1 |
Wang Z, Peng X, Xia A, Shah AA, Yan H, Huang Y, Zhu X, Zhu X, Liao Q. Comparison of machine learning methods for predicting the methane production from anaerobic digestion of lignocellulosic biomass. Energy 2022. [DOI: 10.1016/j.energy.2022.125883] [Reference Citation Analysis]
|
2 |
Li J, Lei Y, Pu X, Liu Y, Mei Z, Tang Y. Improving biomethane fermentation through trace elements-driven microbial changes: Different effects of Fe0 combined with Co/Ni. Process Biochemistry 2022;121:197-206. [DOI: 10.1016/j.procbio.2022.07.004] [Reference Citation Analysis]
|
3 |
Ervasti S, Kostensalo J, Tampio E. Effects of seasonal and local co-feedstocks on the performance of continuous anaerobic digestion of cattle slurry. Bioresource Technology Reports 2022;19:101207. [DOI: 10.1016/j.biteb.2022.101207] [Reference Citation Analysis]
|
4 |
Wei D, Liu J, Deng C, Wang C, Zhao X, Kai W, Fang Y, Yang B, Wudi Z. Chlorophyll changes during anaerobic digestion of cabbage waste. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2021. [DOI: 10.1080/15567036.2021.2009063] [Reference Citation Analysis]
|