BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cui Y, Jiang X, Hao M, Qu X, Hu T. New advances in exopolysaccharides production of Streptococcus thermophilus. Arch Microbiol 2017;199:799-809. [PMID: 28357474 DOI: 10.1007/s00203-017-1366-1] [Cited by in Crossref: 22] [Cited by in F6Publishing: 27] [Article Influence: 4.4] [Reference Citation Analysis]
Number Citing Articles
1 Wa Y, Zhang C, Sun G, Qu H, Chen D, Huang Y, Gu R. Effect of amino acids on free exopolysaccharide biosynthesis by Streptococcus thermophilus 937 in chemically defined medium. J Dairy Sci 2022:S0022-0302(22)00340-X. [PMID: 35691747 DOI: 10.3168/jds.2022-21814] [Reference Citation Analysis]
2 Jiang TM, Liang Y, Liu B, Liu BY, Li X, Zhao JY, Li JT, Liu YP, Chen LJ. Changes in the intestinal microbiota of healthy adults induced by brown yogurt and relationships of bacterial taxa with specific components. Food Funct 2022;13:5701-14. [PMID: 35521810 DOI: 10.1039/d1fo03885k] [Reference Citation Analysis]
3 Zhou Y, Cui Y, Qu X. Comparative transcriptome analysis for the biosynthesis of antioxidant exopolysaccharide in Streptococcus thermophilus CS6. J Sci Food Agric 2022. [PMID: 35318677 DOI: 10.1002/jsfa.11886] [Reference Citation Analysis]
4 Wu J, Han X, Ye M, Li Y, Wang X, Zhong Q. Exopolysaccharides synthesized by lactic acid bacteria: biosynthesis pathway, structure-function relationship, structural modification and applicability. Crit Rev Food Sci Nutr 2022;:1-22. [PMID: 35213280 DOI: 10.1080/10408398.2022.2043822] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Zhou Y, Cui Y, Suo C, Wang Q, Qu X. Structure, physicochemical characterization, and antioxidant activity of the highly arabinose-branched exopolysaccharide EPS-M2 from Streptococcus thermophilus CS6. Int J Biol Macromol 2021;192:716-27. [PMID: 34655584 DOI: 10.1016/j.ijbiomac.2021.10.047] [Reference Citation Analysis]
6 Chouchane H, Boutiti S, Ouertani A, Hassen W, Guesmi S, Neifar M, Jelassi H, Sghaier H, Masmoudi ASE, Cherif A. Effect of Gamma Irradiation on Enhanced Biological Activities of Exopolysaccharide from Halomonas desertis G11: Biochemical and Genomic Insights. Polymers (Basel) 2021;13:3798. [PMID: 34771355 DOI: 10.3390/polym13213798] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Zhai Z, Xie S, Zhang H, Yi H, Hao Y. Homologous Over-Expression of Chain Length Determination Protein EpsC Increases the Molecular Weight of Exopolysaccharide in Streptococcus thermophilus 05-34. Front Microbiol 2021;12:696222. [PMID: 34354691 DOI: 10.3389/fmicb.2021.696222] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Xiong Z, Chen H, Song X, Xia Y, Ai L. Rapid isolation of exopolysaccharide-producing Streptococcus thermophilus based on molecular marker screening. J Sci Food Agric 2021. [PMID: 34173230 DOI: 10.1002/jsfa.11398] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Karadeniz DG, Kaskatepe B, Kiymaci ME, Tok KC, Gumustas M, Karaaslan C. Microbial exopolysaccharide production of Streptococcus thermophilus and its antiquorum sensing activity. Arch Microbiol 2021;203:3331-9. [PMID: 33866380 DOI: 10.1007/s00203-021-02313-7] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
10 Li Q, Cheng F, Xu Q, Su Y, Cai X, Zeng F, Zhang Y. The role of probiotics in coronavirus disease-19 infection in Wuhan: A retrospective study of 311 severe patients. Int Immunopharmacol 2021;95:107531. [PMID: 33714884 DOI: 10.1016/j.intimp.2021.107531] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Xu Z, Guo Q, Zhang H, Xiong Z, Zhang X, Ai L. Structural characterisation of EPS of Streptococcus thermophilus S-3 and its application in milk fermentation. Int J Biol Macromol 2021;178:263-9. [PMID: 33639187 DOI: 10.1016/j.ijbiomac.2021.02.173] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Masumuzzaman M, Evivie SE, Ogwu MC, Li B, Du J, Li W, Huo G, Liu F, Wang S. Genomic and in vitro properties of the dairy Streptococcus thermophilus SMQ-301 strain against selected pathogens. Food Funct 2021;12:7017-28. [PMID: 34152341 DOI: 10.1039/d0fo02951c] [Reference Citation Analysis]
13 Riaz Rajoka MS, Wu Y, Mehwish HM, Bansal M, Zhao L. Lactobacillus exopolysaccharides: New perspectives on engineering strategies, physiochemical functions, and immunomodulatory effects on host health. Trends in Food Science & Technology 2020;103:36-48. [DOI: 10.1016/j.tifs.2020.06.003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
14 Dimitrellou D, Solomakou N, Kokkinomagoulos E, Kandylis P. Yogurts Supplemented with Juices from Grapes and Berries. Foods 2020;9:E1158. [PMID: 32825783 DOI: 10.3390/foods9091158] [Cited by in Crossref: 7] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
15 Padmanabhan A, Shah NP. Structural characterization of exopolysaccharide from Streptococcus thermophilus ASCC 1275. J Dairy Sci 2020;103:6830-42. [PMID: 32475665 DOI: 10.3168/jds.2019-17439] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
16 Mizuno H, Tomotsune K, Islam MA, Funabashi R, Albarracin L, Ikeda-Ohtsubo W, Aso H, Takahashi H, Kimura K, Villena J, Sasaki Y, Kitazawa H. Exopolysaccharides From Streptococcus thermophilus ST538 Modulate the Antiviral Innate Immune Response in Porcine Intestinal Epitheliocytes. Front Microbiol 2020;11:894. [PMID: 32508770 DOI: 10.3389/fmicb.2020.00894] [Cited by in Crossref: 3] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
17 Gao Y, Liu Y, Sun M, Zhang H, Mu G, Tuo Y. Physiological function analysis of Lactobacillus plantarum Y44 based on genotypic and phenotypic characteristics. J Dairy Sci 2020;103:5916-30. [PMID: 32418691 DOI: 10.3168/jds.2019-18047] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
18 Hu T, Cui Y, Zhang Y, Qu X, Zhao C. Genome Analysis and Physiological Characterization of Four Streptococcus thermophilus Strains Isolated From Chinese Traditional Fermented Milk. Front Microbiol 2020;11:184. [PMID: 32184766 DOI: 10.3389/fmicb.2020.00184] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
19 Alexandraki V, Kazou M, Blom J, Pot B, Papadimitriou K, Tsakalidou E. Comparative Genomics of Streptococcus thermophilus Support Important Traits Concerning the Evolution, Biology and Technological Properties of the Species. Front Microbiol 2019;10:2916. [PMID: 31956321 DOI: 10.3389/fmicb.2019.02916] [Cited by in Crossref: 10] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
20 Lobo RE, Gómez MI, Font de Valdez G, Torino MI. Physicochemical and antioxidant properties of a gastroprotective exopolysaccharide produced by Streptococcus thermophilus CRL1190. Food Hydrocolloids 2019;96:625-33. [DOI: 10.1016/j.foodhyd.2019.05.036] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
21 Lin T, Chen C, Chen B, Shaw J, Chen Y. Optimal economic productivity of exopolysaccharides from lactic acid bacteria with production possibility curves. Food Sci Nutr 2019;7:2336-44. [PMID: 31367362 DOI: 10.1002/fsn3.1079] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
22 Xiong ZQ, Kong LH, Lai PF, Xia YJ, Liu JC, Li QY, Ai LZ. Genomic and phenotypic analyses of exopolysaccharide biosynthesis in Streptococcus thermophilus S-3. J Dairy Sci 2019;102:4925-34. [PMID: 30928267 DOI: 10.3168/jds.2018-15572] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
23 Zhou Y, Cui Y, Qu X. Exopolysaccharides of lactic acid bacteria: Structure, bioactivity and associations: A review. Carbohydrate Polymers 2019;207:317-32. [DOI: 10.1016/j.carbpol.2018.11.093] [Cited by in Crossref: 74] [Cited by in F6Publishing: 109] [Article Influence: 24.7] [Reference Citation Analysis]
24 Chen Y, Zhang M, Ren F. A Role of Exopolysaccharide Produced by Streptococcus thermophilus in the Intestinal Inflammation and Mucosal Barrier in Caco-2 Monolayer and Dextran Sulphate Sodium-Induced Experimental Murine Colitis. Molecules. 2019;24:pii: E513. [PMID: 30708992 DOI: 10.3390/molecules24030513] [Cited by in Crossref: 16] [Cited by in F6Publishing: 27] [Article Influence: 5.3] [Reference Citation Analysis]
25 Padmanabhan A, Tong Y, Wu Q, Zhang J, Shah NP. Transcriptomic Insights Into the Growth Phase- and Sugar-Associated Changes in the Exopolysaccharide Production of a High EPS-Producing Streptococcus thermophilus ASCC 1275. Front Microbiol 2018;9:1919. [PMID: 30177921 DOI: 10.3389/fmicb.2018.01919] [Cited by in Crossref: 10] [Cited by in F6Publishing: 21] [Article Influence: 2.5] [Reference Citation Analysis]
26 Li B, Ding X, Evivie SE, Jin D, Meng Y, Huo G, Liu F. Short communication: Genomic and phenotypic analyses of exopolysaccharides produced by Streptococcus thermophilus KLDS SM. Journal of Dairy Science 2018;101:106-12. [DOI: 10.3168/jds.2017-13534] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
27 Hu T, Zhang Y, Cui Y, Zhao C, Jiang X, Zhu X, Wang Y, Qu X. Technological properties assessment and two component systems distribution of Streptococcus thermophilus strains isolated from fermented milk. Arch Microbiol 2018;200:567-80. [PMID: 29236144 DOI: 10.1007/s00203-017-1468-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]