BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Qin Q, Xia B, Xiong Y, Zhang S, Luo Y, Hao Y. Structural Characterization of the Exopolysaccharide Produced by Streptococcus thermophilus 05-34 and Its In Situ Application in Yogurt. Journal of Food Science 2011;76:C1226-30. [DOI: 10.1111/j.1750-3841.2011.02397.x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 1.7] [Reference Citation Analysis]
Number Citing Articles
1 Zhou Y, Cui Y, Suo C, Wang Q, Qu X. Structure, physicochemical characterization, and antioxidant activity of the highly arabinose-branched exopolysaccharide EPS-M2 from Streptococcus thermophilus CS6. Int J Biol Macromol 2021;192:716-27. [PMID: 34655584 DOI: 10.1016/j.ijbiomac.2021.10.047] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
2 Zhai Z, Xie S, Zhang H, Yi H, Hao Y. Homologous Over-Expression of Chain Length Determination Protein EpsC Increases the Molecular Weight of Exopolysaccharide in Streptococcus thermophilus 05-34. Front Microbiol 2021;12:696222. [PMID: 34354691 DOI: 10.3389/fmicb.2021.696222] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
3 Xu Z, Guo Q, Zhang H, Xiong Z, Zhang X, Ai L. Structural characterisation of EPS of Streptococcus thermophilus S-3 and its application in milk fermentation. Int J Biol Macromol 2021;178:263-9. [PMID: 33639187 DOI: 10.1016/j.ijbiomac.2021.02.173] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
4 Shultana R, Kee Zuan AT, Yusop MR, Saud HM. Characterization of salt-tolerant plant growth-promoting rhizobacteria and the effect on growth and yield of saline-affected rice. PLoS One 2020;15:e0238537. [PMID: 32886707 DOI: 10.1371/journal.pone.0238537] [Cited by in Crossref: 10] [Cited by in F6Publishing: 30] [Article Influence: 5.0] [Reference Citation Analysis]
5 Wang G, Li J, Xie S, Zhai Z, Hao Y. The N-terminal domain of rhamnosyltransferase EpsF influences exopolysaccharide chain length determination in Streptococcus thermophilus 05-34. PeerJ 2020;8:e8524. [PMID: 32095353 DOI: 10.7717/peerj.8524] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Xu Y, Cui Y, Yue F, Liu L, Shan Y, Liu B, Zhou Y, Lü X. Exopolysaccharides produced by lactic acid bacteria and Bifidobacteria: Structures, physiochemical functions and applications in the food industry. Food Hydrocolloids 2019;94:475-99. [DOI: 10.1016/j.foodhyd.2019.03.032] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 13.0] [Reference Citation Analysis]
7 Xu W, Liu Q, Bai Y, Yu S, Zhang T, Jiang B, Mu W. Physicochemical properties of a high molecular weight levan from Brenneria sp. EniD312. International Journal of Biological Macromolecules 2018;109:810-8. [DOI: 10.1016/j.ijbiomac.2017.11.056] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 6.8] [Reference Citation Analysis]
8 Kanamarlapudi SLRK, Muddada S. Characterization of Exopolysaccharide Produced by Streptococcus thermophilus CC30. Biomed Res Int 2017;2017:4201809. [PMID: 28815181 DOI: 10.1155/2017/4201809] [Cited by in Crossref: 43] [Cited by in F6Publishing: 54] [Article Influence: 8.6] [Reference Citation Analysis]
9 Zeidan AA, Poulsen VK, Janzen T, Buldo P, Derkx PMF, Øregaard G, Neves AR. Polysaccharide production by lactic acid bacteria: from genes to industrial applications. FEMS Microbiology Reviews 2017;41:S168-200. [DOI: 10.1093/femsre/fux017] [Cited by in Crossref: 111] [Cited by in F6Publishing: 114] [Article Influence: 22.2] [Reference Citation Analysis]
10 Cui Y, Jiang X, Hao M, Qu X, Hu T. New advances in exopolysaccharides production of Streptococcus thermophilus. Arch Microbiol 2017;199:799-809. [PMID: 28357474 DOI: 10.1007/s00203-017-1366-1] [Cited by in Crossref: 22] [Cited by in F6Publishing: 27] [Article Influence: 4.4] [Reference Citation Analysis]
11 Ale EC, Perezlindo MJ, Pavón Y, Peralta GH, Costa S, Sabbag N, Bergamini C, Reinheimer JA, Binetti AG. Technological, rheological and sensory characterizations of a yogurt containing an exopolysaccharide extract from Lactobacillus fermentum Lf2, a new food additive. Food Res Int 2016;90:259-67. [PMID: 29195880 DOI: 10.1016/j.foodres.2016.10.045] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 5.2] [Reference Citation Analysis]
12 Li D, Li J, Zhao F, Wang G, Qin Q, Hao Y. The influence of fermentation condition on production and molecular mass of EPS produced by Streptococcus thermophilus 05-34 in milk-based medium. Food Chemistry 2016;197:367-72. [DOI: 10.1016/j.foodchem.2015.10.129] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 4.2] [Reference Citation Analysis]
13 Chen Z, Shi J, Yang X, Liu Y, Nan B, Wang Z. Isolation of exopolysaccharide-producing bacteria and yeasts from Tibetan kefir and characterisation of the exopolysaccharides. Int J Dairy Technol 2016;69:410-7. [DOI: 10.1111/1471-0307.12276] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
14 Mende S, Rohm H, Jaros D. Influence of exopolysaccharides on the structure, texture, stability and sensory properties of yoghurt and related products. International Dairy Journal 2016;52:57-71. [DOI: 10.1016/j.idairyj.2015.08.002] [Cited by in Crossref: 93] [Cited by in F6Publishing: 73] [Article Influence: 15.5] [Reference Citation Analysis]
15 Chen Z, Shi J, Yang X, Nan B, Liu Y, Wang Z. Chemical and physical characteristics and antioxidant activities of the exopolysaccharide produced by Tibetan kefir grains during milk fermentation. International Dairy Journal 2015;43:15-21. [DOI: 10.1016/j.idairyj.2014.10.004] [Cited by in Crossref: 69] [Cited by in F6Publishing: 52] [Article Influence: 9.9] [Reference Citation Analysis]
16 Prasanna P, Grandison A, Charalampopoulos D. Bifidobacteria in milk products: An overview of physiological and biochemical properties, exopolysaccharide production, selection criteria of milk products and health benefits. Food Research International 2014;55:247-62. [DOI: 10.1016/j.foodres.2013.11.013] [Cited by in Crossref: 71] [Cited by in F6Publishing: 45] [Article Influence: 8.9] [Reference Citation Analysis]
17 Prasanna P, Grandison A, Charalampopoulos D. Microbiological, chemical and rheological properties of low fat set yoghurt produced with exopolysaccharide (EPS) producing Bifidobacterium strains. Food Research International 2013;51:15-22. [DOI: 10.1016/j.foodres.2012.11.016] [Cited by in Crossref: 65] [Cited by in F6Publishing: 55] [Article Influence: 7.2] [Reference Citation Analysis]
18 Prasanna P, Bell A, Grandison A, Charalampopoulos D. Emulsifying, rheological and physicochemical properties of exopolysaccharide produced by Bifidobacterium longum subsp. infantis CCUG 52486 and Bifidobacterium infantis NCIMB 702205. Carbohydrate Polymers 2012;90:533-40. [DOI: 10.1016/j.carbpol.2012.05.075] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 4.9] [Reference Citation Analysis]