BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lanzilli M, Esercizio N, Vastano M, Xu Z, Nuzzo G, Gallo C, Manzo E, Fontana A, d'Ippolito G. Effect of Cultivation Parameters on Fermentation and Hydrogen Production in the Phylum Thermotogae. Int J Mol Sci 2020;22:E341. [PMID: 33396970 DOI: 10.3390/ijms22010341] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
Number Citing Articles
1 Li X, Yang Y, Lu CS, Kobayashi T, Kong Z, Hu Y. Oleate Impacts on Acetoclastic and Hydrogenotrophic Methanogenesis under Mesophilic and Thermophilic Conditions. Int J Environ Res Public Health 2023;20. [PMID: 36834117 DOI: 10.3390/ijerph20043423] [Reference Citation Analysis]
2 Zhao H, Lv F, Liu G, Pang X, Han X, Wang X. Effects of starters with different NDF/starch ratio on rumen fermentation parameters and rumen microorganisms in lambs. Front Vet Sci 2023;10:1064774. [PMID: 36777666 DOI: 10.3389/fvets.2023.1064774] [Reference Citation Analysis]
3 Dohrmann AB, Krüger M. Microbial H(2) Consumption by a Formation Fluid from a Natural Gas Field at High-Pressure Conditions Relevant for Underground H(2) Storage. Environ Sci Technol 2023;57:1092-102. [PMID: 36599497 DOI: 10.1021/acs.est.2c07303] [Reference Citation Analysis]
4 Kim J, Choi H, Park J, Lee C. Effects of submicron magnetite particles on granulation of flocculent sludge and process stability in upflow anaerobic sludge blanket reactor. Bioresource Technology 2022;366:128205. [DOI: 10.1016/j.biortech.2022.128205] [Reference Citation Analysis]
5 Esercizio N, Lanzilli M, Landi S, Caso L, Xu Z, Nuzzo G, Gallo C, Manzo E, Esposito S, Fontana A, d'Ippolito G. Occurrence of Capnophilic Lactic Fermentation in the Hyperthermophilic Anaerobic Bacterium Thermotoga sp. Strain RQ7. Int J Mol Sci 2022;23:12049. [PMID: 36233345 DOI: 10.3390/ijms231912049] [Reference Citation Analysis]
6 Ben Gaida L, Gannoun H, Casalot L, Davidson S, Liebgott P. Biohydrogen production by Thermotoga maritima from a simplified medium exclusively composed of onion and natural seawater. Comptes Rendus. Chimie 2022;25:129-143. [DOI: 10.5802/crchim.136] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Labrie M, Brugge JS, Mills GB, Zervantonakis IK. Therapy resistance: opportunities created by adaptive responses to targeted therapies in cancer. Nat Rev Cancer 2022;22:323-39. [PMID: 35264777 DOI: 10.1038/s41568-022-00454-5] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 33.0] [Reference Citation Analysis]
8 Wang C, Wei W, Zhang YT, Dai X, Ni BJ. Different sizes of polystyrene microplastics induced distinct microbial responses of anaerobic granular sludge. Water Res 2022;220:118607. [PMID: 35623145 DOI: 10.1016/j.watres.2022.118607] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
9 Gao Y, Wang H, Xu R, Wang YN, Sun Y, Bian R, Li W. Remediation of Cr(VI)-contaminated soil by combined chemical reduction and microbial stabilization: The role of biogas solid residue (BSR). Ecotoxicol Environ Saf 2022;231:113198. [PMID: 35033874 DOI: 10.1016/j.ecoenv.2022.113198] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
10 Xu Y, Zhang Z, Ding H, Wen S, Zhang G, Qin F, Dai L. Comprehensive effects of salt stress and peanut cultivars on the rhizosphere bacterial community diversity of peanut. Arch Microbiol 2021;204:15. [PMID: 34894277 DOI: 10.1007/s00203-021-02619-6] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 Dębowski M, Dudek M, Zieliński M, Nowicka A, Kazimierowicz J. Microalgal Hydrogen Production in Relation to Other Biomass-Based Technologies—A Review. Energies 2021;14:6025. [DOI: 10.3390/en14196025] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
12 Sittijunda S, Sitthikitpanya N, Plangklang P, Reungsang A. Two-Stage Anaerobic Codigestion of Crude Glycerol and Micro-Algal Biomass for Biohydrogen and Methane Production by Anaerobic Sludge Consortium. Fermentation 2021;7:175. [DOI: 10.3390/fermentation7030175] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
13 Esercizio N, Lanzilli M, Vastano M, Xu Z, Landi S, Caso L, Gallo C, Nuzzo G, Manzo E, Fontana A, d'Ippolito G. Improvement of CO2 and Acetate Coupling into Lactic Acid by Genetic Manipulation of the Hyperthermophilic Bacterium Thermotoga neapolitana. Microorganisms 2021;9:1688. [PMID: 34442767 DOI: 10.3390/microorganisms9081688] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
14 Gallo G, Puopolo R, Carbonaro M, Maresca E, Fiorentino G. Extremophiles, a Nifty Tool to Face Environmental Pollution: From Exploitation of Metabolism to Genome Engineering. Int J Environ Res Public Health 2021;18:5228. [PMID: 34069056 DOI: 10.3390/ijerph18105228] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
15 Pradhan N, d'Ippolito G, Dipasquale L, Esposito G, Panico A, Lens PNL, Fontana A. Kinetic modeling of hydrogen and L-lactic acid production by Thermotoga neapolitana via capnophilic lactic fermentation of starch. Bioresour Technol 2021;332:125127. [PMID: 33873006 DOI: 10.1016/j.biortech.2021.125127] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]