1
|
Zhang F, Zhou Y, Hamada N, Tanaka A, Yokoyama S, Yano S, Matsumoto K, Mano H, Sakurai H. Stress Response Kinase MK2 Induces Non-canonical Activation of EphA2 in EML4-ALK Lung Cancer Cells. Biol Pharm Bull 2025; 48:172-176. [PMID: 40024717 DOI: 10.1248/bpb.b24-00747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
The non-canonical phosphorylation of the receptor tyrosine kinase ephrin type-A receptor 2 (EphA2) at Ser-897 plays crucial roles in tumor progression in a tyrosine kinase-independent manner. This phosphorylation is catalyzed by p90 ribosomal S6 kinase (RSK), a kinase downstream of extracellular signal-regulated kinase (ERK). We recently reported that stress-responsive kinase mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MK2), instead of ERK, regulates RSK under cellular stress conditions; however, the function of MK2 in ERK-activated cells is still unknown. We herein clarified that MK2 regulates the RSK-EphA2 axis in ERK-activated echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) lung cancer cells. In addition, an MK2 inhibitor blocked enhancements in cell motility induced by the constitutively activated RSK-EphA2 axis. The present results reveal the importance of MK2 in the ERK-activated non-canonical activation of EphA2.
Collapse
Affiliation(s)
- Fang Zhang
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Yue Zhou
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Naru Hamada
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Akihiro Tanaka
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Satoru Yokoyama
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Seiji Yano
- Department of Respiratory Medicine, Faculty of Medicine, Institute of Medical, Pharmaceutical, and Health Science, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-0934, Japan
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-0934, Japan
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1164, Japan
| | - Kunio Matsumoto
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1164, Japan
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
2
|
Gonzalez-Martinez D, Roth L, Mumford TR, Guan J, Le A, Doebele RC, Huang B, Tulpule A, Niewiadomska-Bugaj M, Bivona TG, Bugaj LJ. Oncogenic EML4-ALK assemblies suppress growth factor perception and modulate drug tolerance. Nat Commun 2024; 15:9473. [PMID: 39488530 PMCID: PMC11531495 DOI: 10.1038/s41467-024-53451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/12/2024] [Indexed: 11/04/2024] Open
Abstract
Drug resistance remains a challenge for targeted therapy of cancers driven by EML4-ALK and related fusion oncogenes. EML4-ALK forms cytoplasmic protein condensates, which result from networks of interactions between oncogene and adapter protein multimers. While these assemblies are associated with oncogenic signaling, their role in drug response is unclear. Here, we use optogenetics and live-cell imaging to find that EML4-ALK assemblies suppress transmembrane receptor tyrosine kinase (RTK) signaling by sequestering RTK adapter proteins including GRB2 and SOS1. Furthermore, ALK inhibition, while suppressing oncogenic signaling, simultaneously releases the sequestered adapters and thereby resensitizes RTK signaling. Resensitized RTKs promote rapid and pulsatile ERK reactivation that originates from paracrine ligands shed by dying cells. Reactivated ERK signaling promotes cell survival, which can be counteracted by combination therapies that block paracrine signaling. Our results identify a regulatory role for RTK fusion assemblies and uncover a mechanism of tolerance to targeted therapies.
Collapse
Affiliation(s)
| | - Lee Roth
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Thomas R Mumford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Juan Guan
- Department of Physics, Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL, 32611, USA
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Anh Le
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Robert C Doebele
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Bo Huang
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, 94143, USA
- Department of Biochemistry and Biophysics, UCSF, San Francisco, 94143, USA
- Chan Zuckerberg Biohub, San Francisco, 94158, USA
| | - Asmin Tulpule
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Trever G Bivona
- Department of Medicine, Division of Hematology and Oncology, UCSF, San Francisco, CA, 94143, USA
| | - Lukasz J Bugaj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Russo E, Grondona C, Brullo C, Spallarossa A, Villa C, Tasso B. Indole Antitumor Agents in Nanotechnology Formulations: An Overview. Pharmaceutics 2023; 15:1815. [PMID: 37514002 PMCID: PMC10385756 DOI: 10.3390/pharmaceutics15071815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
The indole heterocycle represents one of the most important scaffolds in medicinal chemistry and is shared among a number of drugs clinically used in different therapeutic areas. Due to its varied biological activities, high unique chemical properties and significant pharmacological behaviors, indole derivatives have drawn considerable interest in the last decade as antitumor agents active against different types of cancers. The research of novel antiproliferative drugs endowed with enhanced efficacy and reduced toxicity led to the approval by U.S. Food and Drug Administration of the indole-based anticancer agents Sunitinib, Nintedanib, Osimertinib, Panobinostat, Alectinib and Anlotinib. Additionally, new drug delivery systems have been developed to protect the active principle from degradation and to direct the drug to the specific site for clinical use, thus reducing its toxicity. In the present work is an updated review of the recently approved indole-based anti-cancer agents and the nanotechnology systems developed for their delivery.
Collapse
Affiliation(s)
- Eleonora Russo
- Section of Medicinal and Cosmetic Chemistry, Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Carola Grondona
- Section of Medicinal and Cosmetic Chemistry, Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Chiara Brullo
- Section of Medicinal and Cosmetic Chemistry, Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Andrea Spallarossa
- Section of Medicinal and Cosmetic Chemistry, Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Carla Villa
- Section of Medicinal and Cosmetic Chemistry, Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Bruno Tasso
- Section of Medicinal and Cosmetic Chemistry, Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| |
Collapse
|
4
|
AICAR Ameliorates Non-Alcoholic Fatty Liver Disease via Modulation of the HGF/NF-κB/SNARK Signaling Pathway and Restores Mitochondrial and Endoplasmic Reticular Impairments in High-Fat Diet-Fed Rats. Int J Mol Sci 2023; 24:ijms24043367. [PMID: 36834782 PMCID: PMC9959470 DOI: 10.3390/ijms24043367] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global health problem characterized by altered lipid and redox homeostasis, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress. The AMP-dependent kinase (AMPK) agonist 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) has been shown to improve the outcome of NAFLD in the context of AMPK activation, yet the underlying molecular mechanism remains obscure. This study investigated the potential mechanism(s) of AICAR to attenuate NAFLD by exploring AICAR's effects on the HGF/NF-κB/SNARK axis and downstream effectors as well as mitochondrial and ER derangements. High-fat diet (HFD)-fed male Wistar rats were given intraperitoneal AICAR at 0.7 mg/g body weight or left untreated for 8 weeks. In vitro steatosis was also examined. ELISA, Western blotting, immunohistochemistry and RT-PCR were used to explore AICAR's effects. NAFLD was confirmed by steatosis score, dyslipidemia, altered glycemic, and redox status. HGF/NF-κB/SNARK was downregulated in HFD-fed rats receiving AICAR with improved hepatic steatosis and reduced inflammatory cytokines and oxidative stress. Aside from AMPK dominance, AICAR improved hepatic fatty acid oxidation and alleviated the ER stress response. In addition, it restored mitochondrial homeostasis by modulating Sirtuin 2 and mitochondrial quality gene expression. Our results provide a new mechanistic insight into the prophylactic role of AICAR in the prevention of NAFLD and its complications.
Collapse
|
5
|
Katayama Y, Yamada T, Tanimura K, Tokuda S, Morimoto K, Hirai S, Matsui Y, Nakamura R, Ishida M, Kawachi H, Yoneda K, Hosoya K, Tsuji T, Ozasa H, Yoshimura A, Iwasaku M, Kim YH, Horinaka M, Sakai T, Utsumi T, Shiotsu S, Takeda T, Katayama R, Takayama K. Adaptive resistance to lorlatinib via EGFR signaling in ALK-rearranged lung cancer. NPJ Precis Oncol 2023; 7:12. [PMID: 36702855 PMCID: PMC9879975 DOI: 10.1038/s41698-023-00350-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK)-tyrosine kinase inhibitors rarely elicit complete responses in patients with advanced ALK-rearranged non-small cell lung cancer (NSCLC), as a small population of tumor cells survives due to adaptive resistance. Therefore, we focused on the mechanisms underlying adaptive resistance to lorlatinib and therapeutic strategies required to overcome them. We found that epidermal growth factor receptor (EGFR) signaling was involved in the adaptive resistance to lorlatinib in ALK-rearranged NSCLC, activation of which was induced by heparin-binding EGF-like growth factor production via c-Jun activation. EGFR inhibition halted ALK-rearranged lung cancer cell proliferation by enhancing ALK inhibition-induced apoptosis via suppression of Bcl-xL. Xenograft models showed that the combination of EGFR inhibitor and lorlatinib considerably suppressed tumor regrowth following cessation of these treatments. This study provides new insights regarding tumor evolution due to EGFR signaling after lorlatinib treatment and the development of combined therapeutic strategies for ALK-rearranged lung cancer.
Collapse
Affiliation(s)
- Yuki Katayama
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tadaaki Yamada
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiko Tanimura
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinsaku Tokuda
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenji Morimoto
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Soichi Hirai
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yohei Matsui
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryota Nakamura
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaki Ishida
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hayato Kawachi
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazue Yoneda
- grid.271052.30000 0004 0374 5913Second Department of Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazutaka Hosoya
- grid.258799.80000 0004 0372 2033Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Tsuji
- grid.258799.80000 0004 0372 2033Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroaki Ozasa
- grid.258799.80000 0004 0372 2033Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihiro Yoshimura
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahiro Iwasaku
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Young Hak Kim
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mano Horinaka
- grid.272458.e0000 0001 0667 4960Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiyuki Sakai
- grid.272458.e0000 0001 0667 4960Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiro Utsumi
- grid.410807.a0000 0001 0037 4131Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan ,grid.177174.30000 0001 2242 4849Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinsuke Shiotsu
- grid.415604.20000 0004 1763 8262Department of Respiratory Medicine, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Takayuki Takeda
- grid.415627.30000 0004 0595 5607Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Ryohei Katayama
- grid.410807.a0000 0001 0037 4131Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Koichi Takayama
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
6
|
Qin K, Hong L, Zhang J, Le X. MET Amplification as a Resistance Driver to TKI Therapies in Lung Cancer: Clinical Challenges and Opportunities. Cancers (Basel) 2023; 15:612. [PMID: 36765572 PMCID: PMC9913224 DOI: 10.3390/cancers15030612] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Targeted therapy has emerged as an important pillar for the standard of care in oncogene-driven non-small cell lung cancer (NSCLC), which significantly improved outcomes of patients whose tumors harbor oncogenic driver mutations. However, tumors eventually develop resistance to targeted drugs, and mechanisms of resistance can be diverse. MET amplification has been proven to be a driver of resistance to tyrosine kinase inhibitor (TKI)-treated advanced NSCLC with its activation of EGFR, ALK, RET, and ROS-1 alterations. The combined therapy of MET-TKIs and EGFR-TKIs has shown outstanding clinical efficacy in EGFR-mutated NSCLC with secondary MET amplification-mediated resistance in a series of clinical trials. In this review, we aimed to clarify the underlying mechanisms of MET amplification-mediated resistance to tyrosine kinase inhibitors, discuss the ways and challenges in the detection and diagnosis of MET amplifications in patients with metastatic NSCLC, and summarize the recently published clinical data as well as ongoing trials of new combination strategies to overcome MET amplification-mediated TKI resistance.
Collapse
Affiliation(s)
- Kang Qin
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lingzhi Hong
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiuning Le
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
7
|
Sakashita T, Yanagitani N, Koike S, Low SK, Takagi S, Baba S, Takeuchi K, Nishio M, Fujita N, Katayama R. Fibroblast growth factor receptor 3 overexpression mediates ALK inhibitor resistance in ALK-rearranged non-small cell lung cancer. Cancer Sci 2022; 113:3888-3900. [PMID: 35950895 PMCID: PMC9633314 DOI: 10.1111/cas.15529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/14/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022] Open
Abstract
The rearrangement of anaplastic lymphoma kinase (ALK) occurs in 3%‐5% of patients with non–small cell lung cancer (NSCLC) and confers sensitivity to ALK–tyrosine kinase inhibitors (TKIs). For the treatment of patients with ALK‐rearranged NSCLC, various additional ALK‐TKIs have been developed. Ceritinib is a second‐generation ALK‐TKI and has shown great efficacy in the treatment of patients with both newly diagnosed and crizotinib (a first‐generation ALK‐TKI)‐refractory ALK‐rearranged NSCLC. However, tumors can also develop ceritinib resistance. This may result from secondary ALK mutations, but other mechanisms responsible for this have not been fully elucidated. In this study, we explored the mechanisms of ceritinib resistance by establishing ceritinib‐resistant, echinoderm microtubule‐associated protein‐like 4 (EML4)‐ALK–positive H3122 cells and ceritinib‐resistant patient‐derived cells. We identified a mechanism of ceritinib resistance induced by bypass signals that is mediated by the overexpression and activation of fibroblast growth factor receptor 3 (FGFR3). FGFR3 knockdown by small hairpin RNA or treatment with FGFR inhibitors was found to resensitize the resistant cells to ceritinib in vitro and in vivo. FGFR ligands from either human serum or fetal bovine serum were able to activate FGFR3 and induce ceritinib resistance. A detailed analysis of ceritinib‐resistant patient‐derived specimens confirmed that tyrosine‐protein kinase Met (cMET) amplification induces ceritinib resistance. Amplified cMET counteractivated EGFR and/or Her3 and induced ceritinib resistance. These results reveal multiple ceritinib resistance mechanisms and suggest that ceritinib resistance might be overcome by identifying precise resistance mechanisms.
Collapse
Affiliation(s)
- Takuya Sakashita
- Div. of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, JAPAN.,Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, JAPAN.,AstraZeneca K.K., Osaka, JAPAN
| | - Noriko Yanagitani
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, JAPAN
| | - Sumie Koike
- Div. of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, JAPAN
| | - Siew-Kee Low
- Cancer Precision Medicine Center, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Satoshi Takagi
- Div. of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, JAPAN
| | - Satoko Baba
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Pathology Project for Molecular Targets, the Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, JAPAN
| | - Kengo Takeuchi
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Pathology Project for Molecular Targets, the Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, JAPAN.,Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Makoto Nishio
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, JAPAN
| | - Naoya Fujita
- Director, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, JAPAN
| | - Ryohei Katayama
- Div. of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, JAPAN.,Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, JAPAN
| |
Collapse
|
8
|
Resistance to Targeted Agents Used to Treat Paediatric ALK-Positive ALCL. Cancers (Basel) 2021; 13:cancers13236003. [PMID: 34885113 PMCID: PMC8656581 DOI: 10.3390/cancers13236003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary In general, the non-Hodgkin lymphoma (NHL), anaplastic large cell lymphoma (ALCL) diagnosed in childhood has a good survival outcome when treated with multi-agent chemotherapy. However, side effects of treatment are common, and outcomes are poorer after relapse, which occurs in up to 30% of cases. New drugs are required that are more effective and have fewer side effects. Targeted therapies are potential solutions to these problems, however, the development of resistance may limit their impact. This review summarises the potential resistance mechanisms to these targeted therapies. Abstract Non-Hodgkin lymphoma (NHL) is the third most common malignancy diagnosed in children. The vast majority of paediatric NHL are either Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL), anaplastic large cell lymphoma (ALCL), or lymphoblastic lymphoma (LL). Multi-agent chemotherapy is used to treat all of these types of NHL, and survival is over 90% but the chemotherapy regimens are intensive, and outcomes are generally poor if relapse occurs. Therefore, targeted therapies are of interest as potential solutions to these problems. However, the major problem with all targeted agents is the development of resistance. Mechanisms of resistance are not well understood, but increased knowledge will facilitate optimal management strategies through improving our understanding of when to select each targeted agent, and when a combinatorial approach may be helpful. This review summarises currently available knowledge regarding resistance to targeted therapies used in paediatric anaplastic lymphoma kinase (ALK)-positive ALCL. Specifically, we outline where gaps in knowledge exist, and further investigation is required in order to find a solution to the clinical problem of drug resistance in ALCL.
Collapse
|
9
|
Haratake N, Toyokawa G, Seto T, Tagawa T, Okamoto T, Yamazaki K, Takeo S, Mori M. The mechanisms of resistance to second- and third-generation ALK inhibitors and strategies to overcome such resistance. Expert Rev Anticancer Ther 2021; 21:975-988. [PMID: 34110954 DOI: 10.1080/14737140.2021.1940964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Anaplastic lymphoma kinase (ALK) inhibitors are widely known to contribute to the long-term survival of ALK-rearranged non-small cell lung cancer (NSCLC) patients. Based on clinical trial data, treatment with second- or third-generation ALK inhibitors can be initiated after crizotinib therapy without analyzing resistance mechanisms, and some randomized trials have recently shown the superiority of second- or third-generation ALK inhibitors over crizotinib as the initial treatment; however, the optimal treatment for patients who relapse while on second- or third-generation ALK inhibitors is not well-defined. AREAS COVERED This review provides an overview of the mechanisms of resistance to second- or third-generation ALK inhibitors that have been identified in both clinical and pre-clinical settings, and introduces strategies for overcoming resistance and discusses ongoing clinical trials. EXPERT OPINION The comprehensive elucidation of both ALK-dependent and ALK-independent resistance mechanisms is necessary to improve the prognosis of patients with ALK-rearranged NSCLC. Liquid biopsy to clarify these mechanisms of resistance might play an important role in the near future.
Collapse
Affiliation(s)
- Naoki Haratake
- Department of Thoracic Oncology, National Hospital Organization, Kyushu Cancer Center, Fukuoka, Japan.,Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Gouji Toyokawa
- Department of Thoracic Surgery, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Takashi Seto
- Department of Thoracic Oncology, National Hospital Organization, Kyushu Cancer Center, Fukuoka, Japan
| | - Tetsuzo Tagawa
- Department of Thoracic Oncology, National Hospital Organization, Kyushu Cancer Center, Fukuoka, Japan
| | - Tasuro Okamoto
- Department of Thoracic Oncology, National Hospital Organization, Kyushu Cancer Center, Fukuoka, Japan
| | - Koji Yamazaki
- Department of Thoracic Surgery, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Sadanori Takeo
- Department of Thoracic Surgery, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
10
|
Efficacy of combination treatment using YHO-1701, an orally active STAT3 inhibitor, with molecular-targeted agents on cancer cell lines. Sci Rep 2021; 11:6685. [PMID: 33758275 PMCID: PMC7988006 DOI: 10.1038/s41598-021-86021-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) plays a critical role in regulating cell growth, survival, and metastasis. STAT3 signaling is constitutively activated in various types of hematologic or solid malignancies. YHO-1701 has been developed as an orally available STAT3 inhibitor. Herein, YHO-1701 in combination with molecular-targeted agents was evaluated. Additive or synergistic effects were observed in a broad spectrum of “combination treatment + cell line” pairs. Of particular interest was the synergistic effect observed when YHO-1701 was combined with imatinib or dasatinib [breakpoint cluster region-abelson (BCR-ABL) inhibitors], osimertinib [epidermal growth factor receptor (EGFR) inhibitor], crizotinib, alectinib, or ceritinib [anaplastic lymphoma kinase (ALK) inhibitors]. The results further showed a close relationship between these synergistic effects and the cellular levels of the key molecules involved in the target pathways for YHO-1701 and each combination drug. The combination of YHO-1701 with alectinib resulted in significantly greater antitumor activity without exhibiting body weight loss in an NCI-H2228 [echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusion] xenograft mouse model. Our results strongly suggest that the logical strategy in combination with the novel STAT3 inhibitor YHO-1701 and other mechanistically different targeted agents, could be a promising approach in future clinical settings.
Collapse
|
11
|
Metformin reduces HGF-induced resistance to alectinib via the inhibition of Gab1. Cell Death Dis 2020; 11:111. [PMID: 32041944 PMCID: PMC7010683 DOI: 10.1038/s41419-020-2307-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 02/02/2023]
Abstract
Alectinib is a second-generation anaplastic lymphoma kinase (ALK) inhibitor that has sufficient clinical efficacy and satisfactory safety in ALK-positive non-small cell lung cancer (NSCLC) patients with or without brain metastasis. Alectinib has now become an important drug in the first-line treatment of advanced ALK-positive NSCLC; however, resistance is almost inevitable. The increased expression of hepatocyte growth factor (HGF) and its physiological receptor tyrosine kinase MET have been shown to be linked to acquired resistance to various tyrosine kinase inhibitors (TKIs), and this phenomenon has been observed in some ALK-positive NSCLC tumour tissues. In this study, we found that HGF levels in the culture supernatant of an ALK-positive cell line tended to increase with time and could be further increased by alectinib in a time-dependent manner. Exogenous or endogenous HGF did not cause resistance to the ALK/MET double-targeted small molecule inhibitor crizotinib, but it was an important cause of alectinib resistance. Furthermore, Gab1 was a key effector in the HGF/MET signal transduction pathway that mediated alectinib resistance. The antidiabetic drug metformin combined with alectinib overcame alectinib resistance triggered by HGF/MET through disrupting the complex between MET and Gab1, thereby inhibiting Gab1 phosphorylation and the activation of downstream signal transduction pathways. These results suggest that metformin combined with alectinib may be useful for overcoming alectinib resistance induced by the activation of the HGF/MET signalling pathway and improving the efficacy of alectinib.
Collapse
|
12
|
Zhu C, Zhuang W, Chen L, Yang W, Ou WB. Frontiers of ctDNA, targeted therapies, and immunotherapy in non-small-cell lung cancer. Transl Lung Cancer Res 2020; 9:111-138. [PMID: 32206559 PMCID: PMC7082279 DOI: 10.21037/tlcr.2020.01.09] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/02/2020] [Indexed: 12/19/2022]
Abstract
Non-small-cell lung cancer (NSCLC), a main subtype of lung cancer, is one of the most common causes of cancer death in men and women worldwide. Circulating tumor DNA (ctDNA), tyrosine kinase inhibitors (TKIs) and immunotherapy have revolutionized both our understanding of NSCLC, from its diagnosis to targeted NSCLC therapies, and its treatment. ctDNA quantification confers convenience and precision to clinical decision making. Furthermore, the implementation of TKI-based targeted therapy and immunotherapy has significantly improved NSCLC patient quality of life. This review provides an update on the methods of ctDNA detection and its impact on therapeutic strategies; therapies that target epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) using TKIs such as osimertinib and lorlatinib; the rise of various resistant mechanisms; and the control of programmed cell death-1 (PD-1), programmed cell death ligand-1 (PD-L1), and cytotoxic T-lymphocyte antigen-4 (CTLA-4) by immune checkpoint inhibitors (ICIs) in immunotherapy; blood tumor mutational burden (bTMB) calculated by ctDNA assay as a novel biomarker for immunotherapy. However, NSCLC patients still face many challenges. Further studies and trials are needed to develop more effective drugs or therapies to treat NSCLC.
Collapse
Affiliation(s)
- Chennianci Zhu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Weihao Zhuang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Limin Chen
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wenyu Yang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wen-Bin Ou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
13
|
Pillai RN, Fennell DA, Kovcin V, Ciuleanu TE, Ramlau R, Kowalski D, Schenker M, Yalcin I, Teofilovici F, Vukovic VM, Ramalingam SS. Randomized Phase III Study of Ganetespib, a Heat Shock Protein 90 Inhibitor, With Docetaxel Versus Docetaxel in Advanced Non-Small-Cell Lung Cancer (GALAXY-2). J Clin Oncol 2019; 38:613-622. [PMID: 31829907 DOI: 10.1200/jco.19.00816] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Ganetespib, a highly potent heat shock protein 90 inhibitor, blocks multiple oncogenic pathways, resulting in antitumor activity. We evaluated the combination of ganetespib and docetaxel for second-line therapy of patients with advanced adenocarcinoma of the lung. PATIENTS AND METHODS In this international phase III trial, patients with stage IIIB or IV adenocarcinoma diagnosed > 6 months before study entry and 1 prior systemic therapy were randomly assigned (1:1) to ganetespib 150 mg/m2 on days 1 and 15 with docetaxel 75 mg/m2 on day 1 of a 21-day cycle or to docetaxel alone. The primary end point was overall survival (OS). RESULTS Of 677 enrolled patients, 335 were randomly assigned to ganetespib and docetaxel and 337 were assigned to docetaxel. The trial was stopped early as a result of futility at a planned interim analysis. The median OS time was 10.9 months (95% CI, 9.0 to 12.3 months) in the ganetespib and docetaxel arm compared with 10.5 months (95% CI, 8.6 to 12.2 months) in docetaxel arm (hazard ratio [HR], 1.11; 95% CI, 0.899 to 1.372; P = .329). Median progression-free survival was 4.2 months in the ganetespib and docetaxel arm and 4.3 months in the docetaxel arm (HR, 1.16; 95% CI, 0.96 to 1.403; P = .119). The addition of ganetespib did not improve outcomes compared with docetaxel alone for any secondary end point, including survival in the elevated lactate dehydrogenase or EGFR and ALK wild-type populations. The most common grade 3 or 4 adverse event in both arms was neutropenia (30.9% with ganetespib and docetaxel v 25% with docetaxel). CONCLUSION The addition of ganetespib to docetaxel did not result in improved survival for salvage therapy of patients with advanced-stage lung adenocarcinoma.
Collapse
Affiliation(s)
| | | | - Vladimir Kovcin
- Clinical Hospital Centre Bežanijska Beograd, Belgrade, Serbia
| | - Tudor-Eliade Ciuleanu
- Prof Dr Ion Chiricuţă Institute of Oncology and Universitatea de Medicină şi Farmacie Iuliu Hatiegan, Cluj-Napoca, Romania
| | - Rodryg Ramlau
- Poznan University of Medical Sciences, Poznan, Poland
| | | | | | | | | | | | | |
Collapse
|
14
|
Sakakibara-Konishi J, Kitai H, Ikezawa Y, Hatanaka Y, Sasaki T, Yoshida R, Chiba S, Matsumoto S, Goto K, Mizugaki H, Shinagawa N. Response to Crizotinib Re-administration After Progression on Lorlatinib in a Patient With ALK-rearranged Non-small-cell Lung Cancer. Clin Lung Cancer 2019; 20:e555-e559. [PMID: 31307938 DOI: 10.1016/j.cllc.2019.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/13/2019] [Accepted: 06/15/2019] [Indexed: 10/26/2022]
Affiliation(s)
| | - Hidenori Kitai
- First Department of Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Yasuyuki Ikezawa
- First Department of Medicine, Hokkaido University Hospital, Sapporo, Japan; Department of Respiratory Medicine, Oji General Hospital, Tomakomai, Japan
| | - Yutaka Hatanaka
- Research Division of Genome Companion Diagnostics, Hokkaido University Hospital, Sapporo, Japan
| | - Takaaki Sasaki
- Respiratory Center, Asahikawa Medical University, Asahikawa, Japan
| | - Ryohei Yoshida
- Respiratory Center, Asahikawa Medical University, Asahikawa, Japan
| | - Shinichi Chiba
- Center for Advanced Research and Education, Asahikawa Medical University, Asahikawa, Japan
| | - Shingo Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan; Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hidenori Mizugaki
- First Department of Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Naofumi Shinagawa
- First Department of Medicine, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
15
|
Noor ZS, Goldman JW, Lawler WE, Telivala B, Braiteh F, DiCarlo BA, Kennedy K, Adams B, Wang X, Jones B, Slamon DJ, Garon EB. Luminespib plus pemetrexed in patients with non-squamous non-small cell lung cancer. Lung Cancer 2019; 135:104-109. [PMID: 31446981 DOI: 10.1016/j.lungcan.2019.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/21/2019] [Accepted: 05/13/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Luminespib (AUY922) is a second-generation heat shock protein 90 (HSP90) inhibitor with demonstrated activity in non-small cell lung cancer (NSCLC). Since luminespib reduces levels of dihydrofolate reductase (DHFR), a key enzymatic target of pemetrexed, we assessed the safety and tolerability of luminespib in combination with pemetrexed in patients with previously treated metastatic non-squamous non-small cell lung cancer (NSCLC). We also sought to study the pharmacokinetics and correlate tumor dihydrofolate reductase (DHFR) expression with clinical response. METHODS Patients received weekly luminespib at either 40 mg/m2, 55 mg/m2, or 70 mg/m2 according to a standard 3 + 3 dose-escalation design along with pemetrexed at 500 mg/m2 followed by an expansion at the maximum tolerated dose (MTD). RESULTS Two-dose limiting toxicities (DLTs) were experienced in the 70 mg/m2 cohort, therefore the MTD was determined to be 55 mg/m2. 69% (N = 9) of patients experienced ophthalmologic toxicity related to luminespib. Maximum serum concentration (Cmax) of luminespib was associated with increased grade 2 drug related adverse events (DRAEs) (rs = 0.74, P < 0.01), with volume of distribution (VD) inversely associated with the number of DRAEs (rs = - 0.81, P = 0.004) and ophthalmologic related DRAEs (rs = - 0.65, P = 0.04). The best response was partial response in one patient for 20 months, prior to expiration of all luminespib. Amongst patients treated at the MTD, the objective response rate was 14%. CONCLUSION In patients with previously treated metastatic NSCLC, the MTD of luminespib in combination with pemetrexed was 55 mg/m2 per week. The combination of luminespib and pemetrexed demonstrated clinical activity. Tolerability of luminespib with pemetrexed is limited by ocular toxicity.
Collapse
Affiliation(s)
- Zorawar S Noor
- David Geffen School of Medicine at University of California Los Angeles, United States.
| | - Jonathan W Goldman
- David Geffen School of Medicine at University of California Los Angeles, United States
| | | | | | - Fadi Braiteh
- Comprehensive Cancer Centers of Nevada, United States
| | - Brian A DiCarlo
- David Geffen School of Medicine at University of California Los Angeles, United States
| | | | - Brad Adams
- David Geffen School of Medicine at University of California Los Angeles, United States
| | - Xiaoyan Wang
- David Geffen School of Medicine at University of California Los Angeles, United States
| | - Benjamin Jones
- David Geffen School of Medicine at University of California Los Angeles, United States
| | - Dennis J Slamon
- David Geffen School of Medicine at University of California Los Angeles, United States
| | - Edward B Garon
- David Geffen School of Medicine at University of California Los Angeles, United States.
| |
Collapse
|
16
|
Cell-Based Methods for Determination of Efficacy for Candidate Therapeutics in the Clinical Management of Cancer. Diseases 2018; 6:diseases6040085. [PMID: 30249005 PMCID: PMC6313784 DOI: 10.3390/diseases6040085] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 12/11/2022] Open
Abstract
Determination of therapeutic efficacy is a major challenge in developing treatment options for cancer. Prior to in vivo studies, candidate therapeutics are evaluated using cell-based in vitro methods to assess their anti-cancer potential. This review describes the utility and limitations of evaluating therapeutic efficacy using human tumor-derived cell lines. Indicators for therapeutic efficacy using tumor-derived cell lines include cell viability, cell proliferation, colony formation, cytotoxicity, cytostasis, induction of apoptosis, and cell cycle arrest. Cell panel screens, 3D tumor spheroid models, drug-drug/drug-radiation combinatorial analysis, and invasion/migration assays reveal analogous in vitro information. In animal models, cellular assays can assess tumor micro-environment and therapeutic delivery. The utility of tumor-derived cell lines for efficacy determination is manifest in numerous commercially approved drugs that have been applied in clinical management of cancer. Studies reveal most tumor-derived cell lines preserve the genomic signature of the primary tumor source and cell line-based data is highly predictive of subsequent clinical studies. However, cell-based data often disregards natural system components, resulting in cell autonomous outcomes. While 3D cell culture platforms can counter such limitations, they require additional time and cost. Despite the limitations, cell-based methods remain essential in early stages of anti-cancer drug development.
Collapse
|
17
|
Bedi S, Khan SA, AbuKhader MM, Alam P, Siddiqui NA, Husain A. A comprehensive review on Brigatinib - A wonder drug for targeted cancer therapy in non-small cell lung cancer. Saudi Pharm J 2018; 26:755-763. [PMID: 30202213 PMCID: PMC6128722 DOI: 10.1016/j.jsps.2018.04.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/18/2018] [Indexed: 12/24/2022] Open
Abstract
The mortality rate in patients suffering from non-small cell lung cancer (NSCLC) is quite high. This type of cancer mainly occurs due to rearrangements in the anaplastic lymphoma kinase (ALK) gene which leads to form an oncogene of fused gene NPM-ALK. Brigatinib is recently approved by FDA in April 2017 as a potent tyrosine kinase inhibitor (TKI) for the NSCLC therapy. In the present scenario, it is no less than a wonder drug because it is indicated for the treatment of advanced stages of metastatic ALK positive NSCLC, a fatal disease to overcome the resistance of various other ALK inhibitors such as crizotinib, ceritinib and alectinib. In addition to ALK, it is also active against multiple types of kinases such as ROS1, Insulin like growth factor-1Receptor and EGFR. It can be synthesized by using N-[2-methoxy-4-[4-(dimethylamino) piperidin-1-yl] aniline] guanidine and 2,4,5-trichloropyrimidine respectively in two different ways. Its structure consists of mainly dimethylphosphine oxide group which is responsible for its pharmacological activity. It is active against various cell lines such as HCC78, H2228, H23, H358, H838, U937, HepG2 and Karpas- 299. Results of ALTA (ALK in Lung Cancer Trial of AP26113) phase ½ trial shows that 90 mg of brigatinib for 7 days and then 180 mg for next days is effective in the treatment of NSCLC. Brigatinib has been shown to have favorable risk benefit profile and is a safer drug than the available cytotoxic chemotherapeutic agents. In comparison to other FDA approved drugs for the same condition, it causes fewer minor adverse reactions which can be easily managed either by changing the dose or by providing good supportive care. This article is intended to provide readers with an overview of chemistry, pharmacokinetic, pharmacodynamic and safety profile of brigatinib, which addresses an unmet medical need.
Collapse
Key Words
- ALCL, anaplastic extensive cell lymphoma
- ALK inhibitors
- ALK, anaplastic lymphoma kinase
- ALTA-1L, ALK in lung cancer trial of Brigatinib in1st Line
- BCRP, breast cancer resistance protein
- Brigatinib
- DMPO, dimethyl phosphine oxide
- EGFR, epidermal growth factor receptor
- EML4, echinoderm microtubule associated protein
- FDA, Food and Drug Administration
- FLT3, fem like tyrosine kinase-3
- Kinase
- LCC, Large Cell Carcinoma
- Lung cancer
- Lymphoma
- MIC, minimum inhibitory concentration
- NPM, nucleophosmin
- NSCLC, non-small cell lung cancer
- ORR, objective response rate
- P-gp, P-glycoprotein
- SAR, structure activity relationship
- TKI’s, tyrosine kinase inhibitors
Collapse
Affiliation(s)
- Silky Bedi
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shah A. Khan
- Department of Pharmacy, Oman Medical College, Muscat, Oman
| | | | - Perwez Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nasir A. Siddiqui
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Asif Husain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
18
|
Schrank Z, Chhabra G, Lin L, Iderzorig T, Osude C, Khan N, Kuckovic A, Singh S, Miller RJ, Puri N. Current Molecular-Targeted Therapies in NSCLC and Their Mechanism of Resistance. Cancers (Basel) 2018; 10:E224. [PMID: 29973561 PMCID: PMC6071023 DOI: 10.3390/cancers10070224] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/20/2022] Open
Abstract
Lung cancer is treated with many conventional therapies, such as surgery, radiation, and chemotherapy. However, these therapies have multiple undesirable side effects. To bypass the side effects elicited by these conventional treatments, molecularly-targeted therapies are currently in use or under development. Current molecularly-targeted therapies effectively target specific biomarkers, which are commonly overexpressed in lung cancers and can cause increased tumorigenicity. Unfortunately, several molecularly-targeted therapies are associated with initial dramatic responses followed by acquired resistance due to spontaneous mutations or activation of signaling pathways. Acquired resistance to molecularly targeted therapies presents a major clinical challenge in the treatment of lung cancer. Therefore, to address this clinical challenge and to improve lung cancer patient prognosis, we need to understand the mechanism of acquired resistance to current therapies and develop additional novel therapies. This review concentrates on various lung cancer biomarkers, including EGFR, ALK, and BRAF, as well as their potential mechanisms of drug resistance.
Collapse
Affiliation(s)
- Zachary Schrank
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Gagan Chhabra
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Leo Lin
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Tsatsral Iderzorig
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Chike Osude
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Nabiha Khan
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Adijan Kuckovic
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Sanjana Singh
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Rachel J Miller
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| |
Collapse
|
19
|
Ly AC, Olin JL, Smith MB. Alectinib for advanced ALK-positive non-small-cell lung cancer. Am J Health Syst Pharm 2018; 75:515-522. [PMID: 29467147 DOI: 10.2146/ajhp170266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The pharmacology, pharmacokinetics, clinical efficacy, safety and tolerability, dosage and administration, and place in therapy of alectinib for treatment of patients with non-small-cell lung cancer (NSCLC) are reviewed. SUMMARY In patients with NSCLC driven by mutations of ALK, the gene coding for anaplastic lymphoma kinase (ALK), treatment with the ALK inhibitor crizotinib has been found to provide median progression-free survival (PFS) of 10.9 months; however, therapeutic failures and tumor progression to brain metastases are common with crizotinib use, prompting research to find more potent and tolerable ALK inhibitors that target major oncogenic drivers of NSCLC. Alectinib is a next-generation ALK inhibitor initially approved by the Food and Drug Administration for use in patients with metastatic ALK-positive NSCLC who are intolerant of or have disease progression during crizotinib therapy. In clinical trials, alectinib was found effective for delaying disease progression and, more importantly, reducing brain metastases in patients with NSCLC who developed resistance or intolerance to previous crizotinib therapy. Published data from clinical trials indicate that the most common grade 1 and 2 adverse effects associated with alectinib use are fatigue, constipation, peripheral edema, and myalgia; the most common grade 3 or 4 reactions include increases in creatine phosphokinase, alanine aminotransferase, and aspartate aminotransferase levels. CONCLUSION Alectinib appears to be effective and safe for use in patients with metastatic ALK-positive NSCLC, with demonstrated superiority over crizotinib in terms of PFS rates. Research to better define ALK inhibitor resistance mechanisms and alectinib's place in therapy is ongoing.
Collapse
Affiliation(s)
- Ashley C Ly
- Wingate University School of Pharmacy, Wingate, NC
| | | | | |
Collapse
|
20
|
Katayama R. Drug resistance in anaplastic lymphoma kinase-rearranged lung cancer. Cancer Sci 2018; 109:572-580. [PMID: 29336091 PMCID: PMC5834792 DOI: 10.1111/cas.13504] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 01/04/2023] Open
Abstract
The anaplastic lymphoma kinase (ALK) gene encodes a receptor tyrosine kinase, and many kinds of ALK fusion genes have been found in a variety of carcinomas. There is almost no detectable expression of ALK in adults. However, through ALK gene rearrangement, the resultant ALK fusion protein is aberrantly overexpressed and dimerized through the oligomerization domains, such as the coiled‐coil domain, in the fusion partner that induces abnormal constitutive activation of ALK tyrosine kinase. This results in dysregulated cell proliferation. ALK gene rearrangement has been observed in 3%‐5% of non‐small‐cell lung cancers, and multiple ALK inhibitors have been developed for the treatment of ALK‐positive lung cancer. Among those inhibitors, in Japan, 3 (4 in the USA) ALK tyrosine kinase inhibitors (TKIs) have been approved and are currently used in clinics. All of the currently approved ALK‐TKIs have been shown to induce marked tumor regression in ALK‐rearranged non‐small‐cell lung cancer; however, tumors inevitably relapse because of acquired resistance within a few years. This review focuses on ALK‐TKIs, their resistance mechanisms, and the potential therapeutic strategies to overcome resistance.
Collapse
Affiliation(s)
- Ryohei Katayama
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
21
|
Rong B, Yang S. Molecular mechanism and targeted therapy of Hsp90 involved in lung cancer: New discoveries and developments (Review). Int J Oncol 2017; 52:321-336. [PMID: 29207057 DOI: 10.3892/ijo.2017.4214] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/13/2017] [Indexed: 11/05/2022] Open
Abstract
The exploration of the molecular mechanisms and signaling pathways on lung cancer is very important for developing new strategies of diagnosis and treatment to this disease, such as finding valuable lung cancer markers and molecularly targeted therapies. Previously, a number of studies disclose that heat shock protein 90 (Hsp90) is upregulated in cancer cells, tissues and serum of lung cancer patients, and its upregulation intimately correlates with the occurrence, development and outcome of lung cancer. On the contrary, inhibition of Hsp90 can suppress cell proliferation, motility and metastasis of lung cancer and promote apoptosis of lung cancer cells via complex signaling pathways. In addition, a series of Hsp90 inhibitors have been investigated as effective molecular targeted therapy tactics fighting against lung cancer. This review, systematically summarizes the role of Hsp90 in lung cancer, the molecular mechanisms and development of anti-Hsp90 treatment in lung cancer.
Collapse
Affiliation(s)
- Biaoxue Rong
- Department of Oncology, First Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, P.R. China
| | - Shuanying Yang
- Department of Respiratory Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
22
|
Dagogo-Jack I, Shaw AT. Crizotinib resistance: implications for therapeutic strategies. Ann Oncol 2017; 27 Suppl 3:iii42-iii50. [PMID: 27573756 DOI: 10.1093/annonc/mdw305] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In 2007, a chromosomal rearrangement resulting in a gene fusion leading to expression of a constitutively active anaplastic lymphoma kinase (ALK) fusion protein was identified as an oncogenic driver in non-small-cell lung cancer (NSCLC). ALK rearrangements are detected in 3%-7% of patients with NSCLC and are particularly enriched in younger patients with adenocarcinoma and a never or light smoking history. Fortuitously, crizotinib, a small molecule tyrosine kinase inhibitor initially developed to target cMET, was able to be repurposed for ALK-rearranged (ALK+) NSCLC. Despite dramatic and durable initial responses to crizotinib; however, the vast majority of patients will develop resistance within a few years. Diverse molecular mechanisms underlie resistance to crizotinib. This review will describe the clinical activity of crizotinib, review identified mechanisms of crizotinib resistance, and end with a survey of emerging therapeutic strategies aimed at overcoming crizotinib resistance.
Collapse
Affiliation(s)
- I Dagogo-Jack
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, USA
| | - A T Shaw
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, USA
| |
Collapse
|
23
|
Suárez Del Pino JA, Kolhatkar R. Delivery of HSP90 Inhibitor Using Water Soluble Polymeric Conjugates with High Drug Payload. Pharm Res 2017; 34:2735-2748. [PMID: 28913790 DOI: 10.1007/s11095-017-2249-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/21/2017] [Indexed: 11/29/2022]
Abstract
PURPOSE HSP90 (Heat shock protein 90kD) has been validated as a therapeutic target in Castrate Resistant Prostate Cancer. Unfortunately, HSP90 inhibitors suffer from dose-limiting toxicities that hinder their clinical applications. Previously developed polymeric delivery systems for HSP90 inhibitors had either low drug content or low biological activity suggesting the need for better delivery system for HSP90 inhibitors. METHODS We developed a simplified synthetic strategy to prepare polyethylene glycol based water-soluble polymeric system for model HSP90 inhibitor geldanamycin (GDM). We then investigated the effect of cathepsin B degradable linker and drug content in polymeric conjugates on their growth inhibitory property using DU145 (androgen independent) and LNCaP (androgen dependent) cell lines. RESULTS Water-soluble polymeric conjugates were synthesized with GDM content ranging from 9 to 30% wt/wt. We demonstrated the importance of cathepsin B degradable linker from the context of drug content and different prostate cancer cell lines. The most active conjugate against DU145 cells exhibited IC50 value of 2.9 μM. This was similar to the IC50 (2.1 μM) of small molecular drug aminohexane geldanamycin. CONCLUSION Water-soluble polymeric conjugate with high drug content was synthesized that exhibited in-vitro growth inhibitory activity similar to small molecular weight HSP90 inhibitor. Graphical Abstract Water soluble degradable polymeric conjugate for the delivery of Geldanamycin.
Collapse
Affiliation(s)
- Jose A Suárez Del Pino
- Department of Biopharmaceutical Sciences, University of Illinois Chicago, 1601 Parkview Ave, Rm N302, Rockford, Illinois, 61107, USA
| | - Rohit Kolhatkar
- Department of Biopharmaceutical Sciences, University of Illinois Chicago, 1601 Parkview Ave, Rm N302, Rockford, Illinois, 61107, USA.
| |
Collapse
|
24
|
Taniguchi H, Yamada T, Takeuchi S, Arai S, Fukuda K, Sakamoto S, Kawada M, Yamaguchi H, Mukae H, Yano S. Impact of MET inhibition on small-cell lung cancer cells showing aberrant activation of the hepatocyte growth factor/MET pathway. Cancer Sci 2017; 108:1378-1385. [PMID: 28474864 PMCID: PMC5497807 DOI: 10.1111/cas.13268] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/30/2017] [Accepted: 04/23/2017] [Indexed: 12/14/2022] Open
Abstract
Small‐cell lung cancer (SCLC) accounts for approximately 15% of all lung cancers, and is characterized as extremely aggressive, often displaying rapid tumor growth and multiple organ metastases. In addition, the clinical outcome of SCLC patients is poor due to early relapse and acquired resistance to standard chemotherapy treatments. Hence, novel therapeutic strategies for the treatment of SCLC are urgently required. Accordingly, several molecular targeted therapies were evaluated in SCLC; however, they failed to improve the clinical outcome. The receptor tyrosine kinase MET is a receptor for hepatocyte growth factor (HGF), and aberrant activation of HGF/MET signaling is known as one of the crucial mechanisms enabling cancer progression and invasion. Here, we found that the HGF/MET signaling was aberrantly activated in chemoresistant or chemorelapsed SCLC cell lines (SBC‐5, DMS273, and DMS273‐G3H) by the secretion of HGF and/or MET copy number gain. A cell‐based in vitro assay revealed that HGF/MET inhibition, induced either by MET inhibitors (crizotinib and golvatinib), or by siRNA‐mediated knockdown of HGF or MET, constrained growth of chemoresistant SCLC cells through the inhibition of ERK and AKT signals. Furthermore, treatment with either crizotinib or golvatinib suppressed the systemic metastasis of SBC‐5 cell tumors in natural killer cell‐depleted SCID mice, predominantly through cell cycle arrest. These findings reveal the therapeutic potential of targeting the HGF/MET pathway for inhibition, to constrain tumor progression of SCLC cells showing aberrant activation of HGF/MET signaling. We suggest that it would be clinically valuable to further investigate HGF/MET‐mediated signaling in SCLC cells.
Collapse
Affiliation(s)
- Hirokazu Taniguchi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tadaaki Yamada
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Shinji Takeuchi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Sachiko Arai
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Koji Fukuda
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | | | | | - Hiroyuki Yamaguchi
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Seiji Yano
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
25
|
Vaishnavi A, Schubert L, Rix U, Marek LA, Le AT, Keysar SB, Glogowska MJ, Smith MA, Kako S, Sumi NJ, Davies KD, Ware KE, Varella-Garcia M, Haura EB, Jimeno A, Heasley LE, Aisner DL, Doebele RC. EGFR Mediates Responses to Small-Molecule Drugs Targeting Oncogenic Fusion Kinases. Cancer Res 2017; 77:3551-3563. [PMID: 28428274 DOI: 10.1158/0008-5472.can-17-0109] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/23/2017] [Accepted: 04/14/2017] [Indexed: 02/07/2023]
Abstract
Oncogenic kinase fusions of ALK, ROS1, RET, and NTRK1 act as drivers in human lung and other cancers. Residual tumor burden following treatment of ALK or ROS1+ lung cancer patients with oncogene-targeted therapy ultimately enables the emergence of drug-resistant clones, limiting the long-term effectiveness of these therapies. To determine the signaling mechanisms underlying incomplete tumor cell killing in oncogene-addicted cancer cells, we investigated the role of EGFR signaling in drug-naïve cancer cells harboring these oncogene fusions. We defined three distinct roles for EGFR in the response to oncogene-specific therapies. First, EGF-mediated activation of EGFR blunted fusion kinase inhibitor binding and restored fusion kinase signaling complexes. Second, fusion kinase inhibition shifted adaptor protein binding from the fusion oncoprotein to EGFR. Third, EGFR enabled bypass signaling to critical downstream pathways such as MAPK. While evidence of EGFR-mediated bypass signaling has been reported after ALK and ROS1 blockade, our results extended this effect to RET and NTRK1 blockade and uncovered the other additional mechanisms in gene fusion-positive lung cancer cells, mouse models, and human clinical specimens before the onset of acquired drug resistance. Collectively, our findings show how EGFR signaling can provide a critical adaptive survival mechanism that allows cancer cells to evade oncogene-specific inhibitors, providing a rationale to cotarget EGFR to reduce the risks of developing drug resistance. Cancer Res; 77(13); 3551-63. ©2017 AACR.
Collapse
Affiliation(s)
- Aria Vaishnavi
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Laura Schubert
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Lindsay A Marek
- Department of Craniofacial Biology, University of Colorado School of Dental Medicine, Aurora, Colorado
| | - Anh T Le
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Stephen B Keysar
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Magdalena J Glogowska
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Matthew A Smith
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Severine Kako
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Natalia J Sumi
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kurtis D Davies
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado
| | - Kathryn E Ware
- Department of Craniofacial Biology, University of Colorado School of Dental Medicine, Aurora, Colorado
| | - Marileila Varella-Garcia
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Antonio Jimeno
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Lynn E Heasley
- Department of Craniofacial Biology, University of Colorado School of Dental Medicine, Aurora, Colorado
| | - Dara L Aisner
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado
| | - Robert C Doebele
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|
26
|
Ruiz-Ceja KA, Chirino YI. Current FDA-approved treatments for non-small cell lung cancer and potential biomarkers for its detection. Biomed Pharmacother 2017; 90:24-37. [PMID: 28340378 DOI: 10.1016/j.biopha.2017.03.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/21/2017] [Accepted: 03/07/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Lung cancer is the leading worldwide cancer with almost 1.5 million deaths every year. Some drugs for lung cancer treatment have been available on the market for decades, but novel drugs have emerged promising better outcomes, especially for Non-Small Cell Lung Cancer (NSCLC), which represents 75% of lung cancer cases. However, how much do drugs have evolved for NSCLC treatment? Are they sharing the same mechanism of action? AIM In this review we analyzed how the approved drugs by Federal Drug Agency for NSCLC have advanced in the last four decades identifying shared mechanism of action of medicines against NSCLC treatment and some of the potential biomarkers for early detection. RESULTS Cisplatin and its derivatives are still the most used therapy in combination with some other more specific drugs. However, increasing the survival rates seems to be a great challenge and research is moving into early detection through biomarkers but also trying to identify molecules such as those derived from the immune system, cell-free DNA, non-coding RNAs, but also polymorphisms to detect early tumor formation. CONCLUSIONS Cisplatin and derivatives have been one of the most successful therapies in spite of their side effects and low specificity. Some of the drugs developed after cisplatin discovery, have been targeted the epidermal growth factor receptor, anaplastic lymphoma kinase, programmed cell death 1 ligand and vascular endothelial growth factor. Since none of the pharmacological treatments in combination with radiation/surgery have extended dramatically the survival rate, research is now focused in early cancer detection in combination with precision medicine, which attempts to treat patients individually according to their stage and tumor characteristics.
Collapse
Affiliation(s)
- Karla A Ruiz-Ceja
- Licenciatura en Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, CP 54059, Estado de México, Mexico
| | - Yolanda I Chirino
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, CP 54059, Estado de México, Mexico.
| |
Collapse
|
27
|
Hendriks LEL, Dingemans AMC. Heat shock protein antagonists in early stage clinical trials for NSCLC. Expert Opin Investig Drugs 2017; 26:541-550. [PMID: 28274158 DOI: 10.1080/13543784.2017.1302428] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Cancer cells have a higher need of chaperones than normal cells to prevent the toxic effects of intracellular protein misfolding and aggregation. Heat shock proteins (Hsps) belong to these chaperones; they are classified into families according to molecular size. Hsps are upregulated in many cancers and inhibition can inhibit tumor growth by destabilizing proteins necessary for tumor survival. In non-small cell lung cancer (NSCLC), there are three different Hsp antagonist classes that are in (early) clinical trials: Hsp90, Hsp70 and Hsp27 inhibitors. Areas covered: The rationale to use Hsp inhibitors in NSCLC will be summarized and phase I-III trials will be reviewed. Expert opinion: Several Hsp90 inhibitors have been tested in phase I-III trials, until now none was positive in unselected NSCLC; therefore development of AUY922, ganetespib and retaspimycin was halted. Results seem more promising in molecularly selected patients, especially in ALK-rearranged NSCLC. Hsp27 is overexpressed in squamous NSCLC and is a mechanism of chemotherapy resistance. The Hsp27 inhibitor apatorsen is now tested in squamous NSCLC. No phase II/III data are known for Hsp70 inhibitors. Combination of Hsp inhibitors with heat shock transcription factor 1 inhibitors or focal adhesion kinase inhibitors might be of interest for future trials.
Collapse
Affiliation(s)
- Lizza E L Hendriks
- a Department of Pulmonary Diseases, GROW - School for oncology and developmental biology , Maastricht University Medical Center+ , Maastricht , The Netherlands
| | - Anne-Marie C Dingemans
- a Department of Pulmonary Diseases, GROW - School for oncology and developmental biology , Maastricht University Medical Center+ , Maastricht , The Netherlands
| |
Collapse
|
28
|
Katayama R. Therapeutic strategies and mechanisms of drug resistance in anaplastic lymphoma kinase (ALK)-rearranged lung cancer. Pharmacol Ther 2017; 177:1-8. [PMID: 28185914 DOI: 10.1016/j.pharmthera.2017.02.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Anaplastic lymphoma kinase (ALK) gene encoding the receptor tyrosine kinase ALK is expressed as a fusion gene in a variety of carcinomas. The expression of ALK is nearly undetectable in adults, and its activation is normally regulated by its ligands, FAM150A/B. However, ALK gene rearrangements result in constitutive ALK fusion proteins expression via the active promoter of fusion partner genes. ALK fusion proteins dimerize in a ligand-independent manner and lead to the dysregulation of cell proliferation via abnormal constitutive activation of ALK tyrosine kinase. Many ALK tyrosine kinase inhibitors (TKIs) have been developed to date, three of which are currently in clinical use for the treatment of ALK-rearranged non-small cell lung cancer (NSCLC). ALK TKIs often achieve marked tumor regression in NSCLC patients with ALK rearrangements; however, ALK TKI-resistant tumors inevitably emerge within a few years in most cases. In this review, we summarize diverse ALK TKI resistance mechanisms identified in NSCLC with ALK rearrangements, and review potential therapeutic strategies to overcome ALK TKI resistance in these patients.
Collapse
Affiliation(s)
- Ryohei Katayama
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo 135-8550, Japan.
| |
Collapse
|
29
|
Taniguchi H, Takeuchi S, Fukuda K, Nakagawa T, Arai S, Nanjo S, Yamada T, Yamaguchi H, Mukae H, Yano S. Amphiregulin triggered epidermal growth factor receptor activation confers in vivo crizotinib-resistance of EML4-ALK lung cancer and circumvention by epidermal growth factor receptor inhibitors. Cancer Sci 2017; 108:53-60. [PMID: 27783866 PMCID: PMC5276841 DOI: 10.1111/cas.13111] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/17/2016] [Accepted: 10/22/2016] [Indexed: 12/30/2022] Open
Abstract
Crizotinib, a first-generation anaplastic lymphoma kinase (ALK) tyrosine-kinase inhibitor, is known to be effective against echinoderm microtubule-associated protein-like 4 (EML4)-ALK-positive non-small cell lung cancers. Nonetheless, the tumors subsequently become resistant to crizotinib and recur in almost every case. The mechanism of the acquired resistance needs to be deciphered. In this study, we established crizotinib-resistant cells (A925LPE3-CR) via long-term administration of crizotinib to a mouse model of pleural carcinomatous effusions; this model involved implantation of the A925LPE3 cell line, which harbors the EML4-ALK gene rearrangement. The resistant cells did not have the secondary ALK mutations frequently occurring in crizotinib-resistant cells, and these cells were cross-resistant to alectinib and ceritinib as well. In cell clone #2, which is one of the clones of A925LPE3-CR, crizotinib sensitivity was restored via the inhibition of epidermal growth factor receptor (EGFR) by means of an EGFR tyrosine-kinase inhibitor (erlotinib) or an anti-EGFR antibody (cetuximab) in vitro and in the murine xenograft model. Cell clone #2 did not have an EGFR mutation, but the expression of amphiregulin (AREG), one of EGFR ligands, was significantly increased. A knockdown of AREG with small interfering RNAs restored the sensitivity to crizotinib. These data suggest that overexpression of EGFR ligands such as AREG can cause resistance to crizotinib, and that inhibition of EGFR signaling may be a promising strategy to overcome crizotinib resistance in EML4-ALK lung cancer.
Collapse
Affiliation(s)
- Hirokazu Taniguchi
- Division of Medical OncologyCancer Research InstituteKanazawa UniversityKanazawaJapan
- Department of Respiratory MedicineNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Shinji Takeuchi
- Division of Medical OncologyCancer Research InstituteKanazawa UniversityKanazawaJapan
| | - Koji Fukuda
- Division of Medical OncologyCancer Research InstituteKanazawa UniversityKanazawaJapan
| | - Takayuki Nakagawa
- Division of Medical OncologyCancer Research InstituteKanazawa UniversityKanazawaJapan
- Tsukuba LaboratoryEisai Co., LtdTsukubaJapan
| | - Sachiko Arai
- Division of Medical OncologyCancer Research InstituteKanazawa UniversityKanazawaJapan
| | - Shigeki Nanjo
- Division of Medical OncologyCancer Research InstituteKanazawa UniversityKanazawaJapan
| | - Tadaaki Yamada
- Division of Medical OncologyCancer Research InstituteKanazawa UniversityKanazawaJapan
| | - Hiroyuki Yamaguchi
- Department of Respiratory MedicineNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Hiroshi Mukae
- Department of Respiratory MedicineNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Seiji Yano
- Division of Medical OncologyCancer Research InstituteKanazawa UniversityKanazawaJapan
| |
Collapse
|
30
|
Zhang G, Scarborough H, Kim J, Rozhok AI, Chen YA, Zhang X, Song L, Bai Y, Fang B, Liu RZ, Koomen J, Tan AC, Degregori J, Haura EB. Coupling an EML4-ALK-centric interactome with RNA interference identifies sensitizers to ALK inhibitors. Sci Signal 2016; 9:rs12. [PMID: 27811184 DOI: 10.1126/scisignal.aaf5011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Patients with lung cancers harboring anaplastic lymphoma kinase (ALK) gene fusions benefit from treatment with ALK inhibitors, but acquired resistance inevitably arises. A better understanding of proximal ALK signaling mechanisms may identify sensitizers to ALK inhibitors that disrupt the balance between prosurvival and proapoptotic effector signals. Using affinity purification coupled with mass spectrometry in an ALK fusion lung cancer cell line (H3122), we generated an ALK signaling network and investigated signaling activity using tyrosine phosphoproteomics. We identified a network of 464 proteins composed of subnetworks with differential response to ALK inhibitors. A small hairpin RNA screen targeting 407 proteins in this network revealed 64 and 9 proteins that when knocked down sensitized cells to crizotinib and alectinib, respectively. Among these, knocking down fibroblast growth factor receptor substrate 2 (FRS2) or coiled-coil and C2 domain-containing protein 1A (CC2D1A), both scaffolding proteins, sensitized multiple ALK fusion cell lines to the ALK inhibitors crizotinib and alectinib. Collectively, our data set provides a resource that enhances our understanding of signaling and drug resistance networks consequent to ALK fusions and identifies potential targets to improve the efficacy of ALK inhibitors in patients.
Collapse
Affiliation(s)
- Guolin Zhang
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Hannah Scarborough
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jihye Kim
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrii I Rozhok
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yian Ann Chen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Xiaohui Zhang
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Lanxi Song
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Yun Bai
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Bin Fang
- Proteomics Core Facility, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Richard Z Liu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - John Koomen
- Department of Molecular Oncology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Aik Choon Tan
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James Degregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
31
|
Evolution from genetics to phenotype: reinterpretation of NSCLC plasticity, heterogeneity, and drug resistance. Protein Cell 2016; 8:178-190. [PMID: 27757846 PMCID: PMC5326619 DOI: 10.1007/s13238-016-0330-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/23/2016] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Targeted therapy is beneficial in most cases, but the development of drug resistance stands as an obstacle to good prognosis. Multiple mechanisms were explored such as genetic alterations, activation of bypass signaling, and phenotypic transition. These intrinsic and/or extrinsic dynamic regulations facilitate tumor cell survival in meeting the demands of signaling under different stimulus. This review introduces lung cancer plasticity and heterogeneity and their correlation with drug resistance. While cancer plasticity and heterogeneity play an essential role in the development of drug resistance, the manipulation of them may bring some inspirations to cancer prognosis and treatment. That is to say, lung cancer plasticity and heterogeneity present us with not only challenges but also opportunities.
Collapse
|
32
|
Wang S, Liu F, Zhu J, Chen P, Liu H, Liu Q, Han J. DNA Repair Genes ERCC1 and BRCA1 Expression in Non-Small Cell Lung Cancer Chemotherapy Drug Resistance. Med Sci Monit 2016; 22:1999-2005. [PMID: 27289442 PMCID: PMC4913815 DOI: 10.12659/msm.896606] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Surgery combined with chemotherapy is an important therapy for non-small cell lung cancer (NSCLC). However, chemotherapy drug resistance seriously hinders the curative effect. Studies show that DNA repair genes ERCC1 and BRCA1 are associated with NSCLC chemotherapy, but their expression and mechanism in NSCLC chemotherapy drug-resistant cells has not been elucidated. Material/Methods NSCLC cell line A549 and drug resistance cell line A549/DDP were cultured. Real-time PCR and Western blot analyses were used to detect ERCC1 and BRCA1 mRNA expression. A549/DDP cells were randomly divided into 3 groups: the control group; the siRNA-negative control group (scramble group); and the siRNA ERCC1 and BRCA1siRNA transfection group. Real-time PCR and Western blot analyses were used to determine ERCC1 and BRCA1 mRNA and protein expression. MTT was used to detect cell proliferation activity. Caspase 3 activity was tested by use of a kit. Western blot analysis was performed to detect PI3K, AKT, phosphorylated PI3K, and phosphorylated AKT protein expression. Results ERCC1 and BRCA1 were overexpressed in A549/DDP compared with A549 (P<0.05). ERCC1 and BRCA1siRNA transfection can significantly reduce ERCC1 and BRCA1 mRNA and protein expression (P<0.05). Downregulating ERCC1 and BRCA1 expression obviously inhibited cell proliferation and increased caspase 3 activity (P<0.05). Downregulating ERCC1 and BRCA1 significantly decreased PI3K and AKT phosphorylation levels (P<0.05). Conclusions ERCC1 and BRCA1 were overexpressed in NSCLC drug-resistant cells, and they regulated lung cancer occurrence and development through the phosphorylating PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Shuai Wang
- , Shandong University, Jinan, Shandong, China (mainland)
| | - Feng Liu
- , WeiFang Medical University, Weifang, Shandong, China (mainland)
| | - Jingyan Zhu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, China (mainland)
| | - Peng Chen
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, China (mainland)
| | - Hongxing Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, China (mainland)
| | - Qi Liu
- Institute of Oncology, Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong, China (mainland)
| | - Junqing Han
- Department of Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
33
|
Chiu CH, Ho HL, Doong H, Yeh YC, Chen MY, Chou TY, Tsai CM. MLH1 V384D polymorphism associates with poor response to EGFR tyrosine kinase inhibitors in patients with EGFR L858R-positive lung adenocarcinoma. Oncotarget 2016; 6:8407-17. [PMID: 25823662 PMCID: PMC4480762 DOI: 10.18632/oncotarget.3511] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/02/2015] [Indexed: 01/13/2023] Open
Abstract
A significant fraction of patients with lung adenocarcinomas harboring activating epidermal growth factor receptor (EGFR) mutations do not experience clinical benefits from EGFR tyrosine kinase inhibitor (TKI) therapy. Using next-generation sequencing, we screened 739 mutation hotspots in 46 cancer-related genes in EGFR L858R-mutant lung adenocarcinomas from 29 patients who received EGFR-TKI therapy; 13 had short (< 3 months) and 16 had long (> 1 year) progression-free survival (PFS). We discovered MLH1 V384D as a genetic variant enriched in the group of patients with short PFS. Next, we investigated this genetic variation in 158 lung adenocarcinomas with the EGFR L858R mutation and found 14 (8.9%) patients had MLH1 V384D; available blood or non-tumor tissues from patients were also tested positive for MLH1 V384D. Patients with MLH1 V384D had a significantly shorter median PFS than those without (5.1 vs. 10.6 months; P= 0.001). Multivariate analysis showed that MLH1 V384D polymorphism was an independent predictor for a reduced PFS time (hazard ratio, 3.5; 95% confidence interval, 1.7 to 7.2; P= 0.001). In conclusion, MLH1 V384D polymorphism is associated with primary resistance to EGFR-TKIs in patients with EGFR L858R-positive lung adenocarcinoma and may potentially be a novel biomarker to guide treatment decisions.
Collapse
Affiliation(s)
- Chao-Hua Chiu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Thoracic Oncology, Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsiang-Ling Ho
- Division of Molecular Pathology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Howard Doong
- Taipei VGH-Lihpao Laboratory of Cancer Genomic Medicine, Lihpao Life Science Corporation, Taipei, Taiwan
| | - Yi-Chen Yeh
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Molecular Pathology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Mei-Yu Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Teh-Ying Chou
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Molecular Pathology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Ming Tsai
- Department of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Thoracic Oncology, Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
34
|
Bayliss R, Choi J, Fennell DA, Fry AM, Richards MW. Molecular mechanisms that underpin EML4-ALK driven cancers and their response to targeted drugs. Cell Mol Life Sci 2016; 73:1209-24. [PMID: 26755435 PMCID: PMC4761370 DOI: 10.1007/s00018-015-2117-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 12/14/2015] [Indexed: 02/05/2023]
Abstract
A fusion between the EML4 (echinoderm microtubule-associated protein-like) and ALK (anaplastic lymphoma kinase) genes was identified in non-small cell lung cancer (NSCLC) in 2007 and there has been rapid progress in applying this knowledge to the benefit of patients. However, we have a poor understanding of EML4 and ALK biology and there are many challenges to devising the optimal strategy for treating EML4-ALK NSCLC patients. In this review, we describe the biology of EML4 and ALK, explain the main features of EML4-ALK fusion proteins and outline the therapies that target EML4-ALK. In particular, we highlight the recent advances in our understanding of the structures of EML proteins, describe the molecular mechanisms of resistance to ALK inhibitors and assess current thinking about combinations of ALK drugs with inhibitors that target other kinases or Hsp90.
Collapse
Affiliation(s)
- Richard Bayliss
- Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester, LE2 9HN, UK.
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Jene Choi
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43 gil, Seoul, Korea
| | - Dean A Fennell
- Cancer Research UK Centre, University of Leicester, Lancaster Road, Leicester, LE3 9SQ, UK
| | - Andrew M Fry
- Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester, LE2 9HN, UK
| | - Mark W Richards
- Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester, LE2 9HN, UK
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
35
|
Wang M, Shen A, Zhang C, Song Z, Ai J, Liu H, Sun L, Ding J, Geng M, Zhang A. Development of Heat Shock Protein (Hsp90) Inhibitors To Combat Resistance to Tyrosine Kinase Inhibitors through Hsp90-Kinase Interactions. J Med Chem 2016; 59:5563-86. [PMID: 26844689 DOI: 10.1021/acs.jmedchem.5b01106] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Heat shock protein 90 (Hsp90) is a ubiquitous chaperone of all of the oncogenic tyrosine kinases. Many Hsp90 inhibitors, alone or in combination, have shown significant antitumor efficacy against the kinase-positive naïve and mutant models. However, clinical trials of these inhibitors are unsuccessful due to insufficient clinical benefits and nonoptimal safety profiles. Recently, much progress has been reported on the Hsp90-cochaperone-client complex, which will undoubtedly assist in the understanding of the interactions between Hsp90 and its clients. Meanwhile, Hsp90 inhibitors have shown promise against patients' resistance caused by early generation tyrosine kinase inhibitors (TKIs), and at least 13 Hsp90 inhibitors are being reevaluated in the clinic. In this regard, the objectives of the current perspective are to summarize the structure and function of the Hsp90-cochaperone-client complex, to analyze the structural and functional insights into the Hsp90-client interactions to address several existing unresolved problems with Hsp90 inhibitors, and to highlight the preclinical and clinical studies of Hsp90 inhibitors as an effective treatment against resistance to tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Meining Wang
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences , 555 Zuchongzhi Lu, Building 3, Room 426, Pudong, Shanghai 201203, China
| | - Aijun Shen
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences , Shanghai 201203, China
| | - Chi Zhang
- Department of Medicinal Chemistry, China Pharmaceutical University , Nanjing 210009, China
| | - Zilan Song
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences , 555 Zuchongzhi Lu, Building 3, Room 426, Pudong, Shanghai 201203, China
| | - Jing Ai
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences , Shanghai 201203, China
| | - Hongchun Liu
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences , Shanghai 201203, China
| | - Liping Sun
- Department of Medicinal Chemistry, China Pharmaceutical University , Nanjing 210009, China
| | - Jian Ding
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences , Shanghai 201203, China
| | - Meiyu Geng
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences , Shanghai 201203, China
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences , 555 Zuchongzhi Lu, Building 3, Room 426, Pudong, Shanghai 201203, China
| |
Collapse
|
36
|
Wang CY, Guo ST, Wang JY, Liu F, Zhang YY, Yari H, Yan XG, Jin L, Zhang XD, Jiang CC. Inhibition of HSP90 by AUY922 Preferentially Kills Mutant KRAS Colon Cancer Cells by Activating Bim through ER Stress. Mol Cancer Ther 2016; 15:448-59. [PMID: 26832792 DOI: 10.1158/1535-7163.mct-15-0778] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/04/2016] [Indexed: 11/16/2022]
Abstract
Oncogenic mutations of KRAS pose a great challenge in the treatment of colorectal cancer. Here we report that mutant KRAS colon cancer cells are nevertheless more susceptible to apoptosis induced by the HSP90 inhibitor AUY922 than those carrying wild-type KRAS. Although AUY922 inhibited HSP90 activity with comparable potency in colon cancer cells irrespective of their KRAS mutational statuses, those with mutant KRAS were markedly more sensitive to AUY922-induced apoptosis. This was associated with upregulation of the BH3-only proteins Bim, Bik, and PUMA. However, only Bim appeared essential, in that knockdown of Bim abolished, whereas knockdown of Bik or PUMA only moderately attenuated apoptosis induced by AUY922. Mechanistic investigations revealed that endoplasmic reticulum (ER) stress was responsible for AUY922-induced upregulation of Bim, which was inhibited by a chemical chaperone or overexpression of GRP78. Conversely, siRNA knockdown of GRP78 or XBP-1 enhanced AUY922-induced apoptosis. Remarkably, AUY922 inhibited the growth of mutant KRAS colon cancer xenografts through activation of Bim that was similarly associated with ER stress. Taken together, these results suggest that AUY922 is a promising drug in the treatment of mutant KRAS colon cancers, and the agents that enhance the apoptosis-inducing potential of Bim may be useful to improve the therapeutic efficacy.
Collapse
Affiliation(s)
- Chun Yan Wang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia. Department of Molecular Biology, Shanxi Cancer Hospital and Institute, The Affiliated Cancer Hospital of Shanxi Medical University, Shanxi, China
| | - Su Tang Guo
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia. Department of Molecular Biology, Shanxi Cancer Hospital and Institute, The Affiliated Cancer Hospital of Shanxi Medical University, Shanxi, China
| | - Jia Yu Wang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Fen Liu
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Yuan Yuan Zhang
- School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia
| | - Hamed Yari
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Xu Guang Yan
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Lei Jin
- School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia.
| | - Chen Chen Jiang
- School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia.
| |
Collapse
|
37
|
Asić K. Dominant mechanisms of primary resistance differ from dominant mechanisms of secondary resistance to targeted therapies. Crit Rev Oncol Hematol 2016; 97:178-96. [DOI: 10.1016/j.critrevonc.2015.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 06/18/2015] [Accepted: 08/04/2015] [Indexed: 02/07/2023] Open
|
38
|
Isozaki H, Ichihara E, Takigawa N, Ohashi K, Ochi N, Yasugi M, Ninomiya T, Yamane H, Hotta K, Sakai K, Matsumoto K, Hosokawa S, Bessho A, Sendo T, Tanimoto M, Kiura K. Non-Small Cell Lung Cancer Cells Acquire Resistance to the ALK Inhibitor Alectinib by Activating Alternative Receptor Tyrosine Kinases. Cancer Res 2015; 76:1506-16. [PMID: 26719536 DOI: 10.1158/0008-5472.can-15-1010] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 12/13/2015] [Indexed: 11/16/2022]
Abstract
Crizotinib is the standard of care for advanced non-small cell lung cancer (NSCLC) patients harboring the anaplastic lymphoma kinase (ALK) fusion gene, but resistance invariably develops. Unlike crizotinib, alectinib is a selective ALK tyrosine kinase inhibitor (TKI) with more potent antitumor effects and a favorable toxicity profile, even in crizotinib-resistant cases. However, acquired resistance to alectinib, as for other TKIs, remains a limitation of its efficacy. Therefore, we investigated the mechanisms by which human NSCLC cells acquire resistance to alectinib. We established two alectinib-resistant cell lines that did not harbor the secondary ALK mutations frequently occurring in crizotinib-resistant cells. One cell line lost the EML4-ALK fusion gene, but exhibited increased activation of insulin-like growth factor-1 receptor (IGF1R) and human epidermal growth factor receptor 3 (HER3), and overexpressed the HER3 ligand neuregulin 1. Accordingly, pharmacologic inhibition of IGF1R and HER3 signaling overcame resistance to alectinib in this cell line. The second alectinib-resistant cell line displayed stimulated HGF autocrine signaling that promoted MET activation and remained sensitive to crizotinib treatment. Taken together, our findings reveal two novel mechanisms underlying alectinib resistance that are caused by the activation of alternative tyrosine kinase receptors rather than by secondary ALK mutations. These studies may guide the development of comprehensive treatment strategies that take into consideration the various approaches ALK-positive lung tumors use to withstand therapeutic insult.
Collapse
Affiliation(s)
- Hideko Isozaki
- Department of Clinical Pharmaceutics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama City, Okayama, Japan
| | - Eiki Ichihara
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama City, Okayama, Japan. Department of Hematology/Oncology Vanderbilt-Ingram Cancer Center, Nashville, Tennessee.
| | - Nagio Takigawa
- Department of General Internal Medicine 4, Kawasaki Medical School, Okayama City, Okayama, Japan
| | - Kadoaki Ohashi
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama City, Okayama, Japan
| | - Nobuaki Ochi
- Department of General Internal Medicine 4, Kawasaki Medical School, Okayama City, Okayama, Japan
| | - Masayuki Yasugi
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama City, Okayama, Japan
| | - Takashi Ninomiya
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama City, Okayama, Japan
| | - Hiromichi Yamane
- Department of General Internal Medicine 4, Kawasaki Medical School, Okayama City, Okayama, Japan
| | - Katsuyuki Hotta
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama City, Okayama, Japan
| | - Katsuya Sakai
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa City, Ishikawa, Japan
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa City, Ishikawa, Japan
| | - Shinobu Hosokawa
- Department of Respiratory Medicine, Japanese Red Cross Okayama Hospital, Okayama City, Okayama, Japan
| | - Akihiro Bessho
- Department of Respiratory Medicine, Japanese Red Cross Okayama Hospital, Okayama City, Okayama, Japan
| | - Toshiaki Sendo
- Department of Clinical Pharmaceutics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama City, Okayama, Japan
| | - Mitsune Tanimoto
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama City, Okayama, Japan
| | - Katsuyuki Kiura
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama City, Okayama, Japan.
| |
Collapse
|
39
|
Tani T, Yasuda H, Hamamoto J, Kuroda A, Arai D, Ishioka K, Ohgino K, Miyawaki M, Kawada I, Naoki K, Hayashi Y, Betsuyaku T, Soejima K. Activation of EGFR Bypass Signaling by TGFα Overexpression Induces Acquired Resistance to Alectinib in ALK-Translocated Lung Cancer Cells. Mol Cancer Ther 2015; 15:162-71. [PMID: 26682573 DOI: 10.1158/1535-7163.mct-15-0084] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 10/22/2015] [Indexed: 11/16/2022]
Abstract
Alectinib is a highly selective ALK inhibitor and shows promising efficacy in non-small cell lung cancers (NSCLC) harboring the EML4-ALK gene rearrangement. The precise mechanism of acquired resistance to alectinib is not well defined. The purpose of this study was to clarify the mechanism of acquired resistance to alectinib in ALK-translocated lung cancer cells. We established alectinib-resistant cells (H3122-AR) from the H3122 NSCLC cell line, harboring the EML4-ALK gene rearrangement, by long-term exposure to alectinib. The mechanism of acquired resistance to alectinib in H3122-AR cells was evaluated by phospho-receptor tyrosine kinase (phospho-RTK) array screening and Western blotting. No mutation of the ALK-TK domain was found. Phospho-RTK array analysis revealed that the phosphorylation level of EGFR was increased in H3122-AR cells compared with H3122. Expression of TGFα, one of the EGFR ligands, was significantly increased and knockdown of TGFα restored the sensitivity to alectinib in H3122-AR cells. We found combination therapy targeting ALK and EGFR with alectinib and afatinib showed efficacy both in vitro and in a mouse xenograft model. We propose a preclinical rationale to use the combination therapy with alectinib and afatinib in NSCLC that acquired resistance to alectinib by the activation of EGFR bypass signaling.
Collapse
Affiliation(s)
- Tetsuo Tani
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hiroyuki Yasuda
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan.
| | - Junko Hamamoto
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Aoi Kuroda
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Daisuke Arai
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kota Ishioka
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Keiko Ohgino
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masayoshi Miyawaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Ichiro Kawada
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Katsuhiko Naoki
- Keio Cancer Center, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yuichiro Hayashi
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tomoko Betsuyaku
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kenzo Soejima
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
40
|
Gray AL, Coleman DT, Castore RF, Mohyeldin MM, El Sayed KA, Cardelli JA. Isothiocyanatostilbenes as novel c-Met inhibitors. Oncotarget 2015; 6:41180-93. [PMID: 26543230 PMCID: PMC4747398 DOI: 10.18632/oncotarget.5748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/17/2015] [Indexed: 01/17/2023] Open
Abstract
The hepatocyte growth factor receptor (HGFR or c-Met) is a driver of multiple cancer subtypes. While there are several c-Met inhibitors in development, few have been approved for clinical use, warranting the need for continued research and development of c-Met targeting therapeutic modalities. The research presented here demonstrates a particular class of compounds known as isothiocyanatostilbenes can act as c-Met inhibitors in multiple cancer cell lines. Specifically, we found that 4,4′-Diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS) and 4,4′-Diisothiocyanatodihydrostilbene-2,2′-disulfonic acid (H2DIDS) had c-Met inhibitory effective doses in the low micromolar range while 4-acetamido-4′-isothiocyanatostilbene-2,2′-disulfonic acid (SITS) and 4,4′-dinitrostilbene-2, 2′-disulfonic acid (DNDS) exhibited IC50s 100 to 1000 fold higher. These compounds displayed much greater selectivity for inhibiting c-Met activation compared to similar receptor tyrosine kinases. In addition, DIDS and H2DIDS reduced hepatocyte growth factor (HGF)-induced, but not epidermal growth factor (EGF)-induced, cell scattering, wound healing, and 3-dimensional (3D) proliferation of tumor cell spheroids. In-cell and cell-free assays suggested that DIDS and H2DIDS can inhibit and reverse c-Met phosphorylation, similar to SU11274. Additional data demonstrated that DIDS is tolerable in vivo. These data provide preliminary support for future studies examining DIDS, H2DIDS, and derivatives as potential c-Met therapeutics.
Collapse
Affiliation(s)
- Alana L Gray
- Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA.,Feist-Weiller Cancer Center, Shreveport, LA, USA
| | - David T Coleman
- Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA.,Feist-Weiller Cancer Center, Shreveport, LA, USA
| | - Reneau F Castore
- Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA.,Feist-Weiller Cancer Center, Shreveport, LA, USA
| | | | | | - James A Cardelli
- Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA.,Feist-Weiller Cancer Center, Shreveport, LA, USA
| |
Collapse
|
41
|
Abstract
The therapeutic targeting of anaplastic lymphoma kinase (ALK) has been a burgeoning area of research since 2007 when ALK fusions were initially identified in patients with non-small cell lung cancer. The field has rapidly progressed through development of the first-generation ALK inhibitor, crizotinib, to an understanding of mechanisms of acquired resistance to crizotinib and is currently witnessing an explosion in the development of next-generation ALK inhibitors such as ceritinib, alectinib, PF-06463922, AP26113, X-396, and TSR-011. As with most targeted therapies, acquired resistance appears to be an inevitable outcome. Current preclinical and clinical studies are focused on the development of rational therapeutic strategies, including novel ALK inhibitors, as well as rational combination therapies to maximize disease control by delaying or overcoming acquired therapeutic resistance. This review summarizes the existing clinical data and ongoing research pertaining to the clinical application of ALK inhibitors in patients with non-small cell lung cancer.
Collapse
Affiliation(s)
- Wade T. Iams
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Christine M. Lovly
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
| |
Collapse
|
42
|
Toyokawa G, Seto T. Updated Evidence on the Mechanisms of Resistance to ALK Inhibitors and Strategies to Overcome Such Resistance: Clinical and Preclinical Data. Oncol Res Treat 2015; 38:291-8. [DOI: 10.1159/000430852] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/21/2015] [Indexed: 11/19/2022]
|
43
|
Duchemann B, Friboulet L, Besse B. Therapeutic management of ALK+ nonsmall cell lung cancer patients. Eur Respir J 2015; 46:230-42. [PMID: 25929953 DOI: 10.1183/09031936.00236414] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 03/14/2015] [Indexed: 02/04/2023]
Abstract
With therapeutic approaches based on oncogene addiction offering significant anticancer benefit, the identification of anaplastic lymphoma kinase (ALK) rearrangements is a key aspect of the management of lung cancers. The EML4-ALK gene fusion is detected in 4-8% of all lung cancers, predominantly in light smokers or nonsmokers. Crizotinib, the first agent to be approved in this indication, is associated with a median progression-free survival of 10.9 months when given as first-line treatment and 7.7 months when administered after chemotherapy. Median overall survival with crizotinib in the second-line setting is 20.3 months. Second-generation ALK inhibitors are currently being evaluated, with early studies giving impressive results, notably in patients resistant to crizotinib or with brain metastases. Among available chemotherapies, pemetrexed appears to be particularly active in this population. Despite this progress, several questions remain unanswered. What detection strategies should be favoured? What underlies the mechanisms of resistance and what options are available to overcome them? What are the best approaches for progressing patients? This review provides an overview of current data in the literature and addresses these questions.
Collapse
Affiliation(s)
- Boris Duchemann
- Dept of Medical Oncology, Hopital Avicenne, Bobigny, France Paris 13 University, Paris, France
| | - Luc Friboulet
- Dept of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Benjamin Besse
- Dept of Cancer Medicine, Gustave Roussy, Villejuif, France Paris-Sud University, Paris, France
| |
Collapse
|
44
|
Wilson FH, Johannessen CM, Piccioni F, Tamayo P, Kim JW, Van Allen EM, Corsello SM, Capelletti M, Calles A, Butaney M, Sharifnia T, Gabriel SB, Mesirov JP, Hahn WC, Engelman JA, Meyerson M, Root DE, Jänne PA, Garraway LA. A functional landscape of resistance to ALK inhibition in lung cancer. Cancer Cell 2015; 27:397-408. [PMID: 25759024 PMCID: PMC4398996 DOI: 10.1016/j.ccell.2015.02.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/15/2014] [Accepted: 02/10/2015] [Indexed: 01/17/2023]
Abstract
We conducted a large-scale functional genetic study to characterize mechanisms of resistance to ALK inhibition in ALK-dependent lung cancer cells. We identify members of known resistance pathways and additional putative resistance drivers. Among the latter were members of the P2Y purinergic receptor family of G-protein-coupled receptors (P2Y1, P2Y2, and P2Y6). P2Y receptors mediated resistance in part through a protein-kinase-C (PKC)-dependent mechanism. Moreover, PKC activation alone was sufficient to confer resistance to ALK inhibitors, whereas combined ALK and PKC inhibition restored sensitivity. We observed enrichment of gene signatures associated with several resistance drivers (including P2Y receptors) in crizotinib-resistant ALK-rearranged lung tumors compared to treatment-naive controls, supporting a role for these identified mechanisms in clinical ALK inhibitor resistance.
Collapse
Affiliation(s)
- Frederick H Wilson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | | - Pablo Tamayo
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jong Wook Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven M Corsello
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marzia Capelletti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Antonio Calles
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Mohit Butaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Tanaz Sharifnia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Stacey B Gabriel
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jill P Mesirov
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeffrey A Engelman
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David E Root
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Levi A Garraway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
45
|
McKeage K. Alectinib: A Review of Its Use in Advanced ALK-Rearranged Non-Small Cell Lung Cancer. Drugs 2014; 75:75-82. [DOI: 10.1007/s40265-014-0329-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|