BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: de Ávila BE, Angsantikul P, Li J, Angel Lopez-Ramirez M, Ramírez-Herrera DE, Thamphiwatana S, Chen C, Delezuk J, Samakapiruk R, Ramez V, Obonyo M, Zhang L, Wang J. Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat Commun 2017;8:272. [PMID: 28814725 DOI: 10.1038/s41467-017-00309-w] [Cited by in Crossref: 230] [Cited by in F6Publishing: 208] [Article Influence: 46.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhang S, Chen J, Lian M, Yang W, Chen X. An engineered, self-propelled nanozyme as reactive oxygen species scavenger. Chemical Engineering Journal 2022;446:136794. [DOI: 10.1016/j.cej.2022.136794] [Reference Citation Analysis]
2 Chen Y, Yan D, Liu R, Lu Y, Zhao D, Deng X, Song J. Green self-propelling swimmer driven by rain droplets. Nano Energy 2022;101:107543. [DOI: 10.1016/j.nanoen.2022.107543] [Reference Citation Analysis]
3 Lei L, Cheng R, Zhou Y, Yang T, Liang B, Wang S, Zhang X, Lin G, Zhou X. Estimating the velocity of chemically-driven Janus colloids considering the anisotropic concentration field. Front Chem 2022;10:973961. [DOI: 10.3389/fchem.2022.973961] [Reference Citation Analysis]
4 Yan G, Solovev AA, Huang G, Cui J, Mei Y. Soft microswimmers: Material capabilities and biomedical applications. Current Opinion in Colloid & Interface Science 2022. [DOI: 10.1016/j.cocis.2022.101609] [Reference Citation Analysis]
5 Li T, Mao C, Shen J, Zhou M. Three laws of design for biomedical micro/nanorobots. Nano Today 2022;45:101560. [DOI: 10.1016/j.nantod.2022.101560] [Reference Citation Analysis]
6 Vuijk HD, Klempahn S, Merlitz H, Sommer J, Sharma A. Active colloidal molecules in activity gradients. Phys Rev E 2022;106. [DOI: 10.1103/physreve.106.014617] [Reference Citation Analysis]
7 Wang Q, Wang Z. Quantitative Analysis of Drag Force for Task-Specific Micromachine at Low Reynolds Numbers. Micromachines 2022;13:1134. [DOI: 10.3390/mi13071134] [Reference Citation Analysis]
8 Yamazoe H, Kurinomaru T, Inagaki A. Potential of the Coordinated Actions of Multiple Protein-Based Micromachines for Medical Applications. ACS Appl Mater Interfaces 2022. [PMID: 35822220 DOI: 10.1021/acsami.2c08223] [Reference Citation Analysis]
9 Gao T, Lin J, Xu L, Guan J. Self-Adaptive Flask-like Nanomotors Based on Fe3O4 Nanoparticles to a Physiological pH. Nanomaterials (Basel) 2022;12:2049. [PMID: 35745388 DOI: 10.3390/nano12122049] [Reference Citation Analysis]
10 Lyu X, Chen J, Liu J, Peng Y, Duan S, Ma X, Wang W. Reversing a Platinum Micromotor by Introducing Platinum Oxide. Angew Chem Int Ed Engl 2022;61:e202201018. [PMID: 35366368 DOI: 10.1002/anie.202201018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Wang D, Chen C, Sun J, Ao H, Xiao W, Ju H, Wu J. Refillable Fuel-Loading Microshell Motors for Persistent Motion in a Fuel-Free Environment. ACS Appl Mater Interfaces 2022. [PMID: 35666913 DOI: 10.1021/acsami.2c05442] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Zhou D, Zhang Z, Qiu B, Zhang D, Xie S, Huang K, Li X. Ultrasound-Activated Persistent Luminescence Imaging and Bacteria-Triggered Drug Release for Helicobacter pylori Infection Theranostics. ACS Appl Mater Interfaces 2022;14:26418-30. [DOI: 10.1021/acsami.2c04683] [Reference Citation Analysis]
13 Li Q, Liu L, Huo H, Su L, Wu Y, Lin H, Ge X, Mu J, Zhang X, Zheng L, Song J. Nanosized Janus AuNR-Pt Motor for Enhancing NIR-II Photoacoustic Imaging of Deep Tumor and Pt2+ Ion-Based Chemotherapy. ACS Nano 2022. [PMID: 35536639 DOI: 10.1021/acsnano.2c00732] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Arqué X, Torres MDT, Patiño T, Boaro A, Sánchez S, de la Fuente-Nunez C. Autonomous Treatment of Bacterial Infections in Vivo Using Antimicrobial Micro- and Nanomotors. ACS Nano 2022. [PMID: 35486889 DOI: 10.1021/acsnano.1c11013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
15 Yamazoe H, Kominami C, Abe H. Superior Adhesion of a Multifunctional Protein-Based Micropatch to Intestinal Tissue by Harnessing the Hydrophobic Effect. Small Methods 2022;:e2200153. [PMID: 35460203 DOI: 10.1002/smtd.202200153] [Reference Citation Analysis]
16 Zhang Y, Zhang Y, Han Y, Gong X. Micro/Nanorobots for Medical Diagnosis and Disease Treatment. Micromachines 2022;13:648. [DOI: 10.3390/mi13050648] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Zhou P, Zhang Y, Zhao C. A photo-crosslinkable stomatocyte nanomotor with excellent stability for repeated autonomous motion. Soft Matter 2022. [PMID: 35416827 DOI: 10.1039/d2sm00216g] [Reference Citation Analysis]
18 Zhou C, Gao C, Wu Y, Si T, Yang M, He Q. Torque-Driven Orientation Motion of Chemotactic Colloidal Motors. Angew Chem Int Ed Engl 2022;61:e202116013. [PMID: 34981604 DOI: 10.1002/anie.202116013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Zhang Z, Wang L, Chan TKF, Chen Z, Ip M, Chan PKS, Sung JJY, Zhang L. Micro-/Nanorobots in Antimicrobial Applications: Recent Progress, Challenges, and Opportunities. Adv Healthc Mater 2022;11:e2101991. [PMID: 34907671 DOI: 10.1002/adhm.202101991] [Reference Citation Analysis]
20 Mena-Giraldo P, Orozco J. Photosensitive Polymeric Janus Micromotor for Enzymatic Activity Protection and Enhanced Substrate Degradation. ACS Appl Mater Interfaces 2022;14:5897-907. [PMID: 34978178 DOI: 10.1021/acsami.1c14663] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
21 Zhang F, Mundaca-Uribe R, Askarinam N, Li Z, Gao W, Zhang L, Wang J. Biomembrane-Functionalized Micromotors: Biocompatible Active Devices for Diverse Biomedical Applications. Adv Mater 2022;34:e2107177. [PMID: 34699649 DOI: 10.1002/adma.202107177] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
22 Khan MJ, Huang W, Akhlaq M, Raza S, Hamadou AH, Yuning G, Sun J, Mao X, Palocci C. Design, Preparation, and Evaluation of Enteric Coating Formulation of HPMC and Eudragit L100 on Carboxylated Agarose Hydrogel by Using Drug Tartrazine. BioMed Research International 2022;2022:1-6. [DOI: 10.1155/2022/1042253] [Reference Citation Analysis]
23 Li Z, Chen B, Lin B, Zhao X, Li Y. Analytical solutions of the forced vibration of Timoshenko micro/nano-beam under axial tensions supported on Winkler–Pasternak foundation. Eur Phys J Plus 2022;137. [DOI: 10.1140/epjp/s13360-022-02360-z] [Reference Citation Analysis]
24 Zhou C, Gao C, Wu Y, Si T, Yang M, He Q. Torque‐Driven Orientation Motion of Chemotactic Colloidal Motors. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202116013] [Reference Citation Analysis]
25 Sridhar V, Podjaski F, Alapan Y, Kröger J, Grunenberg L, Kishore V, Lotsch BV, Sitti M. Light-driven carbon nitride microswimmers with propulsion in biological and ionic media and responsive on-demand drug delivery. Sci Robot 2022;7:eabm1421. [PMID: 35044799 DOI: 10.1126/scirobotics.abm1421] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
26 Rezaei-ghaleh N, Agudo-canalejo J, Griesinger C, Golestanian R. Molecular Diffusivity of Click Reaction Components: The Diffusion Enhancement Question. J Am Chem Soc . [DOI: 10.1021/jacs.1c11754] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
27 Děkanovský L, Li J, Zhou H, Sofer Z, Khezri B. Nano/Microrobots Line Up for Gastrointestinal Tract Diseases: Targeted Delivery, Therapy, and Prevention. Energies 2022;15:426. [DOI: 10.3390/en15020426] [Reference Citation Analysis]
28 Zhang H, Wang L, Li Z, Ji Y, Wu Z, He Q. Biosafety evaluation of dual-responsive neutrobots. J Mater Chem B. [DOI: 10.1039/d2tb00938b] [Reference Citation Analysis]
29 Cai L, Zhao C, Chen H, Fan L, Zhao Y, Qian X, Chai R. Suction-Cup-Inspired Adhesive Micromotors for Drug Delivery. Adv Sci (Weinh) 2022;9:e2103384. [PMID: 34726356 DOI: 10.1002/advs.202103384] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
30 Peng X, Urso M, Pumera M. Photo-Fenton Degradation of Nitroaromatic Explosives by Light-Powered Hematite Microrobots: When Higher Speed Is Not What We Go For. Small Methods 2021;5:e2100617. [PMID: 34927942 DOI: 10.1002/smtd.202100617] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Wang J. Will future microbots be task-specific customized machines or multi-purpose "all in one" vehicles? Nat Commun 2021;12:7125. [PMID: 34880212 DOI: 10.1038/s41467-021-26675-0] [Reference Citation Analysis]
32 Wang D, Guan D, Su J, Zheng X, Hu G. Distinct dynamics of self-propelled bowl-shaped micromotors caused by shape effect: Concave vs convex. Physics of Fluids 2021;33:122004. [DOI: 10.1063/5.0076060] [Reference Citation Analysis]
33 Krishnan N, Fang RH, Zhang L. Engineering of stimuli-responsive self-assembled biomimetic nanoparticles. Adv Drug Deliv Rev 2021;179:114006. [PMID: 34655662 DOI: 10.1016/j.addr.2021.114006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
34 Zhou J, Karshalev E, Mundaca-Uribe R, Esteban-Fernández de Ávila B, Krishnan N, Xiao C, Ventura CJ, Gong H, Zhang Q, Gao W, Fang RH, Wang J, Zhang L. Physical Disruption of Solid Tumors by Immunostimulatory Microrobots Enhances Antitumor Immunity. Adv Mater 2021;33:e2103505. [PMID: 34599770 DOI: 10.1002/adma.202103505] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
35 Choi H, Jeong SH, Kim TY, Yi J, Hahn SK. Bioinspired urease-powered micromotor as an active oral drug delivery carrier in stomach. Bioact Mater 2022;9:54-62. [PMID: 34820555 DOI: 10.1016/j.bioactmat.2021.08.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
36 Mena-Giraldo P, Orozco J. Polymeric Micro/Nanocarriers and Motors for Cargo Transport and Phototriggered Delivery. Polymers (Basel) 2021;13:3920. [PMID: 34833219 DOI: 10.3390/polym13223920] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Jurado-Sánchez B, Campuzano S, Pingarrón JM, Escarpa A. Janus particles and motors: unrivaled devices for mastering (bio)sensing. Mikrochim Acta 2021;188:416. [PMID: 34757512 DOI: 10.1007/s00604-021-05053-z] [Reference Citation Analysis]
38 De Dios Andres P, Ramos-Docampo MA, Qian X, Stingaciu M, Städler B. Locomotion of micromotors in paper chips. Nanoscale 2021;13:17900-11. [PMID: 34679159 DOI: 10.1039/d1nr06221b] [Reference Citation Analysis]
39 Ikram M, Hu F, Peng G, Basharat M, Jabeen N, Pan K, Gao Y. Light-Activated Fuel-Free Janus Metal Organic Framework Colloidal Motors for the Removal of Heavy Metal Ions. ACS Appl Mater Interfaces 2021;13:51799-806. [PMID: 34672198 DOI: 10.1021/acsami.1c16902] [Reference Citation Analysis]
40 Aziz A, Holthof J, Meyer S, Schmidt OG, Medina-Sánchez M. Dual Ultrasound and Photoacoustic Tracking of Magnetically Driven Micromotors: From In Vitro to In Vivo. Adv Healthc Mater 2021;10:e2101077. [PMID: 34382354 DOI: 10.1002/adhm.202101077] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
41 Marczynski M, Kimna C, Lieleg O. Purified mucins in drug delivery research. Adv Drug Deliv Rev 2021;178:113845. [PMID: 34166760 DOI: 10.1016/j.addr.2021.113845] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
42 Ye Y, Tong F, Wang S, Jiang J, Gao J, Liu L, Liu K, Wang F, Wang Z, Ou J, Chen B, Wilson DA, Tu Y, Peng F. Apoptotic Tumor DNA Activated Nanomotor Chemotaxis. Nano Lett 2021;21:8086-94. [PMID: 34559543 DOI: 10.1021/acs.nanolett.1c02441] [Reference Citation Analysis]
43 Zhou R, Hong D, Gao S, Gu Y, Liu X. Electric Field Induced Electrorotation of 2D Perovskite Microplates. Micromachines (Basel) 2021;12:1228. [PMID: 34683279 DOI: 10.3390/mi12101228] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Lu X, Wei Y, Ou H, Zhao C, Shi L, Liu W. Universal Control for Micromotor Swarms with a Hybrid Sonoelectrode. Small 2021;17:e2104516. [PMID: 34608753 DOI: 10.1002/smll.202104516] [Reference Citation Analysis]
45 Yan M, Liang K, Zhao D, Kong B. Core-Shell Structured Micro-Nanomotors: Construction, Shell Functionalization, Applications, and Perspectives. Small 2021;:e2102887. [PMID: 34611979 DOI: 10.1002/smll.202102887] [Reference Citation Analysis]
46 Llacer-Wintle J, Rivas-Dapena A, Chen XZ, Pellicer E, Nelson BJ, Puigmartí-Luis J, Pané S. Biodegradable Small-Scale Swimmers for Biomedical Applications. Adv Mater 2021;33:e2102049. [PMID: 34480388 DOI: 10.1002/adma.202102049] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
47 Mayorga‐burrezo P, Mayorga‐martinez CC, Pumera M. Light‐Driven Micromotors to Dissociate Protein Aggregates That Cause Neurodegenerative Diseases. Adv Funct Materials 2022;32:2106699. [DOI: 10.1002/adfm.202106699] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
48 Wu Y, Fu A, Yossifon G. Micromotor-based localized electroporation and gene transfection of mammalian cells. Proc Natl Acad Sci U S A 2021;118:e2106353118. [PMID: 34531322 DOI: 10.1073/pnas.2106353118] [Reference Citation Analysis]
49 Niu Y, Li J, Gao J, Ouyang X, Cai L, Xu Q. Two-dimensional quantum dots for biological applications. Nano Res 2021;14:3820-39. [DOI: 10.1007/s12274-021-3757-5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Salinas G, Tieriekhov K, Garrigue P, Sojic N, Bouffier L, Kuhn A. Lorentz Force-Driven Autonomous Janus Swimmers. J Am Chem Soc 2021;143:12708-14. [PMID: 34343427 DOI: 10.1021/jacs.1c05589] [Reference Citation Analysis]
51 Dey R, Mukherjee S, Barman S, Haldar J. Macromolecular Nanotherapeutics and Antibiotic Adjuvants to Tackle Bacterial and Fungal Infections. Macromol Biosci 2021;:e2100182. [PMID: 34351064 DOI: 10.1002/mabi.202100182] [Reference Citation Analysis]
52 Wang Z, Hao J, Wang X, Xu J, Yang B. Enhancing directed collective motion of self-propelled particles in confined channel. J Phys Condens Matter 2021;33. [PMID: 34229313 DOI: 10.1088/1361-648X/ac117c] [Reference Citation Analysis]
53 Luo Z, Paunović N, Leroux JC. Physical methods for enhancing drug absorption from the gastrointestinal tract. Adv Drug Deliv Rev 2021;175:113814. [PMID: 34052229 DOI: 10.1016/j.addr.2021.05.024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
54 Serrà A, Limón D, Díaz-Garrido N, Pérez-García L, Gómez E. Assessing the Chemical Stability and Cytotoxicity of Electrodeposited Magnetic Mesoporous Fe-Pt Films for Biomedical Applications. Langmuir 2021;37:8801-10. [PMID: 34264678 DOI: 10.1021/acs.langmuir.1c01141] [Reference Citation Analysis]
55 Xu D, Hu J, Pan X, Sánchez S, Yan X, Ma X. Enzyme-Powered Liquid Metal Nanobots Endowed with Multiple Biomedical Functions. ACS Nano 2021. [PMID: 34181392 DOI: 10.1021/acsnano.1c01573] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 24.0] [Reference Citation Analysis]
56 Lin X, Xu B, Zhao Z, Yang X, Xing Y, You C, Kong Y, Cui J, Zhu L, Lin S, Mei Y. Flying Squirrel-Inspired Motion Control of a Light-Deformed Pt-PAzoMA Micromotor through Drag Force Manipulation. ACS Appl Mater Interfaces 2021;13:30106-17. [PMID: 34143593 DOI: 10.1021/acsami.1c07569] [Reference Citation Analysis]
57 Liu M, Zhao K. Engineering Active Micro and Nanomotors. Micromachines (Basel) 2021;12:687. [PMID: 34208386 DOI: 10.3390/mi12060687] [Reference Citation Analysis]
58 Wan M, Li T, Chen H, Mao C, Shen J. Biosafety, Functionalities, and Applications of Biomedical Micro/nanomotors. Angew Chem Int Ed Engl 2021;60:13158-76. [PMID: 33145879 DOI: 10.1002/anie.202013689] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
59 Mundaca-Uribe R, Karshalev E, Esteban-Fernández de Ávila B, Wei X, Nguyen B, Litvan I, Fang RH, Zhang L, Wang J. A Microstirring Pill Enhances Bioavailability of Orally Administered Drugs. Adv Sci (Weinh) 2021;8:2100389. [PMID: 34194949 DOI: 10.1002/advs.202100389] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
60 Lv J, Xing Y, Xu T, Zhang X, Du X. Advanced micro/nanomotors for enhanced bioadhesion and tissue penetration. Applied Materials Today 2021;23:101034. [DOI: 10.1016/j.apmt.2021.101034] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
61 Pavel IA, Salinas G, Mierzwa M, Arnaboldi S, Garrigue P, Kuhn A. Cooperative Chemotaxis of Magnesium Microswimmers for Corrosion Spotting. Chemphyschem 2021;22:1321-5. [PMID: 33939868 DOI: 10.1002/cphc.202100236] [Reference Citation Analysis]
62 Yuan K, Pacheco M, Jurado-sánchez B, Escarpa A. Design and Control of the Micromotor Swarm Toward Smart Applications. Advanced Intelligent Systems 2021;3:2100002. [DOI: 10.1002/aisy.202100002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
63 Wang L, Meng Z, Chen Y, Zheng Y. Engineering Magnetic Micro/Nanorobots for Versatile Biomedical Applications. Advanced Intelligent Systems 2021;3:2000267. [DOI: 10.1002/aisy.202000267] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
64 Sharan P, Nsamela A, Lesher-Pérez SC, Simmchen J. Microfluidics for Microswimmers: Engineering Novel Swimmers and Constructing Swimming Lanes on the Microscale, a Tutorial Review. Small 2021;17:e2007403. [PMID: 33949106 DOI: 10.1002/smll.202007403] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Deng Q, Zhang L, Lv W, Liu X, Ren J, Qu X. Biological Mediator-Propelled Nanosweeper for Nonpharmaceutical Thrombus Therapy. ACS Nano 2021;15:6604-13. [PMID: 33724000 DOI: 10.1021/acsnano.0c09939] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 17.0] [Reference Citation Analysis]
66 Zhu J, Wang H, Zhang Z. Shape-Tunable Janus Micromotors via Surfactant-Induced Dewetting. Langmuir 2021;37:4964-70. [PMID: 33861610 DOI: 10.1021/acs.langmuir.1c00340] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
67 Wang Z, Fu D, Xie D, Fu S, Wu J, Wang S, Wang F, Ye Y, Tu Y, Peng F. Magnetic Helical Hydrogel Motor for Directing T Cell Chemotaxis. Adv Funct Mater 2021;31:2101648. [DOI: 10.1002/adfm.202101648] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
68 Liu L, Wu J, Wang S, Kun L, Gao J, Chen B, Ye Y, Wang F, Tong F, Jiang J, Ou J, Wilson DA, Tu Y, Peng F. Control the Neural Stem Cell Fate with Biohybrid Piezoelectrical Magnetite Micromotors. Nano Lett 2021;21:3518-26. [PMID: 33848170 DOI: 10.1021/acs.nanolett.1c00290] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
69 Lin Z, Gao C, Wang D, He Q. Bubble‐Propelled Janus Gallium/Zinc Micromotors for the Active Treatment of Bacterial Infections. Angew Chem 2021;133:8832-6. [DOI: 10.1002/ange.202016260] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
70 Fu D, Wang Z, Tu Y, Peng F. Interactions between Biomedical Micro-/Nano-Motors and the Immune Molecules, Immune Cells, and the Immune System: Challenges and Opportunities. Adv Healthc Mater 2021;10:e2001788. [PMID: 33506650 DOI: 10.1002/adhm.202001788] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
71 Vilela D, Blanco-Cabra N, Eguskiza A, Hortelao AC, Torrents E, Sanchez S. Drug-Free Enzyme-Based Bactericidal Nanomotors against Pathogenic Bacteria. ACS Appl Mater Interfaces 2021;13:14964-73. [PMID: 33769023 DOI: 10.1021/acsami.1c00986] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
72 Ji F, Li T, Yu S, Wu Z, Zhang L. Propulsion Gait Analysis and Fluidic Trapping of Swinging Flexible Nanomotors. ACS Nano 2021;15:5118-28. [PMID: 33687190 DOI: 10.1021/acsnano.0c10269] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 16.0] [Reference Citation Analysis]
73 Karshalev E, Silva-Lopez C, Chan K, Yan J, Sandraz E, Gallot M, Nourhani A, Garay J, Wang J. Swimmers Heal on the Move Following Catastrophic Damage. Nano Lett 2021;21:2240-7. [PMID: 33617270 DOI: 10.1021/acs.nanolett.0c05061] [Reference Citation Analysis]
74 Lin Z, Gao C, Wang D, He Q. Bubble‐Propelled Janus Gallium/Zinc Micromotors for the Active Treatment of Bacterial Infections. Angew Chem Int Ed 2021;60:8750-4. [DOI: 10.1002/anie.202016260] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
75 Li J, Pumera M. 3D printing of functional microrobots. Chem Soc Rev 2021;50:2794-838. [PMID: 33470252 DOI: 10.1039/d0cs01062f] [Cited by in Crossref: 16] [Cited by in F6Publishing: 2] [Article Influence: 16.0] [Reference Citation Analysis]
76 Qiao C, Yang D, Mao X, Xie L, Gong L, Peng X, Peng Q, Wang T, Zhang H, Zeng H. Recent advances in bubble-based technologies: Underlying interaction mechanisms and applications. Applied Physics Reviews 2021;8:011315. [DOI: 10.1063/5.0040331] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
77 Yuan K, Jurado-Sánchez B, Escarpa A. Dual-Propelled Lanbiotic Based Janus Micromotors for Selective Inactivation of Bacterial Biofilms. Angew Chem Int Ed Engl 2021;60:4915-24. [PMID: 33216439 DOI: 10.1002/anie.202011617] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
78 Wu Y, Song Z, Deng G, Jiang K, Wang H, Zhang X, Han H. Gastric Acid Powered Nanomotors Release Antibiotics for In Vivo Treatment of Helicobacter pylori Infection. Small 2021;17:e2006877. [PMID: 33619851 DOI: 10.1002/smll.202006877] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
79 Mallick A, Paul S, Ben T, Qiu S, Verpoort F, Roy S. Direct realization of an Operando Systems Chemistry Algorithm (OSCAL) for powering nanomotors. Nanoscale 2021;13:3543-51. [PMID: 33514988 DOI: 10.1039/d0nr06849g] [Reference Citation Analysis]
80 Wan M, Li T, Chen H, Mao C, Shen J. Biosafety, Functionalities, and Applications of Biomedical Micro/nanomotors. Angew Chem 2021;133:13266-84. [DOI: 10.1002/ange.202013689] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
81 Cao HX, Jung D, Lee HS, Go G, Nan M, Choi E, Kim CS, Park JO, Kang B. Micromotor Manipulation Using Ultrasonic Active Traveling Waves. Micromachines (Basel) 2021;12:192. [PMID: 33668512 DOI: 10.3390/mi12020192] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
82 Dong RY, Granick S. Reincarnations of the phase separation problem. Nat Commun 2021;12:911. [PMID: 33568631 DOI: 10.1038/s41467-020-20360-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
83 Wang H, Xu B, Zhang Y, Kollipara PS, Liu S, Lin L, Chen Q, Zheng Y, Sun H. Light-Driven Magnetic Encoding for Hybrid Magnetic Micromachines. Nano Lett 2021;21:1628-35. [DOI: 10.1021/acs.nanolett.0c04165] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
84 Wang S, Liu K, Zhou Q, Xu C, Gao J, Wang Z, Wang F, Chen B, Ye Y, Ou J, Jiang J, Wilson DA, Liu S, Peng F, Tu Y. Hydrogen‐Powered Microswimmers for Precise and Active Hydrogen Therapy Towards Acute Ischemic Stroke. Adv Funct Mater 2021;31:2009475. [DOI: 10.1002/adfm.202009475] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
85 Cai X, Xu Y, Zhao L, Xu J, Li S, Wen C, Xia X, Dong Q, Hu X, Wang X, Chen L, Chen Z, Tan W. In situ pepsin-assisted needle assembly of magnetic-graphitic-nanocapsules for enhanced gastric retention and mucus penetration. Nano Today 2021;36:101032. [DOI: 10.1016/j.nantod.2020.101032] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
86 Gao C, Wang Y, Ye Z, Lin Z, Ma X, He Q. Biomedical Micro-/Nanomotors: From Overcoming Biological Barriers to In Vivo Imaging. Adv Mater 2021;33:e2000512. [PMID: 32578282 DOI: 10.1002/adma.202000512] [Cited by in Crossref: 71] [Cited by in F6Publishing: 56] [Article Influence: 71.0] [Reference Citation Analysis]
87 Ghosh A, Liu Y, Artemov D, Gracias DH. Magnetic Resonance Guided Navigation of Untethered Microgrippers. Adv Healthc Mater 2021;10:e2000869. [PMID: 32691952 DOI: 10.1002/adhm.202000869] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
88 Wang D, Gao C, Si T, Li Z, Guo B, He Q. Near-infrared light propelled motion of needlelike liquid metal nanoswimmers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;611:125865. [DOI: 10.1016/j.colsurfa.2020.125865] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
89 Liu W, Wang W, Ju X, Liu Z, Xie R, Chu L. Functional microparticles from multiscale regulation of multiphase emulsions for mass-transfer intensification. Chemical Engineering Science 2021;231:116242. [DOI: 10.1016/j.ces.2020.116242] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
90 Zhang J, Chen Z, Kankala RK, Wang SB, Chen AZ. Self-propelling micro-/nano-motors: Mechanisms, applications, and challenges in drug delivery. Int J Pharm 2021;596:120275. [PMID: 33508344 DOI: 10.1016/j.ijpharm.2021.120275] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
91 Somasundar A, Sen A. Chemically Propelled Nano and Micromotors in the Body: Quo Vadis? Small 2021;17:2007102. [DOI: 10.1002/smll.202007102] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
92 Saw WS, Anasamy T, Foo YY, Kwa YC, Kue CS, Yeong CH, Kiew LV, Lee HB, Chung LY. Delivery of Nanoconstructs in Cancer Therapy: Challenges and Therapeutic Opportunities. Adv Therap 2021;4:2000206. [DOI: 10.1002/adtp.202000206] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
93 Yan X, Zhou Q, Vincent M, Deng Y, Yu J, Xu J, Xu T, Tang T, Bian L, Wang YJ, Kostarelos K, Zhang L. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci Robot 2017;2:eaaq1155. [PMID: 33157904 DOI: 10.1126/scirobotics.aaq1155] [Cited by in Crossref: 283] [Cited by in F6Publishing: 171] [Article Influence: 283.0] [Reference Citation Analysis]
94 Ahmed D, Sukhov A, Hauri D, Rodrigue D, Gian M, Harting J, Nelson B. Bio-inspired Acousto-magnetic Microswarm Robots with Upstream Motility. Nat Mach Intell 2021;3:116-24. [PMID: 34258513 DOI: 10.1038/s42256-020-00275-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
95 Yuan K, Jurado‐sánchez B, Escarpa A. Dual‐Propelled Lanbiotic Based Janus Micromotors for Selective Inactivation of Bacterial Biofilms. Angew Chem 2021;133:4965-74. [DOI: 10.1002/ange.202011617] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
96 Wang W, Zhou C. A Journey of Nanomotors for Targeted Cancer Therapy: Principles, Challenges, and a Critical Review of the State-of-the-Art. Adv Healthc Mater 2021;10:e2001236. [PMID: 33111501 DOI: 10.1002/adhm.202001236] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 21.0] [Reference Citation Analysis]
97 Hou K, Zhang Y, Bao M, Liu Y, Wang J, Xin C, Wei Z, Zhang H, Wu Z, Wang Z. Biosafety of micro/nanomotors towards medical application. Mater Adv 2021;2:3441-58. [DOI: 10.1039/d1ma00174d] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
98 Cai L, Xu D, Chen H, Wang L, Zhao Y. Designing bioactive micro-/nanomotors for engineered regeneration. Engineered Regeneration 2021;2:109-15. [DOI: 10.1016/j.engreg.2021.09.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
99 Wang B, Kostarelos K, Nelson BJ, Zhang L. Trends in Micro-/Nanorobotics: Materials Development, Actuation, Localization, and System Integration for Biomedical Applications. Adv Mater 2021;33:e2002047. [PMID: 33617105 DOI: 10.1002/adma.202002047] [Cited by in Crossref: 82] [Cited by in F6Publishing: 61] [Article Influence: 82.0] [Reference Citation Analysis]
100 Wang Z, Wang S, Liu K, Fu D, Ye Y, Gao J, Liu L, Wilson DA, Tu Y, Peng F. Water powered and anti-CD3 loaded mg micromotor for t cell activation. Applied Materials Today 2020;21:100839. [DOI: 10.1016/j.apmt.2020.100839] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
101 Gunduz S, Albadawi H, Oklu R. Robotic Devices for Minimally Invasive Endovascular Interventions: A New Dawn for Interventional Radiology. Advanced Intelligent Systems 2021;3:2000181. [DOI: 10.1002/aisy.202000181] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
102 Schmidt CK, Medina-Sánchez M, Edmondson RJ, Schmidt OG. Engineering microrobots for targeted cancer therapies from a medical perspective. Nat Commun 2020;11:5618. [PMID: 33154372 DOI: 10.1038/s41467-020-19322-7] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 14.5] [Reference Citation Analysis]
103 Soto F, Wang J, Ahmed R, Demirci U. Medical Micro/Nanorobots in Precision Medicine. Adv Sci (Weinh) 2020;7:2002203. [PMID: 33173743 DOI: 10.1002/advs.202002203] [Cited by in Crossref: 59] [Cited by in F6Publishing: 44] [Article Influence: 29.5] [Reference Citation Analysis]
104 Agrahari V, Agrahari V, Chou M, Chew CH, Noll J, Burnouf T. Intelligent micro-/nanorobots as drug and cell carrier devices for biomedical therapeutic advancement: Promising development opportunities and translational challenges. Biomaterials 2020;260:120163. [DOI: 10.1016/j.biomaterials.2020.120163] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
105 Zhao H, Ye H, Zhou J, Tang G, Hou Z, Bai H. Montmorillonite-Enveloped Zeolitic Imidazolate Framework as a Nourishing Oral Nano-Platform for Gastrointestinal Drug Delivery. ACS Appl Mater Interfaces 2020;12:49431-41. [PMID: 33089977 DOI: 10.1021/acsami.0c15494] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
106 Unbehau R, Luthringer-Feyerabend BJC, Willumeit-Römer R. The impact of brain cell metabolism and extracellular matrix on magnesium degradation. Acta Biomater 2020;116:426-37. [PMID: 32890748 DOI: 10.1016/j.actbio.2020.08.043] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
107 Guo Z, Liu J, Wang D, Xu J, Liang K. Biofriendly micro/nanomotors operating on biocatalysis: from natural to biological environments. Biophys Rep 2020;6:179-92. [DOI: 10.1007/s41048-020-00119-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
108 Yuan K, Bujalance-Fernández J, Jurado-Sánchez B, Escarpa A. Light-driven nanomotors and micromotors: envisioning new analytical possibilities for bio-sensing. Mikrochim Acta 2020;187:581. [PMID: 32979095 DOI: 10.1007/s00604-020-04541-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
109 Chen L, Gruzinskyte L, Jørgensen SL, Boisen A, Srivastava SK. An Ingestible Self-Polymerizing System for Targeted Sampling of Gut Microbiota and Biomarkers. ACS Nano 2020;14:12072-81. [PMID: 32830478 DOI: 10.1021/acsnano.0c05426] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
110 Cui W, Mu L, Duan X, Pang W, Reed MA. Trapping of sub-100 nm nanoparticles using gigahertz acoustofluidic tweezers for biosensing applications. Nanoscale 2019;11:14625-34. [PMID: 31240289 DOI: 10.1039/c9nr03529j] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 6.5] [Reference Citation Analysis]
111 Kompella UB, Hartman RR, Patil MA. Extraocular, periocular, and intraocular routes for sustained drug delivery for glaucoma. Prog Retin Eye Res 2021;82:100901. [PMID: 32891866 DOI: 10.1016/j.preteyeres.2020.100901] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
112 Liu K, Ou J, Wang S, Gao J, Liu L, Ye Y, Wilson DA, Hu Y, Peng F, Tu Y. Magnesium-based micromotors for enhanced active and synergistic hydrogen chemotherapy. Applied Materials Today 2020;20:100694. [DOI: 10.1016/j.apmt.2020.100694] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 7.5] [Reference Citation Analysis]
113 Venugopalan PL, Esteban-Fernández de Ávila B, Pal M, Ghosh A, Wang J. Fantastic Voyage of Nanomotors into the Cell. ACS Nano 2020;14:9423-39. [PMID: 32701260 DOI: 10.1021/acsnano.0c05217] [Cited by in Crossref: 70] [Cited by in F6Publishing: 58] [Article Influence: 35.0] [Reference Citation Analysis]
114 Tezel G, Timur SS, Kuralay F, Gürsoy RN, Ulubayram K, Öner L, Eroğlu H. Current status of micro/nanomotors in drug delivery. J Drug Target 2021;29:29-45. [PMID: 32672079 DOI: 10.1080/1061186X.2020.1797052] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
115 Xiong K, Xu L, Lin J, Mou F, Guan J. Mg-Based Micromotors with Motion Responsive to Dual Stimuli. Research (Wash D C) 2020;2020:6213981. [PMID: 32832907 DOI: 10.34133/2020/6213981] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
116 Shao J, Cao S, Williams DS, Abdelmohsen LKEA, Hest JCM. Photoactivated Polymersome Nanomotors: Traversing Biological Barriers. Angew Chem 2020;132:17066-73. [DOI: 10.1002/ange.202003748] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
117 Shao J, Cao S, Williams DS, Abdelmohsen LKEA, van Hest JCM. Photoactivated Polymersome Nanomotors: Traversing Biological Barriers. Angew Chem Int Ed Engl 2020;59:16918-25. [PMID: 32533754 DOI: 10.1002/anie.202003748] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 8.5] [Reference Citation Analysis]
118 Ahadian S, Finbloom JA, Mofidfar M, Diltemiz SE, Nasrollahi F, Davoodi E, Hosseini V, Mylonaki I, Sangabathuni S, Montazerian H, Fetah K, Nasiri R, Dokmeci MR, Stevens MM, Desai TA, Khademhosseini A. Micro and nanoscale technologies in oral drug delivery. Adv Drug Deliv Rev 2020;157:37-62. [PMID: 32707147 DOI: 10.1016/j.addr.2020.07.012] [Cited by in Crossref: 42] [Cited by in F6Publishing: 31] [Article Influence: 21.0] [Reference Citation Analysis]
119 van Moolenbroek GT, Patiño T, Llop J, Sánchez S. Engineering Intelligent Nanosystems for Enhanced Medical Imaging. Advanced Intelligent Systems 2020;2:2000087. [DOI: 10.1002/aisy.202000087] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
120 Liu W, Chen X, Lu X, Wang J, Zhang Y, Gu Z. From Passive Inorganic Oxides to Active Matters of Micro/Nanomotors. Adv Funct Mater 2020;30:2003195. [DOI: 10.1002/adfm.202003195] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
121 Hu M, Ge X, Chen X, Mao W, Qian X, Yuan WE. Micro/Nanorobot: A Promising Targeted Drug Delivery System. Pharmaceutics 2020;12:E665. [PMID: 32679772 DOI: 10.3390/pharmaceutics12070665] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
122 Salinas G, Dauphin AL, Voci S, Bouffier L, Sojic N, Kuhn A. Asymmetry controlled dynamic behavior of autonomous chemiluminescent Janus microswimmers. Chem Sci 2020;11:7438-43. [PMID: 34123025 DOI: 10.1039/d0sc02431g] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 4.5] [Reference Citation Analysis]
123 Angsantikul P, Peng K, Curreri AM, Chua Y, Chen KZ, Ehondor J, Mitragotri S. Ionic Liquids and Deep Eutectic Solvents for Enhanced Delivery of Antibodies in the Gastrointestinal Tract. Adv Funct Mater 2021;31:2002912. [DOI: 10.1002/adfm.202002912] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 10.5] [Reference Citation Analysis]
124 Wu Z, Chen Y, Mukasa D, Pak OS, Gao W. Medical micro/nanorobots in complex media. Chem Soc Rev 2020;49:8088-112. [PMID: 32596700 DOI: 10.1039/d0cs00309c] [Cited by in Crossref: 33] [Cited by in F6Publishing: 6] [Article Influence: 16.5] [Reference Citation Analysis]
125 Wang D, Gao C, Zhou C, Lin Z, He Q. Leukocyte Membrane-Coated Liquid Metal Nanoswimmers for Actively Targeted Delivery and Synergistic Chemophotothermal Therapy. Research (Wash D C) 2020;2020:3676954. [PMID: 32676586 DOI: 10.34133/2020/3676954] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
126 Choi H, Cho SH, Hahn SK. Urease-Powered Polydopamine Nanomotors for Intravesical Therapy of Bladder Diseases. ACS Nano 2020;14:6683-92. [PMID: 32491832 DOI: 10.1021/acsnano.9b09726] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 16.5] [Reference Citation Analysis]
127 Yang H, Fan FR, Xi Y, Wu W. Bio‐Derived Natural Materials Based Triboelectric Devices for Self‐Powered Ubiquitous Wearable and Implantable Intelligent Devices. Adv Sustainable Syst 2020;4:2000108. [DOI: 10.1002/adsu.202000108] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
128 Yuan K, de la Asunción-Nadal V, Li Y, Jurado-Sánchez B, Escarpa A. Graphdiyne Micromotors in Living Biomedia. Chemistry 2020;26:8471-7. [PMID: 32293079 DOI: 10.1002/chem.202001754] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
129 Tang S, Zhang F, Gong H, Wei F, Zhuang J, Karshalev E, Esteban-fernández de Ávila B, Huang C, Zhou Z, Li Z, Yin L, Dong H, Fang RH, Zhang X, Zhang L, Wang J. Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Sci Robot 2020;5:eaba6137. [DOI: 10.1126/scirobotics.aba6137] [Cited by in Crossref: 58] [Cited by in F6Publishing: 40] [Article Influence: 29.0] [Reference Citation Analysis]
130 Jin Q, Yang Y, Jackson JA, Yoon C, Gracias DH. Untethered Single Cell Grippers for Active Biopsy. Nano Lett 2020;20:5383-90. [PMID: 32463679 DOI: 10.1021/acs.nanolett.0c01729] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
131 Ai X, Wang S, Duan Y, Zhang Q, Chen MS, Gao W, Zhang L. Emerging Approaches to Functionalizing Cell Membrane-Coated Nanoparticles. Biochemistry 2021;60:941-55. [PMID: 32452667 DOI: 10.1021/acs.biochem.0c00343] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
132 Kadiri VM, Bussi C, Holle AW, Son K, Kwon H, Schütz G, Gutierrez MG, Fischer P. Biocompatible Magnetic Micro- and Nanodevices: Fabrication of FePt Nanopropellers and Cell Transfection. Adv Mater 2020;32:e2001114. [PMID: 32378269 DOI: 10.1002/adma.202001114] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 22.0] [Reference Citation Analysis]
133 Esteban-Fernández de Ávila B, Lopez-Ramirez MA, Mundaca-Uribe R, Wei X, Ramírez-Herrera DE, Karshalev E, Nguyen B, Fang RH, Zhang L, Wang J. Multicompartment Tubular Micromotors Toward Enhanced Localized Active Delivery. Adv Mater 2020;32:e2000091. [PMID: 32419239 DOI: 10.1002/adma.202000091] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 22.0] [Reference Citation Analysis]
134 Matteis V, Rizzello L, Cascione M, Liatsi-Douvitsa E, Apriceno A. Green Plasmonic Nanoparticles and Bio-Inspired Stimuli-Responsive Vesicles in Cancer Therapy Application. Nanomaterials (Basel) 2020;10:E1083. [PMID: 32486479 DOI: 10.3390/nano10061083] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
135 Lin X, Zhu H, Zhao Z, You C, Kong Y, Zhao Y, Liu J, Chen H, Shi X, Makarov D, Mei Y. Hydrogel‐Based Janus Micromotors Capped with Functional Nanoparticles for Environmental Applications. Adv Mater Technol 2020;5:2000279. [DOI: 10.1002/admt.202000279] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
136 Striggow F, Medina-Sánchez M, Auernhammer GK, Magdanz V, Friedrich BM, Schmidt OG. Sperm-Driven Micromotors Moving in Oviduct Fluid and Viscoelastic Media. Small 2020;16:e2000213. [PMID: 32431083 DOI: 10.1002/smll.202000213] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 10.0] [Reference Citation Analysis]
137 Souza MPC, Sábio RM, Ribeiro TC, Santos AMD, Meneguin AB, Chorilli M. Highlighting the impact of chitosan on the development of gastroretentive drug delivery systems. Int J Biol Macromol 2020;159:804-22. [PMID: 32425271 DOI: 10.1016/j.ijbiomac.2020.05.104] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
138 Mandsberg NK, Christfort JF, Kamguyan K, Boisen A, Srivastava SK. Orally ingestible medical devices for gut engineering. Adv Drug Deliv Rev 2020;165-166:142-54. [PMID: 32416112 DOI: 10.1016/j.addr.2020.05.004] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
139 Ji X, Fang P, Xu B, Xie K, Yue H, Luo X, Wang Z, Zhao X, Shi P. Biohybrid Triboelectric Nanogenerator for Label-Free Pharmacological Fingerprinting in Cardiomyocytes. Nano Lett 2020;20:4043-50. [PMID: 32338928 DOI: 10.1021/acs.nanolett.0c01584] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
140 Li D, Liu C, Yang Y, Wang L, Shen Y. Micro-rocket robot with all-optic actuating and tracking in blood. Light Sci Appl 2020;9:84. [PMID: 32411369 DOI: 10.1038/s41377-020-0323-y] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
141 Sun M, Liu Q, Fan X, Wang Y, Chen W, Tian C, Sun L, Xie H. Autonomous Biohybrid Urchin-Like Microperforator for Intracellular Payload Delivery. Small 2020;16:e1906701. [PMID: 32378351 DOI: 10.1002/smll.201906701] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
142 Báez DF, Ramos G, Corvalán A, Cordero ML, Bollo S, Kogan MJ. Effects of preparation on catalytic, magnetic and hybrid micromotors on their functional features and application in gastric cancer biomarker detection. Sensors and Actuators B: Chemical 2020;310:127843. [DOI: 10.1016/j.snb.2020.127843] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
143 Wang C, Fernández de Ávila BE, Mundaca-Uribe R, Lopez-Ramirez MA, Ramírez-Herrera DE, Shukla S, Steinmetz NF, Wang J. Active Delivery of VLPs Promotes Anti-Tumor Activity in a Mouse Ovarian Tumor Model. Small 2020;16:e1907150. [PMID: 32329580 DOI: 10.1002/smll.201907150] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 7.5] [Reference Citation Analysis]
144 Nguyen HV, Faivre V. Targeted drug delivery therapies inspired by natural taxes. Journal of Controlled Release 2020;322:439-56. [DOI: 10.1016/j.jconrel.2020.04.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
145 Liu M, Tu B, Liu L, Chen B, Tu Y. [Application of self-propelled micro-/nanomotors in active targeted drug delivery]. Nan Fang Yi Ke Da Xue Xue Bao 2020;40:445-52. [PMID: 32376586 DOI: 10.12122/j.issn.1673-4254.2020.03.25] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
146 Wang Z, Tu Y, Chen Y, Peng F. Emerging Micro/Nanomotor‐Based Platforms for Biomedical Therapy. Advanced Intelligent Systems 2020;2:1900081. [DOI: 10.1002/aisy.201900081] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
147 Xie L, Pang X, Yan X, Dai Q, Lin H, Ye J, Cheng Y, Zhao Q, Ma X, Zhang X, Liu G, Chen X. Photoacoustic Imaging-Trackable Magnetic Microswimmers for Pathogenic Bacterial Infection Treatment. ACS Nano 2020;14:2880-93. [PMID: 32125820 DOI: 10.1021/acsnano.9b06731] [Cited by in Crossref: 72] [Cited by in F6Publishing: 60] [Article Influence: 36.0] [Reference Citation Analysis]
148 Wang J, Xiong Z, Liu M, Li XM, Zheng J, Zhan X, Ding W, Chen J, Li X, Li XD, Feng SP, Tang J. Rational Design of Reversible Redox Shuttle for Highly Efficient Light-Driven Microswimmer. ACS Nano 2020;14:3272-80. [PMID: 32125822 DOI: 10.1021/acsnano.9b08799] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
149 Mitra S, Roy N, Maity S, Bandyopadhyay D. Multimodal chemo-/magneto-/phototaxis of 3G CNT-bots to power fuel cells. Microsyst Nanoeng 2020;6:19. [PMID: 34567634 DOI: 10.1038/s41378-019-0122-x] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
150 Andhari SS, Wavhale RD, Dhobale KD, Tawade BV, Chate GP, Patil YN, Khandare JJ, Banerjee SS. Self-Propelling Targeted Magneto-Nanobots for Deep Tumor Penetration and pH-Responsive Intracellular Drug Delivery. Sci Rep 2020;10:4703. [PMID: 32170128 DOI: 10.1038/s41598-020-61586-y] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 7.5] [Reference Citation Analysis]
151 Ou J, Liu K, Jiang J, Wilson DA, Liu L, Wang F, Wang S, Tu Y, Peng F. Micro-/Nanomotors toward Biomedical Applications: The Recent Progress in Biocompatibility. Small 2020;16:e1906184. [PMID: 32130759 DOI: 10.1002/smll.201906184] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 15.5] [Reference Citation Analysis]
152 Pal M, Dasgupta D, Somalwar N, Vr R, Tiwari M, Teja D, Narayana SM, Katke A, Rs J, Bhat R, Saini DK, Ghosh A. Helical nanobots as mechanical probes of intra- and extracellular environments. J Phys : Condens Matter 2020;32:224001. [DOI: 10.1088/1361-648x/ab6f89] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
153 Zhong D, Li W, Qi Y, He J, Zhou M. Photosynthetic Biohybrid Nanoswimmers System to Alleviate Tumor Hypoxia for FL/PA/MR Imaging‐Guided Enhanced Radio‐Photodynamic Synergetic Therapy. Adv Funct Mater 2020;30:1910395. [DOI: 10.1002/adfm.201910395] [Cited by in Crossref: 40] [Cited by in F6Publishing: 29] [Article Influence: 20.0] [Reference Citation Analysis]
154 Dong M, Wang X, Chen X, Mushtaq F, Deng S, Zhu C, Torlakcik H, Terzopoulou A, Qin X, Xiao X, Puigmartí‐luis J, Choi H, Pêgo AP, Shen Q, Nelson BJ, Pané S. 3D‐Printed Soft Magnetoelectric Microswimmers for Delivery and Differentiation of Neuron‐Like Cells. Adv Funct Mater 2020;30:1910323. [DOI: 10.1002/adfm.201910323] [Cited by in Crossref: 79] [Cited by in F6Publishing: 41] [Article Influence: 39.5] [Reference Citation Analysis]
155 Ghosh A, Xu W, Gupta N, Gracias DH. Active matter therapeutics. Nano Today 2020;31:100836. [PMID: 32346389 DOI: 10.1016/j.nantod.2019.100836] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 9.5] [Reference Citation Analysis]
156 Mazur F, Fernández-medina M, Gal N, Hovorka O, Chandrawati R, Städler B. Locomotion of Micromotors Due to Liposome Disintegration. Langmuir 2020;36:7056-65. [DOI: 10.1021/acs.langmuir.9b03509] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
157 Nourhani A, Karshalev E, Soto F, Wang J. Multigear Bubble Propulsion of Transient Micromotors. Research (Wash D C) 2020;2020:7823615. [PMID: 32266331 DOI: 10.34133/2020/7823615] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
158 Luo M, Li S, Wan J, Yang C, Chen B, Guan J. Enhanced Propulsion of Urease-Powered Micromotors by Multilayered Assembly of Ureases on Janus Magnetic Microparticles. Langmuir 2020;36. [DOI: 10.1021/acs.langmuir.9b03315] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
159 Aghakhani A, Yasa O, Wrede P, Sitti M. Acoustically powered surface-slipping mobile microrobots. Proc Natl Acad Sci U S A 2020;117:3469-77. [PMID: 32015114 DOI: 10.1073/pnas.1920099117] [Cited by in Crossref: 39] [Cited by in F6Publishing: 24] [Article Influence: 19.5] [Reference Citation Analysis]
160 Hu C, Bai Y, Hou M, Wang Y, Wang L, Cao X, Chan CW, Sun H, Li W, Ge J, Ren K. Defect-induced activity enhancement of enzyme-encapsulated metal-organic frameworks revealed in microfluidic gradient mixing synthesis. Sci Adv 2020;6:eaax5785. [PMID: 32064336 DOI: 10.1126/sciadv.aax5785] [Cited by in Crossref: 49] [Cited by in F6Publishing: 34] [Article Influence: 24.5] [Reference Citation Analysis]
161 Xu J, Liu N, Wu D, Gao Z, Song YY, Schmuki P. Upconversion Nanoparticle-Assisted Payload Delivery from TiO2 under Near-Infrared Light Irradiation for Bacterial Inactivation. ACS Nano 2020;14:337-46. [PMID: 31841305 DOI: 10.1021/acsnano.9b05386] [Cited by in Crossref: 49] [Cited by in F6Publishing: 32] [Article Influence: 24.5] [Reference Citation Analysis]
162 Wang S, Liu X, Wang Y, Xu D, Liang C, Guo J, Ma X. Biocompatibility of artificial micro/nanomotors for use in biomedicine. Nanoscale 2019;11:14099-112. [PMID: 31214671 DOI: 10.1039/c9nr03393a] [Cited by in Crossref: 34] [Cited by in F6Publishing: 7] [Article Influence: 17.0] [Reference Citation Analysis]
163 Fernández‐medina M, Ramos‐docampo MA, Hovorka O, Salgueiriño V, Städler B. Recent Advances in Nano‐ and Micromotors. Adv Funct Mater 2020;30:1908283. [DOI: 10.1002/adfm.201908283] [Cited by in Crossref: 66] [Cited by in F6Publishing: 53] [Article Influence: 33.0] [Reference Citation Analysis]
164 Lopez-Ramirez MA, Soto F, Wang C, Rueda R, Shukla S, Silva-Lopez C, Kupor D, McBride DA, Pokorski JK, Nourhani A, Steinmetz NF, Shah NJ, Wang J. Built-In Active Microneedle Patch with Enhanced Autonomous Drug Delivery. Adv Mater 2020;32:e1905740. [PMID: 31682039 DOI: 10.1002/adma.201905740] [Cited by in Crossref: 86] [Cited by in F6Publishing: 75] [Article Influence: 43.0] [Reference Citation Analysis]
165 Zhu H, Huang J, Chen H, Feng X. MOF-derived magnetic Co@porous carbon as a direction-controlled micromotor for drug delivery. New J Chem 2020;44:21085-91. [DOI: 10.1039/d0nj04957c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
166 Paryab A, Madaah Hosseini HR, Abedini F, Dabbagh A. Synthesis of magnesium-based Janus micromotors capable of magnetic navigation and antibiotic drug incorporation. New J Chem 2020;44:6947-57. [DOI: 10.1039/d0nj00537a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
167 Liu H, Li M, Liu S, Jia P, Guo X, Feng S, Lu TJ, Yang H, Li F, Xu F. Spatially modulated stiffness on hydrogels for soft and stretchable integrated electronics. Mater Horiz 2020;7:203-13. [DOI: 10.1039/c9mh01211g] [Cited by in Crossref: 27] [Article Influence: 13.5] [Reference Citation Analysis]
168 Kurinomaru T, Inagaki A, Hoshi M, Nakamura C, Yamazoe H. Protein microswimmers capable of delivering cells for tissue engineering applications. Mater Horiz 2020;7:877-84. [DOI: 10.1039/c9mh01799b] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
169 Yuan K, Jiang Z, Jurado-Sánchez B, Escarpa A. Nano/Micromotors for Diagnosis and Therapy of Cancer and Infectious Diseases. Chemistry 2020;26:2309-26. [PMID: 31682040 DOI: 10.1002/chem.201903475] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
170 Yu J, Jin D, Chan KF, Wang Q, Yuan K, Zhang L. Active generation and magnetic actuation of microrobotic swarms in bio-fluids. Nat Commun 2019;10:5631. [PMID: 31822669 DOI: 10.1038/s41467-019-13576-6] [Cited by in Crossref: 45] [Cited by in F6Publishing: 36] [Article Influence: 15.0] [Reference Citation Analysis]
171 Wolff N, Ciobanu V, Enachi M, Kamp M, Braniste T, Duppel V, Shree S, Raevschi S, Medina-Sánchez M, Adelung R, Schmidt OG, Kienle L, Tiginyanu I. Advanced Hybrid GaN/ZnO Nanoarchitectured Microtubes for Fluorescent Micromotors Driven by UV Light. Small 2020;16:e1905141. [PMID: 31814275 DOI: 10.1002/smll.201905141] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
172 Du XY, Li Q, Wu G, Chen S. Multifunctional Micro/Nanoscale Fibers Based on Microfluidic Spinning Technology. Adv Mater 2019;31:e1903733. [PMID: 31573714 DOI: 10.1002/adma.201903733] [Cited by in Crossref: 77] [Cited by in F6Publishing: 56] [Article Influence: 25.7] [Reference Citation Analysis]
173 Jayhooni SMH, Short M, Assadsangabi B, Hohert G, Du C, Zeng H, Takahata K. Side‐Viewing Endoscopic Raman Spectroscopy for Angle‐Resolved Analysis of Luminal Organs. Adv Mater Technol 2019;4:1900364. [DOI: 10.1002/admt.201900364] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
174 Zhan X, Zheng J, Zhao Y, Zhu B, Cheng R, Wang J, Liu J, Tang J, Tang J. From Strong Dichroic Nanomotor to Polarotactic Microswimmer. Adv Mater 2019;31:e1903329. [PMID: 31588643 DOI: 10.1002/adma.201903329] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 7.7] [Reference Citation Analysis]
175 Lu X, Zhao K, Liu W, Yang D, Shen H, Peng H, Guo X, Li J, Wang J. A Human Microrobot Interface Based on Acoustic Manipulation. ACS Nano 2019;13:11443-52. [PMID: 31425653 DOI: 10.1021/acsnano.9b04930] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 10.7] [Reference Citation Analysis]
176 Llopis-Lorente A, García-Fernández A, Murillo-Cremaes N, Hortelão AC, Patiño T, Villalonga R, Sancenón F, Martínez-Máñez R, Sánchez S. Enzyme-Powered Gated Mesoporous Silica Nanomotors for On-Command Intracellular Payload Delivery. ACS Nano 2019;13:12171-83. [PMID: 31580642 DOI: 10.1021/acsnano.9b06706] [Cited by in Crossref: 84] [Cited by in F6Publishing: 65] [Article Influence: 28.0] [Reference Citation Analysis]
177 Aziz A, Medina‐sánchez M, Koukourakis N, Wang J, Kuschmierz R, Radner H, Czarske JW, Schmidt OG. Real‐Time IR Tracking of Single Reflective Micromotors through Scattering Tissues. Adv Funct Mater 2019;29:1905272. [DOI: 10.1002/adfm.201905272] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
178 Kong L, Rosli NF, Chia HL, Guan J, Pumera M. Self-Propelled Autonomous Mg/Pt Janus Micromotor Interaction with Human Cells. BCSJ 2019;92:1754-8. [DOI: 10.1246/bcsj.20190104] [Cited by in Crossref: 31] [Cited by in F6Publishing: 16] [Article Influence: 10.3] [Reference Citation Analysis]
179 Li D, Jeong M, Oren E, Yu T, Qiu T. A Helical Microrobot with an Optimized Propeller-Shape for Propulsion in Viscoelastic Biological Media. Robotics 2019;8:87. [DOI: 10.3390/robotics8040087] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
180 Singh AV, Ansari MHD, Laux P, Luch A. Micro-nanorobots: important considerations when developing novel drug delivery platforms. Expert Opinion on Drug Delivery 2019;16:1259-75. [DOI: 10.1080/17425247.2019.1676228] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 8.7] [Reference Citation Analysis]
181 Karshalev E, Zhang Y, Esteban-Fernández de Ávila B, Beltrán-Gastélum M, Chen Y, Mundaca-Uribe R, Zhang F, Nguyen B, Tong Y, Fang RH, Zhang L, Wang J. Micromotors for Active Delivery of Minerals toward the Treatment of Iron Deficiency Anemia. Nano Lett 2019;19:7816-26. [PMID: 31588746 DOI: 10.1021/acs.nanolett.9b02832] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
182 Li Y, Liu X, Xu X, Xin H, Zhang Y, Li B. Red‐Blood‐Cell Waveguide as a Living Biosensor and Micromotor. Adv Funct Mater 2019;29:1905568. [DOI: 10.1002/adfm.201905568] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
183 Sonntag L, Simmchen J, Magdanz V. Nano-and Micromotors Designed for Cancer Therapy. Molecules 2019;24:E3410. [PMID: 31546857 DOI: 10.3390/molecules24183410] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
184 Min J, Yang Y, Wu Z, Gao W. Robotics in the Gut. Adv Therap 2020;3:1900125. [DOI: 10.1002/adtp.201900125] [Cited by in Crossref: 18] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
185 Guo Z, Wang T, Rawal A, Hou J, Cao Z, Zhang H, Xu J, Gu Z, Chen V, Liang K. Biocatalytic self-propelled submarine-like metal-organic framework microparticles with pH-triggered buoyancy control for directional vertical motion. Materials Today 2019;28:10-6. [DOI: 10.1016/j.mattod.2019.04.022] [Cited by in Crossref: 30] [Cited by in F6Publishing: 18] [Article Influence: 10.0] [Reference Citation Analysis]
186 Ying Y, Pourrahimi AM, Manzanares‐palenzuela CL, Novotny F, Sofer Z, Pumera M. Light‐Driven ZnO Brush‐Shaped Self‐Propelled Micromachines for Nitroaromatic Explosives Decomposition. Small 2020;16:1902944. [DOI: 10.1002/smll.201902944] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
187 Xu D, Wang Y, Liang C, You Y, Sanchez S, Ma X. Self-Propelled Micro/Nanomotors for On-Demand Biomedical Cargo Transportation. Small 2020;16:e1902464. [PMID: 31464072 DOI: 10.1002/smll.201902464] [Cited by in Crossref: 35] [Cited by in F6Publishing: 22] [Article Influence: 11.7] [Reference Citation Analysis]
188 Maric T, Nasir MZM, Mayorga-martinez CC, Rosli NF, Budanović M, Szőkölová K, Webster RD, Sofer Z, Pumera M. Cloisite Microrobots as Self-Propelling Cleaners for Fast and Efficient Removal of Improvised Organophosphate Nerve Agents. ACS Appl Mater Interfaces 2019;11:31832-43. [DOI: 10.1021/acsami.9b08332] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
189 Wu Z, Li L, Yang Y, Hu P, Li Y, Yang SY, Wang LV, Gao W. A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Sci Robot 2019;4:eaax0613. [PMID: 32632399 DOI: 10.1126/scirobotics.aax0613] [Cited by in Crossref: 116] [Cited by in F6Publishing: 80] [Article Influence: 38.7] [Reference Citation Analysis]
190 Pena-Francesch A, Giltinan J, Sitti M. Multifunctional and biodegradable self-propelled protein motors. Nat Commun 2019;10:3188. [PMID: 31320630 DOI: 10.1038/s41467-019-11141-9] [Cited by in Crossref: 30] [Cited by in F6Publishing: 19] [Article Influence: 10.0] [Reference Citation Analysis]
191 Ceylan H, Yasa IC, Kilic U, Hu W, Sitti M. Translational prospects of untethered medical microrobots. Prog Biomed Eng 2019;1:012002. [DOI: 10.1088/2516-1091/ab22d5] [Cited by in Crossref: 49] [Cited by in F6Publishing: 18] [Article Influence: 16.3] [Reference Citation Analysis]
192 Iacovacci V, Blanc A, Huang H, Ricotti L, Schibli R, Menciassi A, Behe M, Pané S, Nelson BJ. High‐Resolution SPECT Imaging of Stimuli‐Responsive Soft Microrobots. Small 2019;15:1900709. [DOI: 10.1002/smll.201900709] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 7.3] [Reference Citation Analysis]
193 Kong L, Ambrosi A, Nasir MZM, Guan J, Pumera M. Self‐Propelled 3D‐Printed “Aircraft Carrier” of Light‐Powered Smart Micromachines for Large‐Volume Nitroaromatic Explosives Removal. Adv Funct Mater 2019;29:1903872. [DOI: 10.1002/adfm.201903872] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
194 Zhang F, Mundaca-Uribe R, Gong H, Esteban-Fernández de Ávila B, Beltrán-Gastélum M, Karshalev E, Nourhani A, Tong Y, Nguyen B, Gallot M, Zhang Y, Zhang L, Wang J. A Macrophage-Magnesium Hybrid Biomotor: Fabrication and Characterization. Adv Mater 2019;31:e1901828. [PMID: 31070278 DOI: 10.1002/adma.201901828] [Cited by in Crossref: 52] [Cited by in F6Publishing: 47] [Article Influence: 17.3] [Reference Citation Analysis]
195 Srivastava SK, Ajalloueian F, Boisen A. Thread-Like Radical-Polymerization via Autonomously Propelled (TRAP) Bots. Adv Mater 2019;31:e1901573. [PMID: 31165526 DOI: 10.1002/adma.201901573] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
196 Lu X, Shen H, Zhao K, Wang Z, Peng H, Liu W. Micro-/Nanomachines Driven by Ultrasonic Power Sources. Chem Asian J 2019;14:2406-16. [PMID: 31042016 DOI: 10.1002/asia.201900281] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
197 Yan X, Xu J, Zhou Q, Jin D, Vong CI, Feng Q, Ng DH, Bian L, Zhang L. Molecular cargo delivery using multicellular magnetic microswimmers. Applied Materials Today 2019;15:242-51. [DOI: 10.1016/j.apmt.2019.02.006] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
198 Xin C, Yang L, Li J, Hu Y, Qian D, Fan S, Hu K, Cai Z, Wu H, Wang D, Wu D, Chu J. Conical Hollow Microhelices with Superior Swimming Capabilities for Targeted Cargo Delivery. Adv Mater 2019;31:e1808226. [PMID: 31074118 DOI: 10.1002/adma.201808226] [Cited by in Crossref: 48] [Cited by in F6Publishing: 37] [Article Influence: 16.0] [Reference Citation Analysis]
199 Khalil ISM, Adel A, Mahdy D, Micheal MM, Mansour M, Hamdi N, Misra S. Magnetic localization and control of helical robots for clearing superficial blood clots. APL Bioeng 2019;3:026104. [PMID: 31531411 DOI: 10.1063/1.5090872] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 5.3] [Reference Citation Analysis]
200 Chang X, Tang W, Feng Y, Yu H, Wu Z, Xu T, Dong H, Li T. Coexisting Cooperative Cognitive Micro‐/Nanorobots. Chem Asian J 2019;14:2357-68. [DOI: 10.1002/asia.201900286] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
201 Xu D, Zhan C, Sun Y, Dong Z, Wang GP, Ma X. Turn-Number-Dependent Motion Behavior of Catalytic Helical Carbon Micro/Nanomotors. Chem Asian J 2019;14:2497-502. [PMID: 30985962 DOI: 10.1002/asia.201900386] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
202 Wang S, Liu K, Wang F, Peng F, Tu Y. The Application of Micro‐ and Nanomotors in Classified Drug Delivery. Chem Asian J 2019;14:2336-47. [DOI: 10.1002/asia.201900274] [Cited by in Crossref: 20] [Cited by in F6Publishing: 11] [Article Influence: 6.7] [Reference Citation Analysis]
203 Ge H, Chen X, Liu W, Lu X, Gu Z. Metal‐Based Transient Micromotors: From Principle to Environmental and Biomedical Applications. Chem Asian J 2019;14:2348-56. [DOI: 10.1002/asia.201900278] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
204 Zhang B, Huang G, Wang L, Wang T, Liu L, Di Z, Liu X, Mei Y. Rolled-Up Monolayer Graphene Tubular Micromotors: Enhanced Performance and Antibacterial Property. Chem Asian J 2019;14:2479-84. [PMID: 30939230 DOI: 10.1002/asia.201900301] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
205 Kong L, Rohaizad N, Nasir MZM, Guan J, Pumera M. Micromotor-Assisted Human Serum Glucose Biosensing. Anal Chem 2019;91:5660-6. [DOI: 10.1021/acs.analchem.8b05464] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 11.0] [Reference Citation Analysis]
206 Khezri B, Pumera M. Metal-Organic Frameworks Based Nano/Micro/Millimeter-Sized Self-Propelled Autonomous Machines. Adv Mater 2019;31:e1806530. [PMID: 30701595 DOI: 10.1002/adma.201806530] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 10.7] [Reference Citation Analysis]
207 Mair LO, Chowdhury S, Paredes-Juarez GA, Guix M, Bi C, Johnson B, English BW, Jafari S, Baker-McKee J, Watson-Daniels J, Hale O, Stepanov P, Sun D, Baker Z, Ropp C, Raval SB, Arifin DR, Bulte JWM, Weinberg IN, Evans BA, Cappelleri DJ. Magnetically Aligned Nanorods in Alginate Capsules (MANiACs): Soft Matter Tumbling Robots for Manipulation and Drug Delivery. Micromachines (Basel) 2019;10:E230. [PMID: 30935105 DOI: 10.3390/mi10040230] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 3.7] [Reference Citation Analysis]
208 Beladi-mousavi SM, Khezri B, Krejčová L, Heger Z, Sofer Z, Fisher AC, Pumera M. Recoverable Bismuth-Based Microrobots: Capture, Transport, and On-Demand Release of Heavy Metals and an Anticancer Drug in Confined Spaces. ACS Appl Mater Interfaces 2019;11:13359-69. [DOI: 10.1021/acsami.8b19408] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
209 Shang L, Yu Y, Liu Y, Chen Z, Kong T, Zhao Y. Spinning and Applications of Bioinspired Fiber Systems. ACS Nano 2019;13:2749-72. [PMID: 30768903 DOI: 10.1021/acsnano.8b09651] [Cited by in Crossref: 81] [Cited by in F6Publishing: 69] [Article Influence: 27.0] [Reference Citation Analysis]
210 Ceylan H, Yasa IC, Yasa O, Tabak AF, Giltinan J, Sitti M. 3D-Printed Biodegradable Microswimmer for Theranostic Cargo Delivery and Release. ACS Nano 2019;13:3353-62. [PMID: 30742410 DOI: 10.1021/acsnano.8b09233] [Cited by in Crossref: 183] [Cited by in F6Publishing: 145] [Article Influence: 61.0] [Reference Citation Analysis]
211 Yigit B, Alapan Y, Sitti M. Programmable Collective Behavior in Dynamically Self-Assembled Mobile Microrobotic Swarms. Adv Sci (Weinh) 2019;6:1801837. [PMID: 30937264 DOI: 10.1002/advs.201801837] [Cited by in Crossref: 64] [Cited by in F6Publishing: 43] [Article Influence: 21.3] [Reference Citation Analysis]
212 Zhang X, Zhang Q, Zhang L, Li P, Cheng M, Zhao J, Zhang Y, Su H, Tan T, Shi F. Functionally Cooperating Mini‐Generator: From Bacterial Fermentation to Electricity. Adv Funct Mater 2019;29:1900879. [DOI: 10.1002/adfm.201900879] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
213 Gao S, Hou J, Zeng J, Richardson JJ, Gu Z, Gao X, Li D, Gao M, Wang D, Chen P, Chen V, Liang K, Zhao D, Kong B. Superassembled Biocatalytic Porous Framework Micromotors with Reversible and Sensitive pH‐Speed Regulation at Ultralow Physiological H 2 O 2 Concentration. Adv Funct Mater 2019;29:1808900. [DOI: 10.1002/adfm.201808900] [Cited by in Crossref: 45] [Cited by in F6Publishing: 36] [Article Influence: 15.0] [Reference Citation Analysis]
214 Zhang X, Chen L, Lim KH, Gonuguntla S, Lim KW, Pranantyo D, Yong WP, Yam WJT, Low Z, Teo WJ, Nien HP, Loh QW, Soh S. The Pathway to Intelligence: Using Stimuli-Responsive Materials as Building Blocks for Constructing Smart and Functional Systems. Adv Mater 2019;31:e1804540. [PMID: 30624820 DOI: 10.1002/adma.201804540] [Cited by in Crossref: 101] [Cited by in F6Publishing: 74] [Article Influence: 33.7] [Reference Citation Analysis]
215 Zhou M, Hou T, Li J, Yu S, Xu Z, Yin M, Wang J, Wang X. Self-Propelled and Targeted Drug Delivery of Poly(aspartic acid)/Iron-Zinc Microrocket in the Stomach. ACS Nano 2019;13:1324-32. [PMID: 30689352 DOI: 10.1021/acsnano.8b06773] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
216 Xu D, Zhou C, Zhan C, Wang Y, You Y, Pan X, Jiao J, Zhang R, Dong Z, Wang W, Ma X. Enzymatic Micromotors as a Mobile Photosensitizer Platform for Highly Efficient On‐Chip Targeted Antibacteria Photodynamic Therapy. Adv Funct Mater 2019;29:1807727. [DOI: 10.1002/adfm.201807727] [Cited by in Crossref: 42] [Cited by in F6Publishing: 32] [Article Influence: 14.0] [Reference Citation Analysis]
217 Zhang D, Wang D, Li J, Xu X, Zhang H, Duan R, Song B, Zhang D, Dong B. One-step synthesis of PCL/Mg Janus micromotor for precious metal ion sensing, removal and recycling. J Mater Sci 2019;54:7322-32. [DOI: 10.1007/s10853-019-03390-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
218 Wei X, Beltrán-Gastélum M, Karshalev E, Esteban-Fernández de Ávila B, Zhou J, Ran D, Angsantikul P, Fang RH, Wang J, Zhang L. Biomimetic Micromotor Enables Active Delivery of Antigens for Oral Vaccination. Nano Lett 2019;19:1914-21. [PMID: 30724085 DOI: 10.1021/acs.nanolett.8b05051] [Cited by in Crossref: 71] [Cited by in F6Publishing: 63] [Article Influence: 23.7] [Reference Citation Analysis]
219 Hortelão AC, Carrascosa R, Murillo-Cremaes N, Patiño T, Sánchez S. Targeting 3D Bladder Cancer Spheroids with Urease-Powered Nanomotors. ACS Nano 2019;13:429-39. [PMID: 30588798 DOI: 10.1021/acsnano.8b06610] [Cited by in Crossref: 115] [Cited by in F6Publishing: 101] [Article Influence: 38.3] [Reference Citation Analysis]
220 Su Y, Zhang M, Wang W, Deng C, Peng J, Liu Z, Faraj Y, Ju X, Xie R, Chu L. Bubble-Propelled Hierarchical Porous Micromotors from Evolved Double Emulsions. Ind Eng Chem Res 2019;58:1590-600. [DOI: 10.1021/acs.iecr.8b05791] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 4.7] [Reference Citation Analysis]
221 Sun M, Fan X, Meng X, Song J, Chen W, Sun L, Xie H. Magnetic biohybrid micromotors with high maneuverability for efficient drug loading and targeted drug delivery. Nanoscale 2019;11:18382-92. [DOI: 10.1039/c9nr06221a] [Cited by in Crossref: 33] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
222 Reinišová L, Hermanová S, Pumera M. Micro/nanomachines: what is needed for them to become a real force in cancer therapy? Nanoscale 2019;11:6519-32. [DOI: 10.1039/c8nr08022d] [Cited by in Crossref: 27] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
223 Kong L, Chen C, Mou F, Feng Y, You M, Yin Y, Guan J. Magnesium Particles Coated with Mesoporous Nanoshells as Sustainable Therapeutic-Hydrogen Suppliers to Scavenge Continuously Generated Hydroxyl Radicals in Long Term. Part Part Syst Charact 2019;36:1800424. [DOI: 10.1002/ppsc.201800424] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
224 Maric T, Mayorga-martinez CC, Nasir MZM, Pumera M. Platinum-Halloysite Nanoclay Nanojets as Sensitive and Selective Mobile Nanosensors for Mercury Detection. Adv Mater Technol 2019;4:1800502. [DOI: 10.1002/admt.201800502] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
225 Khezri B, Beladi Mousavi SM, Krejčová L, Heger Z, Sofer Z, Pumera M. Ultrafast Electrochemical Trigger Drug Delivery Mechanism for Nanographene Micromachines. Adv Funct Mater 2019;29:1806696. [DOI: 10.1002/adfm.201806696] [Cited by in Crossref: 58] [Cited by in F6Publishing: 43] [Article Influence: 14.5] [Reference Citation Analysis]
226 Chen C, Soto F, Karshalev E, Li J, Wang J. Hybrid Nanovehicles: One Machine, Two Engines. Adv Funct Mater 2019;29:1806290. [DOI: 10.1002/adfm.201806290] [Cited by in Crossref: 48] [Cited by in F6Publishing: 34] [Article Influence: 12.0] [Reference Citation Analysis]
227 Soto F, Chrostowski R. Frontiers of Medical Micro/Nanorobotics: in vivo Applications and Commercialization Perspectives Toward Clinical Uses. Front Bioeng Biotechnol 2018;6:170. [PMID: 30488033 DOI: 10.3389/fbioe.2018.00170] [Cited by in Crossref: 39] [Cited by in F6Publishing: 28] [Article Influence: 9.8] [Reference Citation Analysis]
228 Chen H, Jin Y, Wang J, Wang Y, Jiang W, Dai H, Pang S, Lei L, Ji J, Wang B. Design of smart targeted and responsive drug delivery systems with enhanced antibacterial properties. Nanoscale 2018;10:20946-62. [PMID: 30406235 DOI: 10.1039/c8nr07146b] [Cited by in Crossref: 42] [Cited by in F6Publishing: 6] [Article Influence: 10.5] [Reference Citation Analysis]
229 Wu Z, Troll J, Jeong HH, Wei Q, Stang M, Ziemssen F, Wang Z, Dong M, Schnichels S, Qiu T, Fischer P. A swarm of slippery micropropellers penetrates the vitreous body of the eye. Sci Adv 2018;4:eaat4388. [PMID: 30406201 DOI: 10.1126/sciadv.aat4388] [Cited by in Crossref: 157] [Cited by in F6Publishing: 119] [Article Influence: 39.3] [Reference Citation Analysis]
230 Yu H, Tang W, Mu G, Wang H, Chang X, Dong H, Qi L, Zhang G, Li T. Micro-/Nanorobots Propelled by Oscillating Magnetic Fields. Micromachines (Basel) 2018;9:E540. [PMID: 30715039 DOI: 10.3390/mi9110540] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
231 Wang D, Gao C, Wang W, Sun M, Guo B, Xie H, He Q. Shape-Transformable, Fusible Rodlike Swimming Liquid Metal Nanomachine. ACS Nano 2018;12:10212-20. [PMID: 30231200 DOI: 10.1021/acsnano.8b05203] [Cited by in Crossref: 116] [Cited by in F6Publishing: 98] [Article Influence: 29.0] [Reference Citation Analysis]
232 Tejeda-rodríguez JA, Núñez A, Soto F, García-gradilla V, Cadena-nava R, Wang J, Vazquez-duhalt R. Virus-Based Nanomotors for Cargo Delivery. ChemNanoMat 2019;5:194-200. [DOI: 10.1002/cnma.201800403] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
233 Chi Q, Wang Z, Tian F, You J, Xu S. A Review of Fast Bubble-Driven Micromotors Powered by Biocompatible Fuel: Low-Concentration Fuel, Bioactive Fluid and Enzyme. Micromachines (Basel) 2018;9:E537. [PMID: 30424470 DOI: 10.3390/mi9100537] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
234 Zhao X, Gentile K, Mohajerani F, Sen A. Powering Motion with Enzymes. Acc Chem Res 2018;51:2373-81. [PMID: 30256612 DOI: 10.1021/acs.accounts.8b00286] [Cited by in Crossref: 92] [Cited by in F6Publishing: 77] [Article Influence: 23.0] [Reference Citation Analysis]
235 Erkoc P, Yasa IC, Ceylan H, Yasa O, Alapan Y, Sitti M. Mobile Microrobots for Active Therapeutic Delivery. Adv Therap 2019;2:1800064. [DOI: 10.1002/adtp.201800064] [Cited by in Crossref: 78] [Cited by in F6Publishing: 32] [Article Influence: 19.5] [Reference Citation Analysis]
236 Wang X, Baraban L, Misko VR, Nori F, Huang T, Cuniberti G, Fassbender J, Makarov D. Visible Light Actuated Efficient Exclusion Between Plasmonic Ag/AgCl Micromotors and Passive Beads. Small 2018;14:1802537. [DOI: 10.1002/smll.201802537] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
237 Esteban-Fernández de Ávila B, Gao W, Karshalev E, Zhang L, Wang J. Cell-Like Micromotors. Acc Chem Res 2018;51:1901-10. [PMID: 30074758 DOI: 10.1021/acs.accounts.8b00202] [Cited by in Crossref: 81] [Cited by in F6Publishing: 66] [Article Influence: 20.3] [Reference Citation Analysis]
238 Ouyang J, Liu RY, Chen W, Liu Z, Xu Q, Zeng K, Deng L, Shen L, Liu YN. A black phosphorus based synergistic antibacterial platform against drug resistant bacteria. J Mater Chem B 2018;6:6302-10. [PMID: 32254620 DOI: 10.1039/c8tb01669k] [Cited by in Crossref: 45] [Cited by in F6Publishing: 8] [Article Influence: 11.3] [Reference Citation Analysis]
239 Villa K, Krejčová L, Novotný F, Heger Z, Sofer Z, Pumera M. Cooperative Multifunctional Self-Propelled Paramagnetic Microrobots with Chemical Handles for Cell Manipulation and Drug Delivery. Adv Funct Mater 2018;28:1804343. [DOI: 10.1002/adfm.201804343] [Cited by in Crossref: 53] [Cited by in F6Publishing: 32] [Article Influence: 13.3] [Reference Citation Analysis]
240 Chen JX, Chen YG, Kapral R. Chemically Propelled Motors Navigate Chemical Patterns. Adv Sci (Weinh) 2018;5:1800028. [PMID: 30250781 DOI: 10.1002/advs.201800028] [Cited by in Crossref: 41] [Cited by in F6Publishing: 27] [Article Influence: 10.3] [Reference Citation Analysis]
241 Karshalev E, Esteban-Fernández de Ávila B, Beltrán-Gastélum M, Angsantikul P, Tang S, Mundaca-Uribe R, Zhang F, Zhao J, Zhang L, Wang J. Micromotor Pills as a Dynamic Oral Delivery Platform. ACS Nano 2018;12:8397-405. [PMID: 30059616 DOI: 10.1021/acsnano.8b03760] [Cited by in Crossref: 63] [Cited by in F6Publishing: 50] [Article Influence: 15.8] [Reference Citation Analysis]
242 Frenkel M, Dombrovsky L, Multanen V, Danchuk V, Legchenkova I, Shoval S, Bormashenko Y, Binks BP, Bormashenko E. Self-Propulsion of Water-Supported Liquid Marbles Filled with Sulfuric Acid. J Phys Chem B 2018;122:7936-42. [DOI: 10.1021/acs.jpcb.8b06136] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
243 Katuri J, Caballero D, Voituriez R, Samitier J, Sanchez S. Directed Flow of Micromotors through Alignment Interactions with Micropatterned Ratchets. ACS Nano 2018;12:7282-91. [PMID: 29949338 DOI: 10.1021/acsnano.8b03494] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 9.8] [Reference Citation Analysis]
244 Gao C, Lin Z, Lin X, He Q. Cell Membrane-Camouflaged Colloid Motors for Biomedical Applications. Adv Therap 2018;1:1800056. [DOI: 10.1002/adtp.201800056] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
245 Keller S, Teora SP, Hu GX, Nijemeisland M, Wilson DA. High-Throughput Design of Biocompatible Enzyme-Based Hydrogel Microparticles with Autonomous Movement. Angew Chem Int Ed 2018;57:9814-7. [DOI: 10.1002/anie.201805661] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 10.5] [Reference Citation Analysis]
246 Keller S, Teora SP, Hu GX, Nijemeisland M, Wilson DA. High-Throughput Design of Biocompatible Enzyme-Based Hydrogel Microparticles with Autonomous Movement. Angew Chem 2018;130:9962-5. [DOI: 10.1002/ange.201805661] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
247 Bente K, Codutti A, Bachmann F, Faivre D. Biohybrid and Bioinspired Magnetic Microswimmers. Small 2018;14:1704374. [DOI: 10.1002/smll.201704374] [Cited by in Crossref: 47] [Cited by in F6Publishing: 37] [Article Influence: 11.8] [Reference Citation Analysis]
248 Ye H, Kang J, Ma G, Sun H, Wang S. High-speed graphene@Ag-MnO2 micromotors at low peroxide levels. J Colloid Interface Sci 2018;528:271-80. [PMID: 29859452 DOI: 10.1016/j.jcis.2018.05.088] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 7.5] [Reference Citation Analysis]
249 Patiño T, Feiner-gracia N, Arqué X, Miguel-lópez A, Jannasch A, Stumpp T, Schäffer E, Albertazzi L, Sánchez S. Influence of Enzyme Quantity and Distribution on the Self-Propulsion of Non-Janus Urease-Powered Micromotors. J Am Chem Soc 2018;140:7896-903. [DOI: 10.1021/jacs.8b03460] [Cited by in Crossref: 93] [Cited by in F6Publishing: 76] [Article Influence: 23.3] [Reference Citation Analysis]
250 Wang C, Wang Q, Dong R, Cai Y. Dynamic self-assembly of micro-nanomotor. Inorganic Chemistry Communications 2018;91:8-15. [DOI: 10.1016/j.inoche.2018.02.021] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
251 Luo M, Feng Y, Wang T, Guan J. Micro-/Nanorobots at Work in Active Drug Delivery. Adv Funct Mater 2018;28:1706100. [DOI: 10.1002/adfm.201706100] [Cited by in Crossref: 178] [Cited by in F6Publishing: 99] [Article Influence: 44.5] [Reference Citation Analysis]
252 Medcalf RL, Hagemeyer CE, Alt K. Magnetic fibrinolysis: putting the therapeutic wheels in a corkscrew motion. J Thromb Haemost 2018;16:615-7. [PMID: 29634087 DOI: 10.1111/jth.13969] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
253 Li Z, Wang W, Li M, Zhang M, Tang M, Su Y, Liu Z, Ju X, Xie R, Chu L. Facile Fabrication of Bubble-Propelled Micromotors Carrying Nanocatalysts for Water Remediation. Ind Eng Chem Res 2018;57:4562-70. [DOI: 10.1021/acs.iecr.7b04941] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
254 Chen C, Karshalev E, Guan J, Wang J. Magnesium‐Based Micromotors: Water‐Powered Propulsion, Multifunctionality, and Biomedical and Environmental Applications. Small 2018;14:1704252. [DOI: 10.1002/smll.201704252] [Cited by in Crossref: 77] [Cited by in F6Publishing: 70] [Article Influence: 19.3] [Reference Citation Analysis]
255 Vilela D, Cossío U, Parmar J, Martínez-Villacorta AM, Gómez-Vallejo V, Llop J, Sánchez S. Medical Imaging for the Tracking of Micromotors. ACS Nano 2018;12:1220-7. [PMID: 29361216 DOI: 10.1021/acsnano.7b07220] [Cited by in Crossref: 97] [Cited by in F6Publishing: 79] [Article Influence: 24.3] [Reference Citation Analysis]
256 Karshalev E, Esteban-fernández de Ávila B, Wang J. Micromotors for “Chemistry-on-the-Fly”. J Am Chem Soc 2018;140:3810-20. [DOI: 10.1021/jacs.8b00088] [Cited by in Crossref: 91] [Cited by in F6Publishing: 73] [Article Influence: 22.8] [Reference Citation Analysis]
257 Ning H, Zhang Y, Zhu H, Ingham A, Huang G, Mei Y, Solovev AA. Geometry Design, Principles and Assembly of Micromotors. Micromachines (Basel) 2018;9:E75. [PMID: 30393351 DOI: 10.3390/mi9020075] [Cited by in Crossref: 38] [Cited by in F6Publishing: 25] [Article Influence: 9.5] [Reference Citation Analysis]
258 Hansen-Bruhn M, de Ávila BE, Beltrán-Gastélum M, Zhao J, Ramírez-Herrera DE, Angsantikul P, Vesterager Gothelf K, Zhang L, Wang J. Active Intracellular Delivery of a Cas9/sgRNA Complex Using Ultrasound-Propelled Nanomotors. Angew Chem Int Ed Engl 2018;57:2657-61. [PMID: 29325201 DOI: 10.1002/anie.201713082] [Cited by in Crossref: 102] [Cited by in F6Publishing: 81] [Article Influence: 25.5] [Reference Citation Analysis]
259 Hansen‐bruhn M, de Ávila BE, Beltrán‐gastélum M, Zhao J, Ramírez‐herrera DE, Angsantikul P, Vesterager gothelf K, Zhang L, Wang J. Active Intracellular Delivery of a Cas9/sgRNA Complex Using Ultrasound‐Propelled Nanomotors. Angew Chem 2018;130:2687-91. [DOI: 10.1002/ange.201713082] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
260 Kim K, Guo J, Liang Z, Fan D. Artificial Micro/Nanomachines for Bioapplications: Biochemical Delivery and Diagnostic Sensing. Adv Funct Mater 2018;28:1705867. [DOI: 10.1002/adfm.201705867] [Cited by in Crossref: 87] [Cited by in F6Publishing: 61] [Article Influence: 21.8] [Reference Citation Analysis]
261 Xu H, Medina-Sánchez M, Magdanz V, Schwarz L, Hebenstreit F, Schmidt OG. Sperm-Hybrid Micromotor for Targeted Drug Delivery. ACS Nano 2018;12:327-37. [PMID: 29202221 DOI: 10.1021/acsnano.7b06398] [Cited by in Crossref: 241] [Cited by in F6Publishing: 201] [Article Influence: 60.3] [Reference Citation Analysis]
262 Wang H, Pumera M. Micro/Nanomachines and Living Biosystems: From Simple Interactions to Microcyborgs. Adv Funct Mater 2018;28:1705421. [DOI: 10.1002/adfm.201705421] [Cited by in Crossref: 80] [Cited by in F6Publishing: 67] [Article Influence: 20.0] [Reference Citation Analysis]
263 Wang L, Zhu H, Shi Y, Ge Y, Feng X, Liu R, Li Y, Ma Y, Wang L. Novel catalytic micromotor of porous zeolitic imidazolate framework-67 for precise drug delivery. Nanoscale 2018;10:11384-91. [DOI: 10.1039/c8nr02493f] [Cited by in Crossref: 49] [Cited by in F6Publishing: 7] [Article Influence: 12.3] [Reference Citation Analysis]
264 Li D, Liu Y, Yang Y, Shen Y. A fast and powerful swimming microrobot with a serrated tail enhanced propulsion interface. Nanoscale 2018;10:19673-7. [DOI: 10.1039/c8nr04907f] [Cited by in Crossref: 14] [Article Influence: 3.5] [Reference Citation Analysis]
265 Bhuyan T, Bhattacharjee M, Singh AK, Ghosh SS, Bandyopadhyay D. Boolean-chemotaxis of logibots deciphering the motions of self-propelling microorganisms. Soft Matter 2018;14:3182-91. [DOI: 10.1039/c8sm00132d] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
266 Liu H, Li M, Li Y, Yang H, Li A, Lu TJ, Li F, Xu F. Magnetic steering of liquid metal mobiles. Soft Matter 2018;14:3236-45. [DOI: 10.1039/c8sm00056e] [Cited by in Crossref: 21] [Cited by in F6Publishing: 3] [Article Influence: 5.3] [Reference Citation Analysis]
267 Esteban‐fernández de Ávila B, Angsantikul P, Li J, Gao W, Zhang L, Wang J. Micromotors Go In Vivo: From Test Tubes to Live Animals. Adv Funct Mater 2018;28:1705640. [DOI: 10.1002/adfm.201705640] [Cited by in Crossref: 80] [Cited by in F6Publishing: 65] [Article Influence: 16.0] [Reference Citation Analysis]
268 Zhang K, Fraxedas J, Sepulveda B, Esplandiu MJ. Photochemically Activated Motors: From Electrokinetic to Diffusion Motion Control. ACS Appl Mater Interfaces 2017;9:44948-53. [DOI: 10.1021/acsami.7b15855] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
269 [DOI: 10.1101/2020.06.15.148791] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
270 [DOI: 10.1101/379024] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Reference Citation Analysis]