BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lock JY, Carlson TL, Carrier RL. Mucus models to evaluate the diffusion of drugs and particles. Adv Drug Deliv Rev 2018;124:34-49. [PMID: 29117512 DOI: 10.1016/j.addr.2017.11.001] [Cited by in Crossref: 95] [Cited by in F6Publishing: 82] [Article Influence: 23.8] [Reference Citation Analysis]
Number Citing Articles
1 Shapiro RL, Delong K, Zulfiqar F, Carter D, Better M, Ensign LM. In vitro and ex vivo models for evaluating vaginal drug delivery systems. Advanced Drug Delivery Reviews 2022;191:114543. [DOI: 10.1016/j.addr.2022.114543] [Reference Citation Analysis]
2 Mortensen J, Bohr S, Harloff-helleberg S, Hatzakis N, Saaby L, Nielsen H. Physical and barrier changes in gastrointestinal mucus induced by the permeation enhancer sodium 8-[(2-hydroxybenzoyl)amino]octanoate (SNAC). Journal of Controlled Release 2022;352:163-178. [DOI: 10.1016/j.jconrel.2022.09.034] [Reference Citation Analysis]
3 Liu W, Liu J, Wu T, Smyth H, Cui Y. The effect of mucin on supersaturation of poorly water-soluble drugs with different crystallization behavior and in vitro-in vivo correlation. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103973] [Reference Citation Analysis]
4 Guillaume O, Butnarasu C, Visentin S, Reimhult E. Interplay between biofilm microenvironment and pathogenicity of Pseudomonas aeruginosa in cystic fibrosis lung chronic infection. Biofilm 2022;4:100089. [PMID: 36324525 DOI: 10.1016/j.bioflm.2022.100089] [Reference Citation Analysis]
5 Mccright J, Sinha A, Maisel K. Generating an In Vitro Gut Model with Physiologically Relevant Biophysical Mucus Properties. Cel Mol Bioeng . [DOI: 10.1007/s12195-022-00740-0] [Reference Citation Analysis]
6 Watchorn J, Stuart S, Burns DC, Gu FX. Mechanistic Influence of Polymer Species, Molecular Weight, and Functionalization on Mucin–Polymer Binding Interactions. ACS Appl Polym Mater . [DOI: 10.1021/acsapm.2c01220] [Reference Citation Analysis]
7 Abdelkader A, Preis E, Keck CM. SmartFilm Tablets for Improved Oral Delivery of Poorly Soluble Drugs. Pharmaceutics 2022;14:1918. [PMID: 36145666 DOI: 10.3390/pharmaceutics14091918] [Reference Citation Analysis]
8 Bej R, Haag R. Mucus-Inspired Dynamic Hydrogels: Synthesis and Future Perspectives. J Am Chem Soc 2022. [PMID: 36074739 DOI: 10.1021/jacs.1c13547] [Reference Citation Analysis]
9 Izadifar Z, Sontheimer-phelps A, Lubamba BA, Bai H, Fadel C, Stejskalova A, Ozkan A, Dasgupta Q, Bein A, Junaid A, Gulati A, Mahajan G, Kim S, Logrande NT, Naziripour A, Ingber DE. Modeling mucus physiology and pathophysiology in human organs-on-chips. Advanced Drug Delivery Reviews 2022. [DOI: 10.1016/j.addr.2022.114542] [Reference Citation Analysis]
10 Lundquist P, Khodus G, Niu Z, Thwala LN, McCartney F, Simoff I, Andersson E, Beloqui A, Mabondzo A, Robla S, Webb DL, Hellström PM, Keita ÅV, Sima E, Csaba N, Sundbom M, Preat V, Brayden DJ, Alonso MJ, Artursson P. Barriers to the Intestinal Absorption of Four Insulin-Loaded Arginine-Rich Nanoparticles in Human and Rat. ACS Nano 2022. [PMID: 35998570 DOI: 10.1021/acsnano.2c04330] [Reference Citation Analysis]
11 Azman M, Sabri AH, Anjani QK, Mustaffa MF, Hamid KA. Intestinal Absorption Study: Challenges and Absorption Enhancement Strategies in Improving Oral Drug Delivery. Pharmaceuticals 2022;15:975. [DOI: 10.3390/ph15080975] [Reference Citation Analysis]
12 Sharma M, Prasher P. Selected heterocycles for the development of pyrophosphate mimics. Future Med Chem 2022. [PMID: 35861044 DOI: 10.4155/fmc-2022-0089] [Reference Citation Analysis]
13 Yang L, Hung LY, Zhu Y, Ding S, Margolis KG, Leong KW. Material Engineering in Gut Microbiome and Human Health. Research 2022;2022:1-32. [DOI: 10.34133/2022/9804014] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Jøraholmen MW, Damdimopoulou P, Acharya G, Škalko-Basnet N. Toxicity Assessment of Resveratrol Liposomes-in-Hydrogel Delivery System by EpiVaginalTM Tissue Model. Pharmaceutics 2022;14:1295. [PMID: 35745867 DOI: 10.3390/pharmaceutics14061295] [Reference Citation Analysis]
15 Pednekar DD, Liguori MA, Marques CNH, Zhang T, Zhang N, Zhou Z, Amoako K, Gu H. From Static to Dynamic: A Review on the Role of Mucus Heterogeneity in Particle and Microbial Transport. ACS Biomater Sci Eng 2022. [PMID: 35696291 DOI: 10.1021/acsbiomaterials.2c00182] [Reference Citation Analysis]
16 Watchorn J, Clasky AJ, Prakash G, Johnston IAE, Chen PZ, Gu FX. Untangling Mucosal Drug Delivery: Engineering, Designing, and Testing Nanoparticles to Overcome the Mucus Barrier. ACS Biomater Sci Eng 2022;8:1396-426. [PMID: 35294187 DOI: 10.1021/acsbiomaterials.2c00047] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
17 Huck BC, Murgia X, Frisch S, Hittinger M, Hidalgo A, Loretz B, Lehr CM. Models using native tracheobronchial mucus in the context of pulmonary drug delivery research: Composition, structure and barrier properties. Adv Drug Deliv Rev 2022;183:114141. [PMID: 35149123 DOI: 10.1016/j.addr.2022.114141] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Arber Raviv S, Alyan M, Egorov E, Zano A, Harush MY, Pieters C, Korach-Rechtman H, Saadya A, Kaneti G, Nudelman I, Farkash S, Flikshtain OD, Mekies LN, Koren L, Gal Y, Dor E, Shainsky J, Shklover J, Adir Y, Schroeder A. Lung targeted liposomes for treating ARDS. J Control Release 2022;346:421-33. [PMID: 35358610 DOI: 10.1016/j.jconrel.2022.03.028] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Stokniene J, Varache M, Rye PD, Hill KE, Thomas DW, Ferguson EL. Alginate oligosaccharides enhance diffusion and activity of colistin in a mucin-rich environment. Sci Rep 2022;12:4986. [PMID: 35322119 DOI: 10.1038/s41598-022-08927-1] [Reference Citation Analysis]
20 Cai Y, Liu L, Xia M, Tian C, Wu W, Dong B, Chu X. SEDDS facilitate cinnamaldehyde crossing the mucus barrier: The perspective of mucus and Caco-2/HT29 co-culture models. Int J Pharm 2022;614:121461. [PMID: 35026310 DOI: 10.1016/j.ijpharm.2022.121461] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
21 Mccright J, Sinha A, Maisel K. Generating an in vitro gut model with physiologically relevant biophysical mucus properties.. [DOI: 10.1101/2022.02.18.481062] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Delon L, Gibson R, Prestidge C, Thierry B. Mechanisms of uptake and transport of particulate formulations in the small intestine. J Control Release 2022:S0168-3659(22)00078-5. [PMID: 35149142 DOI: 10.1016/j.jconrel.2022.02.006] [Reference Citation Analysis]
23 Bozzetti V, Senger S. Organoid technologies for the study of intestinal microbiota–host interactions. Trends in Molecular Medicine 2022. [DOI: 10.1016/j.molmed.2022.02.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
24 Ganesh AN, Garad S, Sanchez-felix MV. A biopharmaceutics perspective on oral peptide developability and drug delivery. Oral Delivery of Therapeutic Peptides and Proteins 2022. [DOI: 10.1016/b978-0-12-821061-1.00009-5] [Reference Citation Analysis]
25 Butnarasu C, Caron G, Pacheco DP, Petrini P, Visentin S. Cystic Fibrosis Mucus Model to Design More Efficient Drug Therapies. Mol Pharm 2021. [PMID: 34936359 DOI: 10.1021/acs.molpharmaceut.1c00644] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Elzinga J, van der Lugt B, Belzer C, Steegenga WT. Characterization of increased mucus production of HT29-MTX-E12 cells grown under Semi-Wet interface with Mechanical Stimulation. PLoS One 2021;16:e0261191. [PMID: 34928974 DOI: 10.1371/journal.pone.0261191] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Liu C, Jiang X, Gan Y, Yu M. Engineering nanoparticles to overcome the mucus barrier for drug delivery: Design, evaluation and state-of-the-art. Medicine in Drug Discovery 2021;12:100110. [DOI: 10.1016/j.medidd.2021.100110] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
28 Roosta Z, Falahatkar B, Sajjadi M, Paknejad H, Mandiki SNM, Kestemont P. Comparative study on accuracy of mucosal estradiol-17β, testosterone and 11-ketotestosterone, for maturity, and cutaneous vitellogenin gene expression in goldfish (Carassius auratus). J Fish Biol 2021. [PMID: 34822181 DOI: 10.1111/jfb.14963] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Zandanel C, Ponchel G, Noiray M, Vauthier C. Nanoparticles facing the gut barrier: Retention or mucosal absorption? Mechanisms and dependency to nanoparticle characteristics. Int J Pharm 2021;609:121147. [PMID: 34600059 DOI: 10.1016/j.ijpharm.2021.121147] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
30 Xu H, Cai L, Hufnagel S, Cui Z. Intranasal vaccine: Factors to consider in research and development. Int J Pharm 2021;609:121180. [PMID: 34637935 DOI: 10.1016/j.ijpharm.2021.121180] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 17.0] [Reference Citation Analysis]
31 Wright L, Joyce P, Barnes TJ, Prestidge CA. Mimicking the Gastrointestinal Mucus Barrier: Laboratory-Based Approaches to Facilitate an Enhanced Understanding of Mucus Permeation. ACS Biomater Sci Eng 2021. [PMID: 34784462 DOI: 10.1021/acsbiomaterials.1c00814] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
32 O'Farrell C, Stamatopoulos K, Simmons M, Batchelor H. In vitro models to evaluate ingestible devices: Present status and current trends. Adv Drug Deliv Rev 2021;178:113924. [PMID: 34390774 DOI: 10.1016/j.addr.2021.113924] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
33 Helena Macedo M, Baião A, Pinto S, Barros AS, Almeida H, Almeida A, das Neves J, Sarmento B. Mucus-producing 3D cell culture models. Adv Drug Deliv Rev 2021;178:113993. [PMID: 34619286 DOI: 10.1016/j.addr.2021.113993] [Reference Citation Analysis]
34 Bhattacharjee S. On Harvesting and Handling of Porcine Jejunal Mucus: A Few Tricks of the Trade. J Pharm Sci 2021:S0022-3549(21)00567-0. [PMID: 34706284 DOI: 10.1016/j.xphs.2021.10.023] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Hentschel V, Seufferlein T, Armacki M. Intestinal organoids in co-culture: Redefining the boundaries of gut mucosa ex vivo modeling. Am J Physiol Gastrointest Liver Physiol 2021. [PMID: 34643092 DOI: 10.1152/ajpgi.00043.2021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Kumar S, Taneichi T, Fukuoka T, Namura K, Suzuki M. Study on transport of molecules in gel by surface-enhanced Raman spectroscopy. Cellulose 2021;28:10803-13. [DOI: 10.1007/s10570-021-04249-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
37 Marczynski M, Lieleg O. Forgotten but not gone: Particulate matter as contaminations of mucosal systems. Biophysics Rev 2021;2:031302. [DOI: 10.1063/5.0054075] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Zhang W, Chen L, Cui M, Xie L, Xi Z, Wang Y, Shen X, Xu L. Successively Triggered Rod-shaped Protocells for Enhanced Tumor Chemo-Photothermal Therapy. Eur J Pharm Biopharm 2021:S0939-6411(21)00222-8. [PMID: 34461213 DOI: 10.1016/j.ejpb.2021.08.012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
39 Bao X, Qian K, Yao P. Insulin- and cholic acid-loaded zein/casein-dextran nanoparticles enhance the oral absorption and hypoglycemic effect of insulin. J Mater Chem B 2021;9:6234-45. [PMID: 34328161 DOI: 10.1039/d1tb00806d] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
40 Xu Y, Shrestha N, Préat V, Beloqui A. An overview of in vitro, ex vivo and in vivo models for studying the transport of drugs across intestinal barriers. Adv Drug Deliv Rev 2021;175:113795. [PMID: 33989702 DOI: 10.1016/j.addr.2021.05.005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 13.0] [Reference Citation Analysis]
41 Lee DF, Lethem MI, Lansley AB. A comparison of three mucus-secreting airway cell lines (Calu-3, SPOC1 and UNCN3T) for use as biopharmaceutical models of the nose and lung. Eur J Pharm Biopharm 2021;167:159-74. [PMID: 34332033 DOI: 10.1016/j.ejpb.2021.07.016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
42 Chong HB, Youn J, Shin W, Kim HJ, Kim DS. Multiplex recreation of human intestinal morphogenesis on a multi-well insert platform by basolateral convective flow. Lab Chip 2021. [PMID: 34323906 DOI: 10.1039/d1lc00404b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
43 Martinez MR, Mendoza R, Perry D, Gabutan E, Fyke W, Faber E, Saggi SJ, Tam J, Chico-calero I, Centner H, Engelthaler DM, Goetz LH, Mcdaniel TK, Murakami N, Libien J, Ingber DE, Novak R. Low cost, injection molded, nasopharyngeal swabs for addressing global diagnostic supply shortages.. [DOI: 10.1101/2021.07.19.21260235] [Reference Citation Analysis]
44 Peng K, Gao Y, Angsantikul P, LaBarbiera A, Goetz M, Curreri AM, Rodrigues D, Tanner EEL, Mitragotri S. Modulation of Gastrointestinal Mucus Properties with Ionic Liquids for Drug Delivery. Adv Healthc Mater 2021;10:e2002192. [PMID: 34050617 DOI: 10.1002/adhm.202002192] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
45 Wang X, Liu S, Guan Y, Ding J, Ma C, Xie Z. Vaginal drug delivery approaches for localized management of cervical cancer. Adv Drug Deliv Rev 2021;174:114-26. [PMID: 33857555 DOI: 10.1016/j.addr.2021.04.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
46 Li XG, Chen MX, Zhao SQ, Wang XQ. Intestinal Models for Personalized Medicine: from Conventional Models to Microfluidic Primary Intestine-on-a-chip. Stem Cell Rev Rep 2021. [PMID: 34181185 DOI: 10.1007/s12015-021-10205-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
47 Rao R, Liu X, Li Y, Tan X, Zhou H, Bai X, Yang X, Liu W. Bioinspired zwitterionic polyphosphoester modified porous silicon nanoparticles for efficient oral insulin delivery. Biomater Sci 2021;9:685-99. [PMID: 33330897 DOI: 10.1039/d0bm01772h] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
48 Frisch S, Boese A, Huck B, Horstmann JC, Ho DK, Schwarzkopf K, Murgia X, Loretz B, de Souza Carvalho-Wodarz C, Lehr CM. A pulmonary mucus surrogate for investigating antibiotic permeation and activity against Pseudomonas aeruginosa biofilms. J Antimicrob Chemother 2021;76:1472-9. [PMID: 33712824 DOI: 10.1093/jac/dkab068] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
49 Xia F, Chen Z, Zhu Q, Qi J, Dong X, Zhao W, Wu W, Lu Y. Gastrointestinal lipolysis and trans-epithelial transport of SMEDDS via oral route. Acta Pharm Sin B 2021;11:1010-20. [PMID: 33996413 DOI: 10.1016/j.apsb.2021.03.006] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
50 Vinarov Z, Abrahamsson B, Artursson P, Batchelor H, Berben P, Bernkop-Schnürch A, Butler J, Ceulemans J, Davies N, Dupont D, Flaten GE, Fotaki N, Griffin BT, Jannin V, Keemink J, Kesisoglou F, Koziolek M, Kuentz M, Mackie A, Meléndez-Martínez AJ, McAllister M, Müllertz A, O'Driscoll CM, Parrott N, Paszkowska J, Pavek P, Porter CJH, Reppas C, Stillhart C, Sugano K, Toader E, Valentová K, Vertzoni M, De Wildt SN, Wilson CG, Augustijns P. Current challenges and future perspectives in oral absorption research: An opinion of the UNGAP network. Adv Drug Deliv Rev 2021;171:289-331. [PMID: 33610694 DOI: 10.1016/j.addr.2021.02.001] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 38.0] [Reference Citation Analysis]
51 Xu Y, Michalowski CB, Beloqui A. Advances in lipid carriers for drug delivery to the gastrointestinal tract. Current Opinion in Colloid & Interface Science 2021;52:101414. [DOI: 10.1016/j.cocis.2020.101414] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 16.0] [Reference Citation Analysis]
52 Le-Vinh B, Steinbring C, Wibel R, Friedl JD, Bernkop-Schnürch A. Size shifting of solid lipid nanoparticle system triggered by alkaline phosphatase for site specific mucosal drug delivery. Eur J Pharm Biopharm 2021;163:109-19. [PMID: 33775852 DOI: 10.1016/j.ejpb.2021.03.012] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
53 Wang J, Hanafy MS, Xu H, Leal J, Zhai Y, Ghosh D, Williams Iii RO, David Charles Smyth H, Cui Z. Aerosolizable siRNA-encapsulated solid lipid nanoparticles prepared by thin-film freeze-drying for potential pulmonary delivery. International Journal of Pharmaceutics 2021;596:120215. [DOI: 10.1016/j.ijpharm.2021.120215] [Cited by in Crossref: 23] [Cited by in F6Publishing: 30] [Article Influence: 23.0] [Reference Citation Analysis]
54 Jia Z, Guo Z, Yang CT, Prestidge C, Thierry B. "Mucus-on-Chip": A new tool to study the dynamic penetration of nanoparticulate drug carriers into mucus. Int J Pharm 2021;598:120391. [PMID: 33621642 DOI: 10.1016/j.ijpharm.2021.120391] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
55 Ali J, Bong Lee J, Gittings S, Iachelini A, Bennett J, Cram A, Garnett M, Roberts CJ, Gershkovich P. Development and optimisation of simulated salivary fluid for biorelevant oral cavity dissolution. Eur J Pharm Biopharm 2021;160:125-33. [PMID: 33524535 DOI: 10.1016/j.ejpb.2021.01.017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
56 Plaza-Oliver M, Santander-Ortega MJ, Lozano MV. Current approaches in lipid-based nanocarriers for oral drug delivery. Drug Deliv Transl Res 2021;11:471-97. [PMID: 33528830 DOI: 10.1007/s13346-021-00908-7] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 29.0] [Reference Citation Analysis]
57 das Neves J, Sverdlov Arzi R, Sosnik A. Molecular and cellular cues governing nanomaterial-mucosae interactions: from nanomedicine to nanotoxicology. Chem Soc Rev 2020;49:5058-100. [PMID: 32538405 DOI: 10.1039/c8cs00948a] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 27.0] [Reference Citation Analysis]
58 Cho IS. Mucoadhesive polymer for M-cell targeting as oral vaccine delivery vehicle. Bioinspired and Biomimetic Materials for Drug Delivery 2021. [DOI: 10.1016/b978-0-12-821352-0.00004-6] [Reference Citation Analysis]
59 Zhao C, Cai L, Chen H, Tan H, Yan D. Oral biomaterials for intestinal regulation. Engineered Regeneration 2021;2:116-32. [DOI: 10.1016/j.engreg.2021.09.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
60 Enlo-scott Z, Swedrowska M, Forbes B. Epithelial permeability and drug absorption in the lungs. Inhaled Medicines. Elsevier; 2021. pp. 267-99. [DOI: 10.1016/b978-0-12-814974-4.00004-3] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
61 Joyner K, Yang S, Duncan GA. Microrheology for biomaterial design. APL Bioeng 2020;4:041508. [PMID: 33415310 DOI: 10.1063/5.0013707] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
62 Poletti M, Arnauts K, Ferrante M, Korcsmaros T. Organoid-based Models to Study the Role of Host-microbiota Interactions in IBD. J Crohns Colitis 2021;15:1222-35. [PMID: 33341879 DOI: 10.1093/ecco-jcc/jjaa257] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
63 Dan N, Samanta K, Almoazen H. An Update on Pharmaceutical Strategies for Oral Delivery of Therapeutic Peptides and Proteins in Adults and Pediatrics. Children (Basel) 2020;7:E307. [PMID: 33352795 DOI: 10.3390/children7120307] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
64 Zhang L, Li Y, Wei F, Liu H, Wang Y, Zhao W, Dong Z, Ma T, Wang Q. Transdermal Delivery of Salmon Calcitonin Using a Dissolving Microneedle Array: Characterization, Stability, and In vivo Pharmacodynamics. AAPS PharmSciTech 2020;22:1. [PMID: 33215299 DOI: 10.1208/s12249-020-01865-z] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
65 Ho DK, Christmann R, Murgia X, De Rossi C, Frisch S, Koch M, Schaefer UF, Loretz B, Desmaele D, Couvreur P, Lehr CM. Synthesis and Biopharmaceutical Characterization of Amphiphilic Squalenyl Derivative Based Versatile Drug Delivery Platform. Front Chem 2020;8:584242. [PMID: 33195079 DOI: 10.3389/fchem.2020.584242] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
66 Barducci L, Norton JC, Sarker S, Mohammed S, Jones R, Valdastri P, Terry BS. Fundamentals of the gut for capsule engineers. Prog Biomed Eng 2020;2:042002. [DOI: 10.1088/2516-1091/abab4c] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
67 Zhang Y, Thanou M, Vllasaliu D. Exploiting disease-induced changes for targeted oral delivery of biologics and nanomedicines in inflammatory bowel disease. Eur J Pharm Biopharm 2020;155:128-38. [PMID: 32853696 DOI: 10.1016/j.ejpb.2020.08.017] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
68 Wang Y, Pi C, Feng X, Hou Y, Zhao L, Wei Y. The Influence of Nanoparticle Properties on Oral Bioavailability of Drugs. Int J Nanomedicine 2020;15:6295-310. [PMID: 32943863 DOI: 10.2147/IJN.S257269] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 12.5] [Reference Citation Analysis]
69 Shirazi J, Donzanti MJ, Nelson KM, Zurakowski R, Fromen CA, Gleghorn JP. Significant Unresolved Questions and Opportunities for Bioengineering in Understanding and Treating COVID-19 Disease Progression. Cell Mol Bioeng 2020;:1-26. [PMID: 32837585 DOI: 10.1007/s12195-020-00637-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
70 Kämpfer AAM, Busch M, Schins RPF. Advanced In Vitro Testing Strategies and Models of the Intestine for Nanosafety Research. Chem Res Toxicol 2020;33:1163-78. [PMID: 32383381 DOI: 10.1021/acs.chemrestox.0c00079] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 11.5] [Reference Citation Analysis]
71 Ambrosini YM, Shin W, Min S, Kim HJ. Microphysiological Engineering of Immune Responses in Intestinal Inflammation. Immune Netw 2020;20:e13. [PMID: 32395365 DOI: 10.4110/in.2020.20.e13] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
72 Liu J, Tu L, Cheng M, Feng J, Jin Y. Mechanisms for oral absorption enhancement of drugs by nanocrystals. Journal of Drug Delivery Science and Technology 2020;56:101607. [DOI: 10.1016/j.jddst.2020.101607] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 10.0] [Reference Citation Analysis]
73 Homayun B, Choi H. Halloysite nanotube-embedded microparticles for intestine-targeted co-delivery of biopharmaceuticals. International Journal of Pharmaceutics 2020;579:119152. [DOI: 10.1016/j.ijpharm.2020.119152] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
74 Falavigna M, Stein PC, Flaten GE, di Cagno MP. Impact of Mucin on Drug Diffusion: Development of a Straightforward in Vitro Method for the Determination of Drug Diffusivity in the Presence of Mucin. Pharmaceutics 2020;12:E168. [PMID: 32079348 DOI: 10.3390/pharmaceutics12020168] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
75 Parvathaneni V, Kulkarni NS, Gupta V. Current Status and Perspectives in Mucosal Drug Delivery of Nanotherapeutic Systems. Mucosal Delivery of Drugs and Biologics in Nanoparticles 2020. [DOI: 10.1007/978-3-030-35910-2_4] [Reference Citation Analysis]
76 Shah NK, Torrico Guzmán EA, Wang Z, Meenach SA. Routes of administration for nanocarriers. Nanoparticles for Biomedical Applications 2020. [DOI: 10.1016/b978-0-12-816662-8.00006-0] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
77 Maguire L, Stefferson M, Betterton MD, Hough LE. Design principles of selective transport through biopolymer barriers. Phys Rev E 2019;100:042414. [PMID: 31770897 DOI: 10.1103/PhysRevE.100.042414] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
78 Macierzanka A, Mackie AR, Krupa L. Permeability of the small intestinal mucus for physiologically relevant studies: Impact of mucus location and ex vivo treatment. Sci Rep 2019;9:17516. [PMID: 31772308 DOI: 10.1038/s41598-019-53933-5] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 8.7] [Reference Citation Analysis]
79 Sontheimer-Phelps A, Chou DB, Tovaglieri A, Ferrante TC, Duckworth T, Fadel C, Frismantas V, Sutherland AD, Jalili-Firoozinezhad S, Kasendra M, Stas E, Weaver JC, Richmond CA, Levy O, Prantil-Baun R, Breault DT, Ingber DE. Human Colon-on-a-Chip Enables Continuous In Vitro Analysis of Colon Mucus Layer Accumulation and Physiology. Cell Mol Gastroenterol Hepatol 2020;9:507-26. [PMID: 31778828 DOI: 10.1016/j.jcmgh.2019.11.008] [Cited by in Crossref: 76] [Cited by in F6Publishing: 80] [Article Influence: 25.3] [Reference Citation Analysis]
80 Duan M, Liu L, Da G, Géhin E, Nielsen PV, Weinreich UM, Lin B, Wang Y, Zhang T, Sun W. Measuring the administered dose of particles on the facial mucosa of a realistic human model. Indoor Air 2019;30:108-16. [DOI: 10.1111/ina.12612] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
81 Pai RV, Monpara JD, Vavia PR. Exploring molecular dynamics simulation to predict binding with ocular mucin: An in silico approach for screening mucoadhesive materials for ocular retentive delivery systems. Journal of Controlled Release 2019;309:190-202. [DOI: 10.1016/j.jconrel.2019.07.037] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 8.0] [Reference Citation Analysis]
82 Sontheimer-phelps A, Chou DB, Tovaglieri A, Ferrante TC, Duckworth T, Fadel C, Frismantas V, Jalili-firoozinezhad S, Kasendra M, Stas E, Weaver JC, Richmond CA, Levy O, Prantil-baun R, Breault DT, Ingber DE. Human colon-on-a-chip enables continuous in vitro analysis of colon mucus layer accumulation and physiology.. [DOI: 10.1101/740423] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
83 Huck BC, Hartwig O, Biehl A, Schwarzkopf K, Wagner C, Loretz B, Murgia X, Lehr C. Macro- and Microrheological Properties of Mucus Surrogates in Comparison to Native Intestinal and Pulmonary Mucus. Biomacromolecules 2019;20:3504-12. [DOI: 10.1021/acs.biomac.9b00780] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 8.3] [Reference Citation Analysis]
84 Galura GM, Chavez LO, Robles A, Mccallum R. Gastroduodenal Injury: Role of Protective Factors. Curr Gastroenterol Rep 2019;21. [DOI: 10.1007/s11894-019-0701-x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
85 Ude VC, Brown DM, Stone V, Johnston HJ. Using 3D gastrointestinal tract in vitro models with microfold cells and mucus secreting ability to assess the hazard of copper oxide nanomaterials. J Nanobiotechnology 2019;17:70. [PMID: 31113462 DOI: 10.1186/s12951-019-0503-1] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 7.7] [Reference Citation Analysis]
86 O'Driscoll CM, Bernkop-Schnürch A, Friedl JD, Préat V, Jannin V. Oral delivery of non-viral nucleic acid-based therapeutics - do we have the guts for this? Eur J Pharm Sci 2019;133:190-204. [PMID: 30946964 DOI: 10.1016/j.ejps.2019.03.027] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 13.0] [Reference Citation Analysis]
87 Bunea AI, Chouliara M, Harloff-Helleberg S, Bañas AR, Engay EL, Glückstad J. Optical catapulting of microspheres in mucus models-toward overcoming the mucus biobarrier. J Biomed Opt 2019;24:1-9. [PMID: 30825297 DOI: 10.1117/1.JBO.24.3.035001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
88 Bunea A, Jakobsen MH, Engay E, Bañas AR, Glückstad J. Optimization of 3D-printed microstructures for investigating the properties of the mucus biobarrier. Micro and Nano Engineering 2019;2:41-7. [DOI: 10.1016/j.mne.2018.12.004] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
89 Sardelli L, Pacheco DP, Ziccarelli A, Tunesi M, Caspani O, Fusari A, Briatico Vangosa F, Giordano C, Petrini P. Towards bioinspired in vitro models of intestinal mucus. RSC Adv 2019;9:15887-99. [DOI: 10.1039/c9ra02368b] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
90 Alcázar-Cano N, Delgado-Buscalioni R. A general phenomenological relation for the subdiffusive exponent of anomalous diffusion in disordered media. Soft Matter 2018;14:9937-49. [PMID: 30488923 DOI: 10.1039/c8sm01961d] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
91 Shahzadi I, Dizdarević A, Efiana NA, Matuszczak B, Bernkop-schnürch A. Trypsin decorated self-emulsifying drug delivery systems (SEDDS): Key to enhanced mucus permeation. Journal of Colloid and Interface Science 2018;531:253-60. [DOI: 10.1016/j.jcis.2018.07.057] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
92 Stürmer R, Harder S, Schlüter H, Hoffmann W. Commercial Porcine Gastric Mucin Preparations, also Used as Artificial Saliva, are a Rich Source for the Lectin TFF2: In Vitro Binding Studies. Chembiochem 2018;19:2598-608. [PMID: 30371971 DOI: 10.1002/cbic.201800622] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
93 Liu W, Mo F, Jiang G, Liang H, Ma C, Li T, Zhang L, Xiong L, Mariottini GL, Zhang J, Xiao L. Stress-Induced Mucus Secretion and Its Composition by a Combination of Proteomics and Metabolomics of the Jellyfish Aurelia coerulea. Mar Drugs 2018;16:E341. [PMID: 30231483 DOI: 10.3390/md16090341] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
94 Vllasaliu D, Thanou M, Stolnik S, Fowler R. Recent advances in oral delivery of biologics: nanomedicine and physical modes of delivery. Expert Opin Drug Deliv 2018;15:759-70. [PMID: 30033780 DOI: 10.1080/17425247.2018.1504017] [Cited by in Crossref: 41] [Cited by in F6Publishing: 33] [Article Influence: 10.3] [Reference Citation Analysis]
95 Zhang Y, Li H, Wang Q, Hao X, Li H, Sun H, Han L, Zhang Z, Zou Q, Sun X. Rationally Designed Self-Assembling Nanoparticles to Overcome Mucus and Epithelium Transport Barriers for Oral Vaccines against Helicobacter pylori. Adv Funct Mater 2018;28:1802675. [DOI: 10.1002/adfm.201802675] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
96 Witten J, Samad T, Ribbeck K. Selective permeability of mucus barriers. Curr Opin Biotechnol 2018;52:124-33. [PMID: 29674157 DOI: 10.1016/j.copbio.2018.03.010] [Cited by in Crossref: 66] [Cited by in F6Publishing: 68] [Article Influence: 16.5] [Reference Citation Analysis]
97 das Neves J, Sarmento B. Technological strategies to overcome the mucus barrier in mucosal drug delivery. Adv Drug Deliv Rev 2018;124:1-2. [PMID: 29429608 DOI: 10.1016/j.addr.2018.01.014] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
98 Marczynski M, Käsdorf BT, Altaner B, Wenzler A, Gerland U, Lieleg O. Transient binding promotes molecule penetration into mucin hydrogels by enhancing molecular partitioning. Biomater Sci 2018;6:3373-87. [DOI: 10.1039/c8bm00664d] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 8.0] [Reference Citation Analysis]