BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wheeler JA, Clinkenbeard EL. Regulation of Fibroblast Growth Factor 23 by Iron, EPO, and HIF. Curr Mol Biol Rep 2019;5:8-17. [PMID: 31218207 DOI: 10.1007/s40610-019-0110-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
Number Citing Articles
1 Simic P, Babitt JL. Regulation of FGF23: Beyond Bone. Curr Osteoporos Rep 2021. [PMID: 34757587 DOI: 10.1007/s11914-021-00703-w] [Reference Citation Analysis]
2 Lin YC, Wu CY, Hu CH, Pai TW, Chen YR, Wang WD. Integrated Hypoxia Signaling and Oxidative Stress in Developmental Neurotoxicity of Benzo[a]Pyrene in Zebrafish Embryos. Antioxidants (Basel) 2020;9:E731. [PMID: 32796530 DOI: 10.3390/antiox9080731] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
3 Rund D. Intravenous iron: do we adequately understand the short- and long-term risks in clinical practice? Br J Haematol 2021;193:466-80. [PMID: 33216989 DOI: 10.1111/bjh.17202] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Braithwaite VS, Mwangi MN, Jones KS, Demir AY, Prentice A, Prentice AM, Andang'o PEA, Verhoef H. Antenatal iron supplementation, FGF23, and bone metabolism in Kenyan women and their offspring: secondary analysis of a randomized controlled trial. Am J Clin Nutr 2021;113:1104-14. [PMID: 33675347 DOI: 10.1093/ajcn/nqaa417] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Tamamura Y, Sakamoto K, Katsube KI, Yamaguchi A. Notch signaling is involved in Fgf23 upregulation in osteocytes. Biochem Biophys Res Commun 2019;518:233-8. [PMID: 31420162 DOI: 10.1016/j.bbrc.2019.08.038] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
6 Bejder J, Robach P, Lundby A, Cornu C, Sallet P, Cairo G, Lundby C. Low doses of recombinant human erythropoietin does not affect C‐terminal FGF23 in healthy men. Drug Test Anal 2020;12:975-9. [DOI: 10.1002/dta.2795] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Liesen MP, Noonan ML, Ni P, Agoro R, Hum JM, Clinkenbeard EL, Damrath JG, Wallace JM, Swallow EA, Allen MR, White KE. Segregating the effects of ferric citrate-mediated iron utilization and FGF23 in a mouse model of CKD. Physiol Rep 2022;10:e15307. [PMID: 35656701 DOI: 10.14814/phy2.15307] [Reference Citation Analysis]
8 Arnold A, Dennison E, Kovacs CS, Mannstadt M, Rizzoli R, Brandi ML, Clarke B, Thakker RV. Hormonal regulation of biomineralization. Nat Rev Endocrinol 2021;17:261-75. [PMID: 33727709 DOI: 10.1038/s41574-021-00477-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
9 Zhang R, Wang SY, Yang F, Ma S, Lu X, Kan C, Zhang JB. Crosstalk of fibroblast growth factor 23 and anemia-related factors during the development and progression of CKD (Review). Exp Ther Med 2021;22:1159. [PMID: 34504604 DOI: 10.3892/etm.2021.10593] [Reference Citation Analysis]
10 Ikeda Y. Novel roles of HIF-PHIs in chronic kidney disease: the link between iron metabolism, kidney function, and FGF23. Kidney Int 2021;100:14-6. [PMID: 34154707 DOI: 10.1016/j.kint.2021.04.030] [Reference Citation Analysis]
11 Rausch S, Föller M. The regulation of FGF23 under physiological and pathophysiological conditions. Pflugers Arch 2022. [PMID: 35084563 DOI: 10.1007/s00424-022-02668-w] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Xie Y, Su N, Yang J, Tan Q, Huang S, Jin M, Ni Z, Zhang B, Zhang D, Luo F, Chen H, Sun X, Feng JQ, Qi H, Chen L. FGF/FGFR signaling in health and disease. Signal Transduct Target Ther 2020;5:181. [PMID: 32879300 DOI: 10.1038/s41392-020-00222-7] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 16.5] [Reference Citation Analysis]
13 Michigami T, Tachikawa K, Yamazaki M, Nakanishi T, Kawai M, Ozono K. Growth-related skeletal changes and alterations in phosphate metabolism. Bone 2022. [DOI: 10.1016/j.bone.2022.116430] [Reference Citation Analysis]
14 Usui T, Zhao J, Fuller DS, Hanafusa N, Hasegawa T, Fujino H, Nomura T, Zee J, Young E, Robinson BM, Nangaku M. Association of erythropoietin resistance and fibroblast growth factor 23 in dialysis patients: Results from the Japanese Dialysis Outcomes and Practice Patterns Study. Nephrology (Carlton) 2021;26:46-53. [PMID: 32743932 DOI: 10.1111/nep.13765] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Ammar YA, Maharem DA, Mohamed AH, Khalil GI, Shams-eldin RS, Dwedar FI. Fibroblast growth factor-23 rs7955866 polymorphism and risk of chronic kidney disease. Egypt J Med Hum Genet 2022;23. [DOI: 10.1186/s43042-022-00289-7] [Reference Citation Analysis]
16 Agoro R, White KE. Anemia and fibroblast growth factor 23 elevation in chronic kidney disease: homeostatic interactions and emerging therapeutics. Curr Opin Nephrol Hypertens 2022;31:320-5. [PMID: 35703246 DOI: 10.1097/MNH.0000000000000797] [Reference Citation Analysis]
17 Zhang J, Zhao H, Yao G, Qiao P, Li L, Wu S. Therapeutic potential of iron chelators on osteoporosis and their cellular mechanisms. Biomed Pharmacother 2021;137:111380. [PMID: 33601146 DOI: 10.1016/j.biopha.2021.111380] [Cited by in F6Publishing: 1] [Reference Citation Analysis]