] [Reference Citation Analysis]
49 Hua T, Miao J, Xia H, Huang Z, Cao X, Li N, Yang C. Sulfone‐Incorporated Multi‐Resonance TADF Emitter for High‐Performance Narrowband Blue OLEDs with EQE of 32%. Adv Funct Materials. [DOI: 10.1002/adfm.202201032] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
50 Fan T, Zhang Y, Zhang D, Duan L. Decoration Strategy in Para Boron Position: An Effective Way to Achieve Ideal Multi‐Resonance Emitters. Chemistry A European J 2022;28. [DOI: 10.1002/chem.202104624] [Reference Citation Analysis]
51 Paras, Dhiman A, Ramachandran C. Effect of aromatic linkers on thermally activated delayed fluorescence of selected organic molecules. Chemical Physics Letters 2022. [DOI: 10.1016/j.cplett.2022.139711] [Reference Citation Analysis]
52 Tan HJ, Yang GX, Deng YL, Cao C, Tan JH, Zhu ZL, Chen WC, Xiong Y, Jian JX, Lee CS, Tong QX. Deep-Blue OLEDs with Rec.2020 Blue Gamut Compliance and EQE Over 22% Achieved by Conformation Engineering. Adv Mater 2022;34:e2200537. [PMID: 35236007 DOI: 10.1002/adma.202200537] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
53 Peng X, Qiu W, Li W, Li M, Xie W, Li W, Lin J, Yang J, Li X, Su S. Synergetic Horizontal Dipole Orientation Induction for Highly Efficient and Spectral Stable Thermally Activated Delayed Fluorescence White Organic Light‐Emitting Diodes. Adv Funct Materials. [DOI: 10.1002/adfm.202203022] [Reference Citation Analysis]
54 Forero-Martinez NC, Lin KH, Kremer K, Andrienko D. Virtual Screening for Organic Solar Cells and Light Emitting Diodes. Adv Sci (Weinh) 2022;:e2200825. [PMID: 35460204 DOI: 10.1002/advs.202200825] [Reference Citation Analysis]
55 Ye J, He Y, Li K, Liu L, Xi C, Liu Z, Ma Y, Zhang B, Bao Y, Wang W, Cheng Y, Niu L. Achieving Record Efficiency and Luminance for TADF Light-Emitting Electrochemical Cells by Dopant Engineering. ACS Appl Mater Interfaces 2022;14:17698-708. [PMID: 35389608 DOI: 10.1021/acsami.2c00286] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
56 Shizu K, Kaji H. Comprehensive understanding of multiple resonance thermally activated delayed fluorescence through quantum chemistry calculations. Commun Chem 2022;5:53. [PMID: 36697887 DOI: 10.1038/s42004-022-00668-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
57 Zhu Y, Zeng S, Li B, McEllin AJ, Liao J, Fang Z, Xiao C, Bruce DW, Zhu W, Wang Y. Liquid-Crystalline Thermally Activated Delayed Fluorescence: Design, Synthesis, and Application in Solution-Processed Organic Light-Emitting Diodes. ACS Appl Mater Interfaces 2022;14:15437-47. [PMID: 35323008 DOI: 10.1021/acsami.1c19932] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
58 Geng Z, Zhang Y, Zhang Y, Quan Y, Cheng Y. Amplified Circularly Polarized Electroluminescence Behavior Triggered by Helical Nanofibers from Chiral Co‐assembly Polymers. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202202718] [Reference Citation Analysis]
59 Bian J, Chen S, Qiu L, Tian R, Man Y, Wang Y, Chen S, Zhang J, Duan C, Han C, Xu H. Ambipolar Self-Host Functionalization Accelerates Blue Multi-Resonance Thermally Activated Delayed Fluorescence with Internal Quantum Efficiency of 100. Adv Mater 2022;34:e2110547. [PMID: 35233858 DOI: 10.1002/adma.202110547] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
60 Zeng X, Wang X, Zhang Y, Meng G, Wei J, Liu Z, Jia X, Li G, Duan L, Zhang D. Nitrogen-Embedded Multi-Resonance Heteroaromatics with Prolonged Homogeneous Hexatomic Rings. Angew Chem Int Ed Engl 2022;61:e202117181. [PMID: 35092123 DOI: 10.1002/anie.202117181] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
61 Song X, Liu Z, Lu M, Zou S, Guo F, Gao S, Zhao Z, Tang BZ, Zhang Y. Efficient thermally activated delayed fluorescent emitter based on a spiro-type benzo[b]acridine donor and a benzophenone acceptor. J Mater Chem C 2022. [DOI: 10.1039/d2tc03421b] [Reference Citation Analysis]
62 Zhang Y, Zheng Y, Shi C, Zhang J, Wang T, Sun N, Wang Q. Solution-processable orange-red thermally activated delayed fluorescence emitters with 3,6-disubstituted carbazole for highly efficient OLEDs with low efficiency roll-off. J Mater Chem C. [DOI: 10.1039/d1tc05549f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Guo S, Jin X, Zhang D, Zhou H, Wang G, Miao Y, Huang J, Zhang Z, Wang H, Su J. Phenanthrene-based deep-blue fluorophores with balanced carrier transport ability for high-performance OLEDs with a CIE y < 0.04. J Mater Chem C. [DOI: 10.1039/d2tc02705d] [Reference Citation Analysis]
64 Yu Y, Zou S, Peng C, Feng Z, Qu Y, Yang S, Jiang Z, Liao L. Efficient narrowband electroluminescence based on a hetero-bichromophore thermally activated delayed fluorescence dyad. J Mater Chem C 2022;10:4941-6. [DOI: 10.1039/d1tc05711a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]