BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cui Y, Xu T, Qu X, Hu T, Jiang X, Zhao C. New Insights into Various Production Characteristics of Streptococcus thermophilus Strains. Int J Mol Sci 2016;17:E1701. [PMID: 27754312 DOI: 10.3390/ijms17101701] [Cited by in Crossref: 33] [Cited by in F6Publishing: 40] [Article Influence: 5.5] [Reference Citation Analysis]
Number Citing Articles
1 Liu A, Zhang H, Liu T, Gong P, Wang Y, Wang H, Tian X, Liu Q, Cui Q, Xie X, Zhang L, Yi H. Aroma classification and flavor characterization of Streptococcus thermophilus fermented milk by HS-GC-IMS and HS-SPME-GC-TOF/MS. Food Bioscience 2022;49:101832. [DOI: 10.1016/j.fbio.2022.101832] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
2 Oliveira A, Cunha E, Cruz F, Capela J, Sequeira JC, Sampaio M, Sampaio C, Dias O. Systematic assessment of template-based genome-scale metabolic models created with the BiGG Integration Tool. J Integr Bioinform 2022. [PMID: 36054839 DOI: 10.1515/jib-2022-0014] [Reference Citation Analysis]
3 Kim H, Jeon S, Kim J, Seol D, Jo J, Cho S, Kim H. Investigation of memory-enhancing effects of Streptococcus thermophilus EG007 in mice and elucidating molecular and metagenomic characteristics using nanopore sequencing. Sci Rep 2022;12:13274. [PMID: 35918353 DOI: 10.1038/s41598-022-14837-z] [Reference Citation Analysis]
4 Xu ZS, Liang Y, Kong J, Zhang SS, Liu XL, Wang T. A food-grade vector for Streptococcus thermophilus based on the α-complementation of β-galactosidase. J Dairy Sci 2022:S0022-0302(22)00308-3. [PMID: 35599030 DOI: 10.3168/jds.2021-21699] [Reference Citation Analysis]
5 Zhang T, Zhang Y, Li L, Jiang X, Chen Z, Zhao F, Yi Y. Biosynthesis and Production of Class II Bacteriocins of Food-Associated Lactic Acid Bacteria. Fermentation 2022;8:217. [DOI: 10.3390/fermentation8050217] [Reference Citation Analysis]
6 Alalam S, Marciniak A, Lessard M, Bérubé A, Chamberland J, Pouliot Y, Labrie S, Doyen A. Evolution of bacterial communities during the concentration and recirculation of dairy white wastewater by reverse osmosis. International Dairy Journal 2022;127:105283. [DOI: 10.1016/j.idairyj.2021.105283] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Zhou Y, Cui Y, Qu X. Comparative transcriptome analysis for the biosynthesis of antioxidant exopolysaccharide in Streptococcus thermophilus CS6. J Sci Food Agric 2022. [PMID: 35318677 DOI: 10.1002/jsfa.11886] [Reference Citation Analysis]
8 Wu J, Han X, Ye M, Li Y, Wang X, Zhong Q. Exopolysaccharides synthesized by lactic acid bacteria: biosynthesis pathway, structure-function relationship, structural modification and applicability. Crit Rev Food Sci Nutr 2022;:1-22. [PMID: 35213280 DOI: 10.1080/10408398.2022.2043822] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Zhou Y, Cui Y, Suo C, Wang Q, Qu X. Structure, physicochemical characterization, and antioxidant activity of the highly arabinose-branched exopolysaccharide EPS-M2 from Streptococcus thermophilus CS6. Int J Biol Macromol 2021;192:716-27. [PMID: 34655584 DOI: 10.1016/j.ijbiomac.2021.10.047] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
10 Awussi AA, Roux E, Humeau C, Hafeez Z, Maigret B, Chang OK, Lecomte X, Humbert G, Miclo L, Genay M, Perrin C, Dary-Mourot A. Role of the Sortase A in the Release of Cell-Wall Proteinase PrtS in the Growth Medium of Streptococcus thermophilus 4F44. Microorganisms 2021;9:2380. [PMID: 34835505 DOI: 10.3390/microorganisms9112380] [Reference Citation Analysis]
11 Umamaheswari T, Anbukkarasi K, Hemalatha T, Singh R. GTG5 fingerprinting of native Streptococcus thermophilus strains and its authentication by principal component analysis – A road to value added commercial yoghurt starter cultures. International Dairy Journal 2021;122:105161. [DOI: 10.1016/j.idairyj.2021.105161] [Reference Citation Analysis]
12 Hu T, Cui Y, Qu X. Analysis of the proteolytic system of Streptococcus thermophilus strains CS5, CS9, CS18 and CS20. International Dairy Journal 2021;118:105025. [DOI: 10.1016/j.idairyj.2021.105025] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Peng XP, Nie C, Guan WY, Qiao LD, Lu L, Cao SJ. Regulation of Probiotics on Metabolism of Dietary Protein in Intestine. Curr Protein Pept Sci 2020;21:766-71. [PMID: 31713481 DOI: 10.2174/1389203720666191111112941] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Guo S, Wu T, Peng C, Wang J, Sun T, Zhang H. Metabolic footprint analysis of volatile metabolites by gas chromatography-ion mobility spectrometry to discriminate between different fermentation temperatures during Streptococcus thermophilus milk fermentation. J Dairy Sci 2021;104:8541-53. [PMID: 34024608 DOI: 10.3168/jds.2020-19555] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
15 Uriot O, Kebouchi M, Lorson E, Galia W, Denis S, Chalancon S, Hafeez Z, Roux E, Genay M, Blanquet-Diot S, Dary-Mourot A. Identification of Streptococcus thermophilus Genes Specifically Expressed under Simulated Human Digestive Conditions Using R-IVET Technology. Microorganisms 2021;9:1113. [PMID: 34064045 DOI: 10.3390/microorganisms9061113] [Reference Citation Analysis]
16 Piñar G, Sclocchi MC, Pinzari F, Colaizzi P, Graf A, Sebastiani ML, Sterflinger K. The Microbiome of Leonardo da Vinci's Drawings: A Bio-Archive of Their History. Front Microbiol 2020;11:593401. [PMID: 33329475 DOI: 10.3389/fmicb.2020.593401] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
17 Chee WJY, Chew SY, Than LTL. Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health. Microb Cell Fact 2020;19:203. [PMID: 33160356 DOI: 10.1186/s12934-020-01464-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 50] [Article Influence: 5.5] [Reference Citation Analysis]
18 Shani N, Isolini D, Marzohl D, Berthoud H. Evaluation of a new culture medium for the enumeration and isolation of Streptococcus salivarius subsp. thermophilus from cheese. Food Microbiol 2021;95:103672. [PMID: 33397607 DOI: 10.1016/j.fm.2020.103672] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Shehata HR, Chandler RA, Newmaster SG. Draft Genome Sequence of Streptococcus thermophilus Strain CBC-S77, Isolated from Homemade Dairy Foods in Bulgaria. Microbiol Resour Announc 2020;9:e00879-20. [PMID: 32912918 DOI: 10.1128/MRA.00879-20] [Reference Citation Analysis]
20 Xiong ZQ, Fan YZ, Song X, Xia YJ, Zhang H, Ai LZ. Short communication: Genome-wide identification of new reference genes for reverse-transcription quantitative PCR in Streptococcus thermophilus based on RNA-sequencing analysis. J Dairy Sci 2020;103:10001-5. [PMID: 32896392 DOI: 10.3168/jds.2020-18672] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
21 Terzić-Vidojević A, Veljović K, Tolinački M, Živković M, Lukić J, Lozo J, Fira Đ, Jovčić B, Strahinić I, Begović J, Popović N, Miljković M, Kojić M, Topisirović L, Golić N. Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties. Food Res Int 2020;136:109494. [PMID: 32846575 DOI: 10.1016/j.foodres.2020.109494] [Cited by in Crossref: 9] [Cited by in F6Publishing: 24] [Article Influence: 4.5] [Reference Citation Analysis]
22 Min B, Kim K, Li V, Cho S, Kim H. Changes in Cell Membrane Fatty Acid Composition of Streptococcus thermophilus in Response to Gradually Increasing Heat Temperature. J Microbiol Biotechnol 2020;30:739-48. [PMID: 32482940 DOI: 10.4014/jmb.1912.12053] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
23 Sharma A, Gupta G, Ahmad T, Kaur B, Hakeem KR. Tailoring cellular metabolism in lactic acid bacteria through metabolic engineering. Journal of Microbiological Methods 2020;170:105862. [DOI: 10.1016/j.mimet.2020.105862] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
24 Hu T, Cui Y, Zhang Y, Qu X, Zhao C. Genome Analysis and Physiological Characterization of Four Streptococcus thermophilus Strains Isolated From Chinese Traditional Fermented Milk. Front Microbiol 2020;11:184. [PMID: 32184766 DOI: 10.3389/fmicb.2020.00184] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
25 Markakiou S, Gaspar P, Johansen E, Zeidan AA, Neves AR. Harnessing the metabolic potential of Streptococcus thermophilus for new biotechnological applications. Current Opinion in Biotechnology 2020;61:142-52. [DOI: 10.1016/j.copbio.2019.12.019] [Cited by in Crossref: 9] [Cited by in F6Publishing: 22] [Article Influence: 4.5] [Reference Citation Analysis]
26 Alexandraki V, Kazou M, Blom J, Pot B, Papadimitriou K, Tsakalidou E. Comparative Genomics of Streptococcus thermophilus Support Important Traits Concerning the Evolution, Biology and Technological Properties of the Species. Front Microbiol 2019;10:2916. [PMID: 31956321 DOI: 10.3389/fmicb.2019.02916] [Cited by in Crossref: 10] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
27 Hu T, Cui Y, Qu X. Characterization and comparison of CRISPR Loci in Streptococcus thermophilus. Arch Microbiol 2020;202:695-710. [PMID: 31781808 DOI: 10.1007/s00203-019-01780-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
28 Lobo RE, Gómez MI, Font de Valdez G, Torino MI. Physicochemical and antioxidant properties of a gastroprotective exopolysaccharide produced by Streptococcus thermophilus CRL1190. Food Hydrocolloids 2019;96:625-33. [DOI: 10.1016/j.foodhyd.2019.05.036] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
29 Peralta GH, Bergamini CV, Hynes ER. Disruption treatments on two strains of Streptococcus thermophilus: Levels of lysis/permeabilisation of the cultures, and influence of treated cultures on the ripening profiles of Cremoso cheese. International Dairy Journal 2019;92:11-20. [DOI: 10.1016/j.idairyj.2019.01.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
30 Xiong ZQ, Kong LH, Lai PF, Xia YJ, Liu JC, Li QY, Ai LZ. Genomic and phenotypic analyses of exopolysaccharide biosynthesis in Streptococcus thermophilus S-3. J Dairy Sci 2019;102:4925-34. [PMID: 30928267 DOI: 10.3168/jds.2018-15572] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
31 Xiong ZQ, Kong LH, Meng HL, Cui JM, Xia YJ, Wang SJ, Ai LZ. Comparison of gal-lac operons in wild-type galactose-positive and -negative Streptococcus thermophilus by genomics and transcription analysis. J Ind Microbiol Biotechnol 2019;46:751-8. [PMID: 30715626 DOI: 10.1007/s10295-019-02145-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
32 Fan X, Tang J, Nie L, Huang J, Wang G. High-quality-draft genome sequence of the heavy metal resistant and exopolysaccharides producing bacterium Mucilaginibacter pedocola TBZ30T. Stand Genomic Sci 2018;13:34. [PMID: 30505390 DOI: 10.1186/s40793-018-0337-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
33 Xia X, Li J, Zhou Z, Wang D, Huang J, Wang G. High-quality-draft genome sequence of the multiple heavy metal resistant bacterium Pseudaminobacter manganicus JH-7T. Stand Genomic Sci 2018;13:29. [PMID: 30386456 DOI: 10.1186/s40793-018-0330-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
34 Kanmani P, Albarracin L, Kobayashi H, Hebert EM, Saavedra L, Komatsu R, Gatica B, Miyazaki A, Ikeda-Ohtsubo W, Suda Y, Aso H, Egusa S, Mishima T, Salas-Burgos A, Takahashi H, Villena J, Kitazawa H. Genomic Characterization of Lactobacillus delbrueckii TUA4408L and Evaluation of the Antiviral Activities of its Extracellular Polysaccharides in Porcine Intestinal Epithelial Cells. Front Immunol 2018;9:2178. [PMID: 30319634 DOI: 10.3389/fimmu.2018.02178] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
35 Padmanabhan A, Tong Y, Wu Q, Zhang J, Shah NP. Transcriptomic Insights Into the Growth Phase- and Sugar-Associated Changes in the Exopolysaccharide Production of a High EPS-Producing Streptococcus thermophilus ASCC 1275. Front Microbiol 2018;9:1919. [PMID: 30177921 DOI: 10.3389/fmicb.2018.01919] [Cited by in Crossref: 10] [Cited by in F6Publishing: 21] [Article Influence: 2.5] [Reference Citation Analysis]
36 Velikova P, Petrov K, Lozanov V, Tsvetanova F, Stoyanov A, Wu Z, Liu Z, Petrova P. Microbial diversity and health-promoting properties of the traditional Bulgarian yogurt. Biotechnology & Biotechnological Equipment 2018;32:1205-17. [DOI: 10.1080/13102818.2018.1475255] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
37 Tian H, Li B, Evivie SE, Sarker SK, Chowdhury S, Lu J, Ding X, Huo G. Technological and Genomic Analysis of Roles of the Cell-Envelope Protease PrtS in Yoghurt Starter Development. Int J Mol Sci 2018;19:E1068. [PMID: 29614042 DOI: 10.3390/ijms19041068] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
38 Flórez AB, Mayo B. Antibiotic Resistance-Susceptibility Profiles of Streptococcus thermophilus Isolated from Raw Milk and Genome Analysis of the Genetic Basis of Acquired Resistances. Front Microbiol 2017;8:2608. [PMID: 29312272 DOI: 10.3389/fmicb.2017.02608] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
39 Zeidan AA, Poulsen VK, Janzen T, Buldo P, Derkx PMF, Øregaard G, Neves AR. Polysaccharide production by lactic acid bacteria: from genes to industrial applications. FEMS Microbiology Reviews 2017;41:S168-200. [DOI: 10.1093/femsre/fux017] [Cited by in Crossref: 111] [Cited by in F6Publishing: 114] [Article Influence: 22.2] [Reference Citation Analysis]
40 Cui Y, Jiang X, Hao M, Qu X, Hu T. New advances in exopolysaccharides production of Streptococcus thermophilus. Arch Microbiol 2017;199:799-809. [PMID: 28357474 DOI: 10.1007/s00203-017-1366-1] [Cited by in Crossref: 22] [Cited by in F6Publishing: 27] [Article Influence: 4.4] [Reference Citation Analysis]