BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Treu L, Tsapekos P, Peprah M, Campanaro S, Giacomini A, Corich V, Kougias PG, Angelidaki I. Microbial profiling during anaerobic digestion of cheese whey in reactors operated at different conditions. Bioresource Technology 2019;275:375-85. [DOI: 10.1016/j.biortech.2018.12.084] [Cited by in Crossref: 43] [Cited by in F6Publishing: 45] [Article Influence: 10.8] [Reference Citation Analysis]
Number Citing Articles
1 Almeida PS, de Menezes CA, Camargo FP, Sakamoto IK, Lovato G, Rodrigues JAD, Varesche MBA, Silva EL. Biomethane recovery through co-digestion of cheese whey and glycerol in a two-stage anaerobic fluidized bed reactor: Effect of temperature and organic loading rate on methanogenesis. J Environ Manage 2022;330:117117. [PMID: 36584460 DOI: 10.1016/j.jenvman.2022.117117] [Reference Citation Analysis]
2 Batista LPP, Paulinetti AP, Júnior ADNF, Albanez R, Ratusznei SM, Etchebehere C, Lovato G, Rodrigues JAD. Two-stage thermophilic anaerobic digestion of cheese whey: Process optimization, comparison with single-stage and full-scale estimation. Chemical Engineering and Processing - Process Intensification 2022. [DOI: 10.1016/j.cep.2022.109260] [Reference Citation Analysis]
3 Wu W, Chen G, Wang Z. Enhanced sludge digestion using anaerobic dynamic membrane bioreactor: Effects of hydraulic retention time. Energy 2022;261:125396. [DOI: 10.1016/j.energy.2022.125396] [Reference Citation Analysis]
4 Kim J, Choi H, Park J, Lee C. Effects of submicron magnetite particles on granulation of flocculent sludge and process stability in upflow anaerobic sludge blanket reactor. Bioresource Technology 2022;366:128205. [DOI: 10.1016/j.biortech.2022.128205] [Reference Citation Analysis]
5 Hashemi B, Horn SJ, Lamb JJ, Lien KM. Potential role of sulfide precipitates in direct interspecies electron transfer facilitation during anaerobic digestion of fish silage. Bioresource Technology Reports 2022;20:101264. [DOI: 10.1016/j.biteb.2022.101264] [Reference Citation Analysis]
6 Giangeri G, Morlino MS, De Bernardini N, Ji M, Bosaro M, Pirillo V, Antoniali P, Molla G, Raga R, Treu L, Campanaro S. Preliminary investigation of microorganisms potentially involved in microplastics degradation using an integrated metagenomic and biochemical approach. Science of The Total Environment 2022;843:157017. [DOI: 10.1016/j.scitotenv.2022.157017] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 González R, Peña DC, Gómez X. Anaerobic Co-Digestion of Wastes: Reviewing Current Status and Approaches for Enhancing Biogas Production. Applied Sciences 2022;12:8884. [DOI: 10.3390/app12178884] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Ebrahimian F, De Bernardini N, Tsapekos P, Treu L, Zhu X, Campanaro S, Karimi K, Angelidaki I. Effect of pressure on biomethanation process and spatial stratification of microbial communities in trickle bed reactors under decreasing gas retention time. Bioresour Technol 2022;:127701. [PMID: 35905873 DOI: 10.1016/j.biortech.2022.127701] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 de Souza Almeida P, de Menezes CA, Camargo FP, Sakamoto IK, Varesche MBA, Silva EL. Thermophilic anaerobic co-digestion of glycerol and cheese whey - Effect of increasing organic loading rate. Process Safety and Environmental Protection 2022. [DOI: 10.1016/j.psep.2022.07.045] [Reference Citation Analysis]
10 Bywater A, Heaven S, Zhang Y, Banks CJ. Potential for Biomethanisation of CO2 from Anaerobic Digestion of Organic Wastes in the United Kingdom. Processes 2022;10:1202. [DOI: 10.3390/pr10061202] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Holohan BC, Duarte MS, Szabo-Corbacho MA, Cavaleiro AJ, Salvador AF, Pereira MA, Ziels RM, Frijters CTMJ, Pacheco-Ruiz S, Carballa M, Sousa DZ, Stams AJM, O'Flaherty V, van Lier JB, Alves MM. Principles, Advances, and Perspectives of Anaerobic Digestion of Lipids. Environ Sci Technol 2022;56:4749-75. [PMID: 35357187 DOI: 10.1021/acs.est.1c08722] [Reference Citation Analysis]
12 Zhang L, Yao D, Tsui TH, Loh KC, Wang CH, Dai Y, Tong YW. Plastic-containing food waste conversion to biomethane, syngas, and biochar via anaerobic digestion and gasification: Focusing on reactor performance, microbial community analysis, and energy balance assessment. J Environ Manage 2022;306:114471. [PMID: 35026716 DOI: 10.1016/j.jenvman.2022.114471] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
13 Palù M, Peprah M, Tsapekos P, Kougias P, Campanaro S, Angelidaki I, Treu L. In-situ biogas upgrading assisted by bioaugmentation with hydrogenotrophic methanogens during mesophilic and thermophilic co-digestion. Bioresour Technol 2022;348:126754. [PMID: 35077815 DOI: 10.1016/j.biortech.2022.126754] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
14 Carvalho CTD, Oliveira Júnior SDD, Lima WBDB, Medeiros FGMD, Leitão ALODS, Dantas JM, Santos ESD, Macêdo GRD, Sousa Júnior FCD. Recovery of β-galactosidase produced by Kluyveromyces lactis by ion-exchange chromatography: Influence of pH and ionic strength parameters. An Acad Bras Ciênc 2022;94:e20200752. [DOI: 10.1590/0001-3765202220200752] [Reference Citation Analysis]
15 Tamoor M, Samak NA, Jia Y, Mushtaq MU, Sher H, Bibi M, Xing J. Potential Use of Microbial Enzymes for the Conversion of Plastic Waste Into Value-Added Products: A Viable Solution. Front Microbiol 2021;12:777727. [PMID: 34917057 DOI: 10.3389/fmicb.2021.777727] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 da Silva GH, Barros NO, Santana LAR, Carneiro JDC, Otenio MH. Shifts of acidogenic bacterial group and biogas production by adding two industrial residues in anaerobic co-digestion with cattle manure. J Environ Sci Health A Tox Hazard Subst Environ Eng 2021;:1-9. [PMID: 34903145 DOI: 10.1080/10934529.2021.2015987] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Sar T, Harirchi S, Ramezani M, Bulkan G, Akbas MY, Pandey A, Taherzadeh MJ. Potential utilization of dairy industries by-products and wastes through microbial processes: A critical review. Sci Total Environ 2021;810:152253. [PMID: 34902412 DOI: 10.1016/j.scitotenv.2021.152253] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
18 Kim J, Choi H, Lee C. Formation and characterization of conductive magnetite-embedded granules in upflow anaerobic sludge blanket reactor treating dairy wastewater. Bioresour Technol 2021;:126492. [PMID: 34875372 DOI: 10.1016/j.biortech.2021.126492] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
19 Casallas-ojeda M, Torres-guevara LE, Caicedo-concha DM, Gómez MF. Opportunities for Waste to Energy in the Milk Production Industry: Perspectives for the Circular Economy. Sustainability 2021;13:12892. [DOI: 10.3390/su132212892] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
20 Orellana E, Guerrero LD, Davies-Sala C, Altina M, Pontiggia RM, Erijman L. Extracellular hydrolytic potential drives microbiome shifts during anaerobic co-digestion of sewage sludge and food waste. Bioresour Technol 2022;343:126102. [PMID: 34634462 DOI: 10.1016/j.biortech.2021.126102] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
21 Teixeira Penteado A, Lovato G, Pérez Ortiz A, Esche E, Domingues Rodrigues JA, Godini HR, Orjuela A, Gušča J, Repke J. Economic Potential of Bio-Ethylene Production via Oxidative Coupling of Methane in Biogas from Anaerobic Digestion of Industrial Effluents. Processes 2021;9:1613. [DOI: 10.3390/pr9091613] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Wahid R, Horn SJ. Impact of operational conditions on methane yield and microbial community composition during biological methanation in in situ and hybrid reactor systems. Biotechnol Biofuels 2021;14:170. [PMID: 34416924 DOI: 10.1186/s13068-021-02019-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
23 Paul Choudhury S, Kalamdhad AS. Optimization of electrokinetic pretreatment for enhanced methane production and toxicity reduction from petroleum refinery sludge. J Environ Manage 2021;298:113469. [PMID: 34399372 DOI: 10.1016/j.jenvman.2021.113469] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
24 Zhang L, Tsui TH, Loh KC, Dai Y, Tong YW. Effects of plastics on reactor performance and microbial communities during acidogenic fermentation of food waste for production of volatile fatty acids. Bioresour Technol 2021;337:125481. [PMID: 34320761 DOI: 10.1016/j.biortech.2021.125481] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
25 Ling Z, Thakur N, El-Dalatony MM, Salama ES, Li X. Protein biomethanation: insight into the microbial nexus. Trends Microbiol 2021:S0966-842X(21)00136-0. [PMID: 34215486 DOI: 10.1016/j.tim.2021.06.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
26 Yan M, Zhu X, Treu L, Ravenni G, Campanaro S, Goonesekera EM, Ferrigno R, Jacobsen CS, Zervas A, Angelidaki I, Fotidis IA. Comprehensive evaluation of different strategies to recover methanogenic performance in ammonia-stressed reactors. Bioresour Technol 2021;336:125329. [PMID: 34052546 DOI: 10.1016/j.biortech.2021.125329] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
27 Eusébio A, Neves A, Marques IP. Complementary Substrates-Brewery Wastewater and Piggery Effluent—Assessment and Microbial Community Profiling in a Hybrid Anaerobic Reactor. Applied Sciences 2021;11:4364. [DOI: 10.3390/app11104364] [Reference Citation Analysis]
28 Zhang Q, Fan D, Pang X, Zhu W, Zhao J, Xu J. Effects of polyethylene microplastics on the fate of antibiotic resistance genes and microbial communities in anaerobic digestion of dairy wastes. Journal of Cleaner Production 2021;292:125909. [DOI: 10.1016/j.jclepro.2021.125909] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
29 Lembo G, Rosa S, Mazzurco Miritana V, Marone A, Massini G, Fenice M, Signorini A. Thermophilic Anaerobic Digestion of Second Cheese Whey: Microbial Community Response to H2 Addition in a Partially Immobilized Anaerobic Hybrid Reactor. Processes 2021;9:43. [DOI: 10.3390/pr9010043] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
30 Rico JL, Reardon KF, De Long SK. Inoculum microbiome composition impacts fatty acid product profile from cellulosic feedstock. Bioresour Technol 2021;323:124532. [PMID: 33422791 DOI: 10.1016/j.biortech.2020.124532] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
31 Yan M, Treu L, Campanaro S, Tian H, Zhu X, Khoshnevisan B, Tsapekos P, Angelidaki I, Fotidis IA. Effect of ammonia on anaerobic digestion of municipal solid waste: Inhibitory performance, bioaugmentation and microbiome functional reconstruction. Chemical Engineering Journal 2020;401:126159. [DOI: 10.1016/j.cej.2020.126159] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 12.0] [Reference Citation Analysis]
32 Beraud-Martínez LK, Gómez-Gil B, Franco-Nava MÁ, Almazán-Rueda P, Betancourt-Lozano M. A metagenomic assessment of microbial communities in anaerobic bioreactors and sediments: Taxonomic and functional relationships. Anaerobe 2021;68:102296. [PMID: 33207267 DOI: 10.1016/j.anaerobe.2020.102296] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
33 Basile A, Campanaro S, Kovalovszki A, Zampieri G, Rossi A, Angelidaki I, Valle G, Treu L. Revealing metabolic mechanisms of interaction in the anaerobic digestion microbiome by flux balance analysis. Metab Eng 2020;62:138-49. [PMID: 32905861 DOI: 10.1016/j.ymben.2020.08.013] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
34 Jaimes-estévez J, Castro L, Escalante H, Carrillo D, Portillo S, Sotres A, Morán A. Cheese whey co-digestion treatment in a tubular system: microbiological behaviour along the axial axis. Biomass Conv Bioref . [DOI: 10.1007/s13399-020-00988-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
35 Gameiro T, Novais RM, Correia CL, Carvalheiras J, Seabra MP, Labrincha JA, Duarte AC, Capela I. Red mud-based inorganic polymer spheres: Innovative and environmentally friendly anaerobic digestion enhancers. Bioresour Technol 2020;316:123904. [PMID: 32736181 DOI: 10.1016/j.biortech.2020.123904] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
36 de Albuquerque JN, Paulinetti AP, Lovato G, Albanez R, Ratusznei SM, Rodrigues JAD. Anaerobic Sequencing Batch Reactors Co-digesting Whey and Glycerin as a Possible Solution for Small and Mid-size Dairy Industries: Environmental Compliance and Methane Production. Appl Biochem Biotechnol 2020;192:979-98. [PMID: 32617846 DOI: 10.1007/s12010-020-03372-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
37 Elleuch L, Salem-Berrabah OB, Cherni Y, Sghaier-Hammami B, Kasmi M, Botta C, Ouerghi I, Franciosa I, Cocolin L, Trabelsi I, Chatti A. A new practical approach for the biological treatment of a mixture of cheese whey and white wastewaters using Kefir grains. Environ Sci Pollut Res Int 2020;27:33127-39. [PMID: 32529610 DOI: 10.1007/s11356-020-09549-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Hua D, Fan Q, Zhao Y, Xu H, Chen L, Li Y. Comparison of methanogenic potential of wood vinegar with gradient loads in batch and continuous anaerobic digestion and microbial community analysis. Sci Total Environ 2020;739:139943. [PMID: 32534316 DOI: 10.1016/j.scitotenv.2020.139943] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 6.3] [Reference Citation Analysis]
39 de Carvalho CT, de Oliveira Júnior SD, de Brito Lima WB, de Medeiros FGM, de Sá Leitão ALO, Dos Santos ES, de Macedo GR, de Sousa Júnior FC. Potential of "coalho" cheese whey as lactose source for β-galactosidase and ethanol co-production by Kluyveromyces spp. yeasts. Prep Biochem Biotechnol 2020;50:925-34. [PMID: 32496939 DOI: 10.1080/10826068.2020.1771731] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
40 da Silva Duarte V, Carlot M, Pakroo S, Tarrah A, Lombardi A, Santiago H, Corich V, Giacomini A. Comparative evaluation of cheese whey microbial composition from four Italian cheese factories by viable counts and 16S rRNA gene amplicon sequencing. International Dairy Journal 2020;104:104656. [DOI: 10.1016/j.idairyj.2020.104656] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
41 Charalambous P, Shin J, Shin SG, Vyrides I. Anaerobic digestion of industrial dairy wastewater and cheese whey: Performance of internal circulation bioreactor and laboratory batch test at pH 5-6. Renewable Energy 2020;147:1-10. [DOI: 10.1016/j.renene.2019.08.091] [Cited by in Crossref: 31] [Cited by in F6Publishing: 21] [Article Influence: 10.3] [Reference Citation Analysis]
42 Hausjell J, Miltner M, Herzig C, Limbeck A, Saracevic Z, Saracevic E, Weissensteiner J, Molitor C, Halbwirth H, Spadiut O. Valorisation of cheese whey as substrate and inducer for recombinant protein production in E. coli HMS174(DE3). Bioresource Technology Reports 2019;8:100340. [DOI: 10.1016/j.biteb.2019.100340] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
43 Szaja A, Montusiewicz A. Enhancing the co-digestion efficiency of sewage sludge and cheese whey using brewery spent grain as an additional substrate. Bioresource Technology 2019;291:121863. [DOI: 10.1016/j.biortech.2019.121863] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
44 Fagbohungbe MO, Onyeri CA, Semple KT. Co-fermentation of whey permeates and cattle slurry using a partitioned up-flow anaerobic digestion tank. Energy 2019;185:567-72. [DOI: 10.1016/j.energy.2019.07.051] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
45 Mainardis M, Goi D. Pilot-UASB reactor tests for anaerobic valorisation of high-loaded liquid substrates in friulian mountain area. Journal of Environmental Chemical Engineering 2019;7:103348. [DOI: 10.1016/j.jece.2019.103348] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
46 Mainardis M, Flaibani S, Trigatti M, Goi D. Techno-economic feasibility of anaerobic digestion of cheese whey in small Italian dairies and effect of ultrasound pre-treatment on methane yield. Journal of Environmental Management 2019;246:557-63. [DOI: 10.1016/j.jenvman.2019.06.014] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 9.5] [Reference Citation Analysis]
47 Soares LA, Silva Rabelo CAB, Sakamoto IK, Silva EL, Varesche MBA. Screening and Bioprospecting of Anaerobic Consortia for Biofuel Production Enhancement from Sugarcane Bagasse. Appl Biochem Biotechnol 2020;190:232-51. [PMID: 31332677 DOI: 10.1007/s12010-019-03074-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]