1
|
Lin YT, Hong ZJ, Liao GS, Dai MS, Chao TK, Tsai WC, Sung YK, Chiu CH, Chang CK, Yu JC. Unexpected contralateral axillary lymph node metastasis without ipsilateral involvement in triple-negative breast cancer: A case report and review of literature. World J Clin Cases 2025; 13:103571. [DOI: 10.12998/wjcc.v13.i18.103571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Breast cancer is a leading cause of cancer-related mortality among women worldwide, with invasive ductal carcinoma (IDC) being the most prevalent subtype. Lymph node metastasis is the primary prognostic indicator, typically evaluated via biopsy of the ipsilateral sentinel or axillary lymph nodes. Contralateral axillary metastasis (CAM) without ipsilateral involvement is exceedingly rare, particularly in early-stage breast cancer. This report presents a case of CAM in a patient with triple-negative breast cancer (TNBC), underscoring diagnostic and therapeutic complexities.
CASE SUMMARY A 73-year-old female presented with left-sided early-stage IDC in February 2023. Despite a modified radical mastectomy and pathologically negative ipsilateral lymph nodes, a postoperative positron emission tomography (PET) scan detected fluorodeoxyglucose-avid nodes in the contralateral axilla. Biopsy confirmed metastatic ductal carcinoma with triple-negative status, resulting in an upstaged diagnosis of metastatic breast cancer, stage IV, M1. The patient underwent six cycles of adjuvant chemotherapy, with follow-up PET imaging showing regression of the contralateral lesion. This case highlights the importance of advanced imaging in TNBC for precise staging and treatment optimization.
CONCLUSION This case highlights the aggressive nature of TNBC and the need for advanced imaging to ensure accurate staging and effective management.
Collapse
Affiliation(s)
- Yun-Ting Lin
- Department of General Medicine, Tri Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Zhi-Jie Hong
- Division of Traumatology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Guo-Shiou Liao
- Division of General Surgery, Department of Surgery, Tri Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Ming-Shen Dai
- Division of Hematology/Oncology, Department of Internal Medicine, National Defense Medical Center, Taipei 114, Taiwan
| | - Tai-Kuang Chao
- Department of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Wen-Chiuan Tsai
- Department of Pathology, National Defense Medical Center, Taipei 114, Taiwan
| | - Yu-Kai Sung
- Department of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chuang-Hsin Chiu
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Cheng-Kuang Chang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Jyh-Cherng Yu
- Division of General Surgery, Department of Surgery, Tri Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
2
|
Cardoso F, Paluch-Shimon S, Schumacher-Wulf E, Matos L, Gelmon K, Aapro MS, Bajpai J, Barrios CH, Bergh J, Bergsten-Nordström E, Biganzoli L, Cardoso MJ, Carey LA, Chavez-MacGregor M, Chidebe R, Cortés J, Curigliano G, Dent RA, El Saghir NS, Eniu A, Fallowfield L, Francis PA, Franco Millan SX, Gilchrist J, Gligorov J, Gradishar WJ, Haidinger R, Harbeck N, Hu X, Kaur R, Kiely B, Kim SB, Koppikar S, Kuper-Hommel MJJ, Lecouvet FE, Mason G, Mertz SA, Mueller V, Myerson C, Neciosup S, Offersen BV, Ohno S, Pagani O, Partridge AH, Penault-Llorca F, Prat A, Rugo HS, Senkus E, Sledge GW, Swain SM, Thomssen C, Vorobiof DA, Vuylsteke P, Wiseman T, Xu B, Costa A, Norton L, Winer EP. 6th and 7th International consensus guidelines for the management of advanced breast cancer (ABC guidelines 6 and 7). Breast 2024; 76:103756. [PMID: 38896983 PMCID: PMC11231614 DOI: 10.1016/j.breast.2024.103756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
This manuscript describes the Advanced Breast Cancer (ABC) international consensus guidelines updated at the last two ABC international consensus conferences (ABC 6 in 2021, virtual, and ABC 7 in 2023, in Lisbon, Portugal), organized by the ABC Global Alliance. It provides the main recommendations on how to best manage patients with advanced breast cancer (inoperable locally advanced or metastatic), of all breast cancer subtypes, as well as palliative and supportive care. These guidelines are based on available evidence or on expert opinion when a higher level of evidence is lacking. Each guideline is accompanied by the level of evidence (LoE), grade of recommendation (GoR) and percentage of consensus reached at the consensus conferences. Updated diagnostic and treatment algorithms are also provided. The guidelines represent the best management options for patients living with ABC globally, assuming accessibility to all available therapies. Their adaptation (i.e. resource-stratified guidelines) is often needed in settings where access to care is limited.
Collapse
Affiliation(s)
- Fatima Cardoso
- Breast Unit, Champalimaud Clinical Centre/Champalimaud Foundation, and ABC Global Alliance, Lisbon, Portugal.
| | - Shani Paluch-Shimon
- Hadassah University Hospital - Sharett Institute of Oncology, Jerusalem, Israel
| | | | - Leonor Matos
- Breast Unit, Champalimaud Clinical Centre/Champalimaud Foundation, Lisbon, Portugal
| | - Karen Gelmon
- BC Cancer Agency, Department of Medical Oncology, Vancouver, Canada
| | - Matti S Aapro
- Cancer Center, Clinique de Genolier, Genolier, Switzerland
| | | | - Carlos H Barrios
- Latin American Cooperative Oncology Group (LACOG), Grupo Oncoclínicas, Porto Alegre, Brazil
| | - Jonas Bergh
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | | | - Laura Biganzoli
- Department of Oncology, Hospital of Prato - Azienda USL Toscana Centro Prato, Italy and European Society of Breast Cancer Specialists (EUSOMA), Italy
| | - Maria João Cardoso
- Breast Unit, Champalimaud Clinical Centre/Champalimaud Foundation and Lisbon University, Faculty of Medicine, Lisbon, Portugal
| | - Lisa A Carey
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, USA
| | - Mariana Chavez-MacGregor
- Health Services Research, Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, USA and American Society of Clinical Oncology (ASCO), Houston, USA
| | | | - Javier Cortés
- International Breast Cancer Center (IBCC), Madrid and Barcelona, Spain
| | - Giuseppe Curigliano
- European Institute of Oncology, IRCCS, Milano, Italy; Department of Oncology and Hemato-Oncology, University of Milano, Milano, Italy
| | | | - Nagi S El Saghir
- NK Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Alexandru Eniu
- Hôpital Riviera-Chablais, Vaud-Valais Rennaz, Switzerland and European School of Oncology (ESO), United Kingdom
| | - Lesley Fallowfield
- Brighton & Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Prudence A Francis
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Sir Peter MacCallum Department of Oncology, University of Melbourne, Australia
| | | | | | - Joseph Gligorov
- Department of Medical Oncology, Cancer Est APHP Tenon, University Paris VI, Nice/St Paul Guidelines, Paris, France
| | - William J Gradishar
- Northwestern Medicine, Illinois, USA and National Comprehensive Cancer Network (NCCN), USA
| | | | - Nadia Harbeck
- Breast Centre, University of Munich, Munich and Arbeitsgemeinschaft Gynäkologische Onkologie, Kommission Mamma (AGO Guidelines), Germany
| | - Xichun Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ranjit Kaur
- Breast Cancer Welfare Association, Petaling Jaya, Malaysia
| | - Belinda Kiely
- NHMRC Clinical Trials Centre, Sydney Medical School, Sydney, Australia
| | - Sung-Bae Kim
- Asan Medical Centre, Department of Oncology, Seoul, South Korea
| | - Smruti Koppikar
- Lilavati Hospital and Research Centre, Bombay Hospital Institute of Medical Sciences, Asian Cancer Institute, Mumbai, India
| | - Marion J J Kuper-Hommel
- Te Whatu Ora Waikato, Midland Regional Cancer Centre, NZ ABC Guidelines, Hamilton, New Zealand
| | - Frédéric E Lecouvet
- Department of Radiology, Institut Roi Albert II and Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Ginny Mason
- Inflammatory Breast Cancer Research Foundation, West Lafayette, USA
| | - Shirley A Mertz
- MBC US Alliance and Metastatic Breast Cancer Network US, Inverness, USA
| | - Volkmar Mueller
- University Medical Center Hamburg-Eppendorf, Hamburg and Arbeitsgemeinschaft Gynäkologische Onkologie, Kommission Mamma (AGO Guidelines), Germany
| | | | - Silvia Neciosup
- Department of Medical Oncology, National Institute of Neoplastic Diseases, Lima, ABC Latin America Guidelines, Peru
| | - Birgitte V Offersen
- Department of Oncology, Aarhus University Hospital, Aarhus, European Society for Radiotherapy and Oncology (ESTRO), Denmark
| | - Shinji Ohno
- Breast Oncology Centre, Cancer Institute Hospital, Tokyo, Japan
| | - Olivia Pagani
- Hôpital Riviera-Chablais, Vaud-Valais Rennaz, Switzerland
| | - Ann H Partridge
- Dana-Farber Cancer Institute, Department of Medical Oncology and Division of Breast Oncology, Boston, USA and American Society of Clinical Oncology (ASCO), USA
| | - Frédérique Penault-Llorca
- Centre Jean Perrin, Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000, Clermont Ferrand, Nice/St Paul Guidelines, France
| | - Aleix Prat
- Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Hope S Rugo
- Breast Oncology and Clinical Trials Education, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, USA
| | - Elzbieta Senkus
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Gdansk, Poland
| | - George W Sledge
- Division of Oncology, Stanford School of Medicine, Stanford, USA
| | - Sandra M Swain
- Georgetown University Lombardi Comprehensive Cancer Center and MedStar Health, Washington DC, USA
| | - Christoph Thomssen
- Department of Gynaecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale) and Arbeitsgemeinschaft Gynäkologische Onkologie, Kommission Mamma (AGO Guidelines), Germany
| | | | - Peter Vuylsteke
- University of Botswana, Gaborone, Botswana and CHU UCL Namur Hospital, UCLouvain, Belgium
| | - Theresa Wiseman
- The Royal Marsden NHS Foundation Trust, University of Southampton, United Kingdom and European Oncology Nursing Society (EONS), United Kingdom
| | - Binghe Xu
- Department of Medical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Alberto Costa
- European School of Oncology, Milan, Italy and Bellinzona, Switzerland
| | - Larry Norton
- Breast Cancer Programs, Memorial Sloan-Kettering Cancer Centre, New York, USA
| | - Eric P Winer
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
3
|
Chen X, Liu J, Zhang Y, Gao X, Su D. Site-Specific Cascade-Activatable Fluorogenic Nanomicelles Enable Precision and Accuracy Imaging of Pulmonary Metastatic Tumor. JACS AU 2024; 4:2606-2616. [PMID: 39055141 PMCID: PMC11267558 DOI: 10.1021/jacsau.4c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024]
Abstract
The precise localization of metastatic tumors with subtle growth is crucial for timely intervention and improvement of tumor prognosis but remains a paramount challenging. To date, site-specific activation of fluorogenic probes for single-stimulus-based diagnosis typically targets an occult molecular event in a complex biosystem with limited specificity. Herein, we propose a highly specific site-specific cascade-activated strategy to enhance detection accuracy, aiming to achieve the accurate detection of breast cancer (BC) lung metastasis in a cascade manner. Specifically, cascade-activatable NIR fluorogenic nanomicelles HPNs were constructed using ultra-pH-sensitive (UPS) block copolymers as carriers and nitroreductase (NTR)-activated fluorogenic reporters. HPNs exhibit programmable cascade response characteristics by first instantaneous dissociating under in situ tumor acidity, facilitating deep tumor penetration followed by selective fluorescence activation through NTR-mediated enzymatic reaction resulting in high fluorescence ON/OFF contrast. Notably, this unique feature of HPNs enables high-precision diagnosis of orthotopic BC as well as its lung metastases with a remarkable signal-to-background ratio (SBR). This proposed site-specific cascade activation strategy will offer opportunities for a specific diagnosis with high signal fidelity of various insidious metastatic lesions in situ across different diseases.
Collapse
Affiliation(s)
- Xueqian Chen
- Center of Excellence for
Environmental Safety and Biological Effects, Beijing Key Laboratory
for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, P. R. China
| | - Jiatian Liu
- Center of Excellence for
Environmental Safety and Biological Effects, Beijing Key Laboratory
for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yong Zhang
- Center of Excellence for
Environmental Safety and Biological Effects, Beijing Key Laboratory
for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, P. R. China
| | - Xueyun Gao
- Center of Excellence for
Environmental Safety and Biological Effects, Beijing Key Laboratory
for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, P. R. China
| | - Dongdong Su
- Center of Excellence for
Environmental Safety and Biological Effects, Beijing Key Laboratory
for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|
4
|
Zhao X, Gu TY, Xia YP, Gao XM, Chen LJ, Yan LX, Yan XP. Self-evolving persistent luminescence nanoprobes for autofluorescence-free ratiometric imaging and on-demand enhanced chemodynamic therapy of pulmonary metastatic tumors. Biomater Sci 2024; 12:3229-3237. [PMID: 38764365 DOI: 10.1039/d4bm00379a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Precise imaging-guided therapy of a pulmonary metastasis tumor is of great significance for tumor management and prognosis. Persistent luminescence nanoparticles (PLNPs) are promising probes due to their in situ excitation-free and low-background imaging characteristics. However, most of the PLNP-based probes cannot intelligently distinguish between normal and tumor tissues or balance the needs of targeted accumulation and rapid metabolism, resulting in false positive signals and potential side effects. Besides, the luminescence intensity of single-emissive PLNPs is affected by external factors. Herein, we report a self-evolving double-emissive PLNP-based nanoprobe ZGMC@ZGC-TAT for pulmonary metastatic tumor imaging and therapy. Acid-degradable green-emitting PLNPs (ZGMC) with good afterglow performance and therapeutic potential are synthesized by systematic optimization of dopants. Ultra-small red-emitting PLNPs (ZGC) are then prepared as imaging and reference probes. The two PLNPs are finally covalently coupled and further modified with a cell-penetrating peptide (TAT) to obtain ZGMC@ZGC-TAT. Dual emission ensures a stable luminescence ratio (I700/I537) independent of probe concentration, test voltage and time gate. ZGMC degrades and phosphorescence disappears in a tumor microenvironment (TME), resulting in an increase in I700/I537, thus enabling tumor-specific ratiometric imaging. Cu2+ and Mn2+ released by ZGMC degradation achieve GSH depletion and enhance CDT, effectively inhibiting tumor cell proliferation. Meanwhile, the size of ZGMC@ZGC-TAT decreases sharply, and the resulting ZGC-TAT further causes nuclear pyknosis and quickly clear metabolism. The developed ZGMC@ZGC-TAT turns non-targeted lung aggregation of nanomaterials into a unique advantage, and integrates TME-triggered phosphorescence and size self-evolution, and on-demand therapeutic functions, showing outstanding prospects in precise imaging and efficient treatment of pulmonary metastatic tumors.
Collapse
Affiliation(s)
- Xu Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tian-Yue Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - You-Peng Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xue-Mei Gao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Li-Jian Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li-Xia Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
5
|
Franceschini D, Franzese C, Comito T, Ilieva MB, Spoto R, Marzo AM, Dominici L, Massaro M, Bellu L, Badalamenti M, Mancosu P, Scorsetti M. Definitive results of a prospective non-randomized phase 2 study on stereotactic body radiation therapy (sbrt) for medically inoperable lung and liver oligometastases from breast cancer. Radiother Oncol 2024; 195:110240. [PMID: 38522597 DOI: 10.1016/j.radonc.2024.110240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND AND PURPOSE To report mature results for local control and survival in oligometastatic (OM) breast cancer patients treated with stereotactic body radiotherapy (SBRT) on lung and/or liver lesions in a phase II trial. METHODS This is a prospective non-randomized phase II trial (NCT02581670) which enrolled patients from 2015 to 2021. Eligibility criteria included: age > 18 years, ECOG 0-2, diagnosis of breast cancer, maximum of 4 lung/liver lesions (with a maximum diameter < 5 cm), metastatic disease confined to the lungs and liver or extrapulmonary or extrahepatic disease stable or responding to systemic therapy. The primary end-points were local control (LC) and treatment-related toxicities. The secondary end-points included overall survival (OS), distant metastasis-free survival (DMFS), time to next systemic therapy (TTNS), poly-progression free survival (PPFS). RESULTS The study included 64 patients with a total of 90 lesions treated with SBRT. LC at 1 and 2 years was 94.9 %, 91 % at 3 years. Median local control was not reached. Median OS was 16.5 months, OS at 1, 2 and 3 years was 87.5 %, 60.9 % and 51.9 %, respectively. Median DMFS was 8.3 months, DMFS at 1, 2 and 3 years was 38.1 %, 20.6 % and 16 % respectively. At univariate analysis, local response to SBRT was found to be statistically linked with better OS, DMFS and STFS. CONCLUSION SBRT is a safe and valid option in oligometastatic breast cancer patients, with very high rates of local control. An optimal selection of patients is likely needed to improve survival outcomes and reduce the rate of distant progression.
Collapse
Affiliation(s)
- D Franceschini
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano 20089 Milan, Italy.
| | - C Franzese
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - T Comito
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano 20089 Milan, Italy
| | - M B Ilieva
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - R Spoto
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano 20089 Milan, Italy
| | - A M Marzo
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano 20089 Milan, Italy
| | - L Dominici
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano 20089 Milan, Italy
| | - M Massaro
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano 20089 Milan, Italy
| | - L Bellu
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano 20089 Milan, Italy
| | - M Badalamenti
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano 20089 Milan, Italy
| | - P Mancosu
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano 20089 Milan, Italy
| | - M Scorsetti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| |
Collapse
|
6
|
Zhao Q, Yang F, Wu HL, Mo M, Ling YX, Liu GY. Contralateral axillary lymph node metastasis in breast cancer: An oligometastatic-like disease. Breast 2023; 72:103589. [PMID: 37839139 PMCID: PMC10582740 DOI: 10.1016/j.breast.2023.103589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Contralateral axillary lymph node metastasis (CAM) is rare. It remains controversial whether CAM should be regarded as a regional or distant metastatic disease. Our study aims to investigate the accurate clinical orientation and management of CAM. METHODS Two hundred and ninety-nine female patients diagnosed with breast cancer from 2000 to 2014 and confirmed to develop CAM, oligometastasis (OM) or locoregional recurrence (LRR) at Fudan University Shanghai Cancer Center (FUSCC) were included in this study. Baseline information and survival outcomes were analyzed and compared among the three groups. RESULTS Patients with CAM exhibited similar overall survival (OS) and progression-free survival (PFS) to those with OM, but worse than those with LRR (HR: 0.47 [95 % CI: 0.27-0.85], p = 0.0097; HR:0.39 [95 % CI: 0.24-0.63], p < 0.0001, respectively). Considering the patients presented with CAM or OM as a whole, we found that local treatment combined with systemic treatment did not provide a superior survival benefit over systemic treatment alone. CONCLUSION CAM was similar to an oligometastatic-like disease, and patients with these diseases may benefit from systemic treatment. Adding local treatment failed to significantly improve OS.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Fan Yang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Huai-Liang Wu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Miao Mo
- Clinical Statistics Center, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yun-Xiao Ling
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Guang-Yu Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
7
|
Jia Q, Zhang R, Yan H, Feng Y, Sun F, Yang Z, Qiao C, Mou X, Tian J, Wang Z. An Activatable Near-Infrared Fluorescent Probe for Precise Detection of the Pulmonary Metastatic Tumors: A Traditional Molecule Having a Stunning Turn. Angew Chem Int Ed Engl 2023; 62:e202313420. [PMID: 37779105 DOI: 10.1002/anie.202313420] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/03/2023]
Abstract
An accurate detection of lung metastasis is of great significance for making better treatment choices and improving cancer prognosis, but remains a big challenge in clinical practice. In this study, we propose a reinventing strategy to develop a pH-activatable near-infrared (NIR) fluorescent nanoprobe, pulmonary metastasis tracer (denoted as PMT), based on assembly of NIR dye IR780 and calcium phosphate (CaP). By delicately tuning the intermolecular interactions during the assembly process and dye doping content, as well as the synthetic condition of probe, the fluorescence of PMT could be finely adjusted via the tumor acidity-triggered disassembly. Notably, the selected PMT9 could sharply convert subtle pH variations into a distinct fluorescence signal to generate high fluorescence ON/OFF contrast, dramatically reducing the background signals. Benefiting from such preferable features, PMT9 is able to precisely identify not only the tumor sites in orthotopic lung cancer models but also the pulmonary metastases in mice with remarkable signal-to-background ratio (SBR). This study provides a unique strategy to turn shortcomings of traditional dye IR780 during in vivo imaging into advantages and further expand the application of fluorescent probe to image lung associated tumor lesions.
Collapse
Affiliation(s)
- Qian Jia
- Lab of Molecular Imaging and Translational Medicine (MITM) Engineering Research Center of Molecular & Neuroimaging, Ministry of Education School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Ruili Zhang
- Lab of Molecular Imaging and Translational Medicine (MITM) Engineering Research Center of Molecular & Neuroimaging, Ministry of Education School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Haohao Yan
- Lab of Molecular Imaging and Translational Medicine (MITM) Engineering Research Center of Molecular & Neuroimaging, Ministry of Education School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yanbin Feng
- Lab of Molecular Imaging and Translational Medicine (MITM) Engineering Research Center of Molecular & Neuroimaging, Ministry of Education School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Fang Sun
- Lab of Molecular Imaging and Translational Medicine (MITM) Engineering Research Center of Molecular & Neuroimaging, Ministry of Education School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Zuo Yang
- Lab of Molecular Imaging and Translational Medicine (MITM) Engineering Research Center of Molecular & Neuroimaging, Ministry of Education School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Chaoqiang Qiao
- Lab of Molecular Imaging and Translational Medicine (MITM) Engineering Research Center of Molecular & Neuroimaging, Ministry of Education School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Xiaocheng Mou
- Lab of Molecular Imaging and Translational Medicine (MITM) Engineering Research Center of Molecular & Neuroimaging, Ministry of Education School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Jie Tian
- Lab of Molecular Imaging and Translational Medicine (MITM) Engineering Research Center of Molecular & Neuroimaging, Ministry of Education School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Zhongliang Wang
- Lab of Molecular Imaging and Translational Medicine (MITM) Engineering Research Center of Molecular & Neuroimaging, Ministry of Education School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| |
Collapse
|
8
|
Franceschini D, Comito T, Di Gallo A, Vernier V, Marzo MA, Di Cristina L, Marini B, Lo Faro L, Stefanini S, Spoto R, Dominici L, Franzese C, Scorsetti M. Stereotactic Body Radiation Therapy for Lung and Liver Oligometastases from Breast Cancer: Toxicity Data of a Prospective Non-Randomized Phase II Trial. Curr Oncol 2022; 29:7858-7867. [PMID: 36290898 PMCID: PMC9600565 DOI: 10.3390/curroncol29100621] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS We report the mature toxicity data of a phase II non-randomized trial on the use of SBRT for lung and liver oligometastases. METHODS Oligometastatic patients from breast cancer were treated with SBRT for up to five lung and/or liver lesions. Inclusion criteria were: age > 18 years, ECOG 0-2, diagnosis of breast cancer, less than five lung/liver lesions (with a maximum diameter <5 cm), metastatic disease confined to the lungs and liver or extrapulmonary or extrahepatic disease stable or responding to systemic therapy. Various dose-fractionation schedules were used. Then, a 4D-CT scan and FDG-CTPET were acquired for simulation and fused for target definition. RESULTS From 2015 to 2021, 64 patients and a total of 90 lesions were irradiated. Treatment was well tolerated, with no G 3-4 toxicities. No grade ≥3 toxicities were registered and the coprimary endpoint of the study was met. Median follow-up was 19.4 months (range 2.6-73.1). CONCLUSIONS The co-primary endpoint of this phase II trial was met, showing excellent tolerability of SBRT for lung and liver oligometastatic in breast cancer patients. Until efficacy data will mature with longer follow-up, SBRT should be regarded as an opportunity for oligometastatic breast cancer patients.
Collapse
Affiliation(s)
- Davide Franceschini
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Rozzano, Italy
- Correspondence: ; Tel.: +39-0282247428
| | - Tiziana Comito
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Rozzano, Italy
| | - Anna Di Gallo
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Milan, Pieve Emanuele, Italy
| | - Veronica Vernier
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Milan, Pieve Emanuele, Italy
| | - Marco A. Marzo
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Milan, Pieve Emanuele, Italy
| | - Luciana Di Cristina
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Milan, Pieve Emanuele, Italy
| | - Beatrice Marini
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Milan, Pieve Emanuele, Italy
| | - Lorenzo Lo Faro
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Milan, Pieve Emanuele, Italy
| | - Sara Stefanini
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Milan, Pieve Emanuele, Italy
| | - Ruggero Spoto
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Rozzano, Italy
| | - Luca Dominici
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Rozzano, Italy
| | - Ciro Franzese
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Milan, Pieve Emanuele, Italy
| | - Marta Scorsetti
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Milan, Pieve Emanuele, Italy
| |
Collapse
|
9
|
Pirasteh A, Lovrec P, Pedrosa I. Imaging and its Impact on Defining the Oligometastatic State. Semin Radiat Oncol 2021; 31:186-199. [PMID: 34090645 DOI: 10.1016/j.semradonc.2021.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Successful treatment of oligometastatic disease (OMD) is facilitated through timely detection and localization of disease, both at the time of initial diagnosis (synchronous OMD) and following the initial therapy (metachronous OMD). Hence, imaging plays an indispensable role in management of patients with OMD. However, the challenges and complexities of OMD management are also reflected in the imaging of this entity. While innovations and advances in imaging technology have made a tremendous impact in disease detection and management, there remain substantial and unaddressed challenges for earlier and more accurate establishment of OMD state. This review will provide an overview of the available imaging modalities and their inherent strengths and weaknesses, with a focus on their role and potential in detection and evaluation of OMD in different organ systems. Furthermore, we will review the role of imaging in evaluation of OMD for malignancies of various primary organs, such as the lung, prostate, colon/rectum, breast, kidney, as well as neuroendocrine tumors and gynecologic malignancies. We aim to provide a practical overview about the utilization of imaging for clinicians who play a role in the care of those with, or at risk for OMD.
Collapse
Affiliation(s)
- Ali Pirasteh
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI
| | - Petra Lovrec
- Department of Radiology, University of Wisconsin-Madison, Madison, WI
| | - Ivan Pedrosa
- Departments of Radiology, Urology, and Advanced Imaging Research Center. University of Texas Southwestern, Dallas, TX.
| |
Collapse
|