BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Feng Y, Ren J, Gui Y, Wei W, Shu B, Lu Q, Xue X, Sun X, He W, Yang J, Dai C. Wnt/β-Catenin-Promoted Macrophage Alternative Activation Contributes to Kidney Fibrosis. J Am Soc Nephrol 2018;29:182-93. [PMID: 29021383 DOI: 10.1681/ASN.2017040391] [Cited by in Crossref: 64] [Cited by in F6Publishing: 44] [Article Influence: 12.8] [Reference Citation Analysis]
Number Citing Articles
1 Duan Y, Qiu Y, Huang X, Dai C, Yang J, He W. Deletion of FHL2 in fibroblasts attenuates fibroblasts activation and kidney fibrosis via restraining TGF-β1-induced Wnt/β-catenin signaling. J Mol Med (Berl) 2020;98:291-307. [PMID: 31927599 DOI: 10.1007/s00109-019-01870-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
2 Motahharynia A, Moein S, Kiyanpour F, Moradzadeh K, Yaqubi M, Gheisari Y. Olfactory receptors contribute to progression of kidney fibrosis. NPJ Syst Biol Appl 2022;8:8. [PMID: 35181660 DOI: 10.1038/s41540-022-00217-w] [Reference Citation Analysis]
3 Tian F, Chen H, Zhang J, He W. Reprogramming Metabolism of Macrophages as a Target for Kidney Dysfunction Treatment in Autoimmune Diseases. IJMS 2022;23:8024. [DOI: 10.3390/ijms23148024] [Reference Citation Analysis]
4 Braga PC, Alves MG, Rodrigues AS, Oliveira PF. Mitochondrial Pathophysiology on Chronic Kidney Disease. Int J Mol Sci 2022;23:1776. [PMID: 35163697 DOI: 10.3390/ijms23031776] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
5 Prado LG, Barbosa AS. Understanding the Renal Fibrotic Process in Leptospirosis. Int J Mol Sci 2021;22:10779. [PMID: 34639117 DOI: 10.3390/ijms221910779] [Reference Citation Analysis]
6 Yang Y, Ye YC, Chen Y, Zhao JL, Gao CC, Han H, Liu WC, Qin HY. Crosstalk between hepatic tumor cells and macrophages via Wnt/β-catenin signaling promotes M2-like macrophage polarization and reinforces tumor malignant behaviors. Cell Death Dis 2018;9:793. [PMID: 30022048 DOI: 10.1038/s41419-018-0818-0] [Cited by in Crossref: 57] [Cited by in F6Publishing: 67] [Article Influence: 14.3] [Reference Citation Analysis]
7 Zhang Y, Wang Y, Zheng G, Liu Y, Li J, Huang H, Xu C, Zeng Y, Zhang X, Qin J, Dai C, Hambrock HO, Hartmann U, Feng B, Mak KK, Liu Y, Lan HY, Huang Y, Zheng ZH, Xia Y. Follistatin-like 1 (FSTL1) interacts with Wnt ligands and Frizzled receptors to enhance Wnt/β-catenin signaling in obstructed kidneys in vivo. J Biol Chem 2022;:102010. [PMID: 35525270 DOI: 10.1016/j.jbc.2022.102010] [Reference Citation Analysis]
8 Ariel O, Brouard JS, Marete A, Miglior F, Ibeagha-Awemu E, Bissonnette N. Genome-wide association analysis identified both RNA-seq and DNA variants associated to paratuberculosis in Canadian Holstein cattle 'in vitro' experimentally infected macrophages. BMC Genomics 2021;22:162. [PMID: 33678157 DOI: 10.1186/s12864-021-07487-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Wang X, Li X, Liu X, Yin Y, Dang Y, Lei F. Giant Intracranial Xanthoma with Cloudy Vision as the First Symptom: A Case Report and Literature Review. Int J Gen Med 2021;14:1101-5. [PMID: 33790639 DOI: 10.2147/IJGM.S290893] [Reference Citation Analysis]
10 Lee H, Fessler MB, Qu P, Heymann J, Kopp JB. Macrophage polarization in innate immune responses contributing to pathogenesis of chronic kidney disease. BMC Nephrol 2020;21:270. [PMID: 32660446 DOI: 10.1186/s12882-020-01921-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
11 Wei Z, Yang M, Feng M, Wu Z, Rosin-Arbesfeld R, Dong J, Zhu D. Inhibition of BCL9 Modulates the Cellular Landscape of Tumor-Associated Macrophages in the Tumor Immune Microenvironment of Colorectal Cancer. Front Pharmacol 2021;12:713331. [PMID: 34566638 DOI: 10.3389/fphar.2021.713331] [Reference Citation Analysis]
12 Schunk SJ, Floege J, Fliser D, Speer T. WNT-β-catenin signalling - a versatile player in kidney injury and repair. Nat Rev Nephrol 2021;17:172-84. [PMID: 32989282 DOI: 10.1038/s41581-020-00343-w] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
13 Chen X, Yan H, Chen Y, Li G, Bin Y, Zhou X. Moderate oxidative stress promotes epithelial-mesenchymal transition in the lens epithelial cells via the TGF-β/Smad and Wnt/β-catenin pathways. Mol Cell Biochem 2021;476:1631-42. [PMID: 33417163 DOI: 10.1007/s11010-020-04034-9] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 El-Fadaly AA, Afifi NA, El-Eraky W, Salama A, Abdelhameed MF, El-Rahman SSA, Ramadan A. Fisetin alleviates thioacetamide-induced hepatic fibrosis in rats by inhibiting Wnt/β-catenin signaling pathway. Immunopharmacol Immunotoxicol 2022;:1-12. [PMID: 35255766 DOI: 10.1080/08923973.2022.2047198] [Reference Citation Analysis]
15 Gong Q, Jiang Y, Pan X, You Y. Fractalkine aggravates LPS-induced macrophage activation and acute kidney injury via Wnt/β-catenin signalling pathway. J Cell Mol Med 2021;25:6963-75. [PMID: 34101346 DOI: 10.1111/jcmm.16707] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Wang X, Jia P, Ren T, Zou Z, Xu S, Zhang Y, Shi Y, Bao S, Li Y, Fang Y, Ding X. MicroRNA-382 Promotes M2-Like Macrophage via the SIRP-α/STAT3 Signaling Pathway in Aristolochic Acid-Induced Renal Fibrosis. Front Immunol 2022;13:864984. [DOI: 10.3389/fimmu.2022.864984] [Reference Citation Analysis]
17 Bai Y, Yin K, Su T, Ji F, Zhang S. CTHRC1 in Ovarian Cancer Promotes M2-Like Polarization of Tumor-Associated Macrophages via Regulation of the STAT6 Signaling Pathway. Onco Targets Ther 2020;13:5743-53. [PMID: 32606786 DOI: 10.2147/OTT.S250520] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
18 Mertens C, Marques O, Horvat NK, Simonetti M, Muckenthaler MU, Jung M. The Macrophage Iron Signature in Health and Disease. Int J Mol Sci 2021;22:8457. [PMID: 34445160 DOI: 10.3390/ijms22168457] [Reference Citation Analysis]
19 Gong Q, Jiang Y, Lu J, You Y. [Fractalkine inhibits lipopolysaccharide-induced M1 polarization of macrophages by activating Wnt/β-catenin signaling pathway]. Nan Fang Yi Ke Da Xue Xue Bao 2020;40:1726-31. [PMID: 33380403 DOI: 10.12122/j.issn.1673-4254.2020.12.05] [Reference Citation Analysis]
20 Feng Y, Liang Y, Ren J, Dai C. Canonical Wnt Signaling Promotes Macrophage Proliferation during Kidney Fibrosis. Kidney Dis (Basel) 2018;4:95-103. [PMID: 29998124 DOI: 10.1159/000488984] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
21 Li SS, Sun Q, Hua MR, Suo P, Chen JR, Yu XY, Zhao YY. Targeting the Wnt/β-Catenin Signaling Pathway as a Potential Therapeutic Strategy in Renal Tubulointerstitial Fibrosis. Front Pharmacol 2021;12:719880. [PMID: 34483931 DOI: 10.3389/fphar.2021.719880] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Lai KKY, Kahn M. Pharmacologically Targeting the WNT/β-Catenin Signaling Cascade: Avoiding the Sword of Damocles. Handb Exp Pharmacol 2021;269:383-422. [PMID: 34463849 DOI: 10.1007/164_2021_523] [Reference Citation Analysis]
23 Cruz AF, Rohban R, Esni F. Macrophages in the pancreas: Villains by circumstances, not necessarily by actions. Immun Inflamm Dis 2020;8:807-24. [PMID: 32885589 DOI: 10.1002/iid3.345] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
24 Weinstock A, Rahman K, Yaacov O, Nishi H, Menon P, Nikain CA, Garabedian ML, Pena S, Akbar N, Sansbury BE, Heffron SP, Liu J, Marecki G, Fernandez D, Brown EJ, Ruggles KV, Ramsey SA, Giannarelli C, Spite M, Choudhury RP, Loke P, Fisher EA. Wnt signaling enhances macrophage responses to IL-4 and promotes resolution of atherosclerosis. Elife 2021;10:e67932. [PMID: 33720008 DOI: 10.7554/eLife.67932] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Sciascia S, Barinotti A, Radin M, Cecchi I, Menegatti E, Terzolo E, Rossi D, Baldovino S, Fenoglio R, Roccatello D. Dickkopf Homolog 3 (DKK3) as a Prognostic Marker in Lupus Nephritis: A Prospective Monocentric Experience. JCM 2022;11:2977. [DOI: 10.3390/jcm11112977] [Reference Citation Analysis]
26 Liang Y, Sun X, Wang M, Lu Q, Gu M, Zhou L, Hou Q, Tan M, Wang S, Xue X, Dai C. PP2Acα promotes macrophage accumulation and activation to exacerbate tubular cell death and kidney fibrosis through activating Rap1 and TNFα production. Cell Death Differ 2021. [PMID: 33934104 DOI: 10.1038/s41418-021-00780-5] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Huffstater T, Merryman WD, Gewin LS. Wnt/β-Catenin in Acute Kidney Injury and Progression to Chronic Kidney Disease. Semin Nephrol 2020;40:126-37. [PMID: 32303276 DOI: 10.1016/j.semnephrol.2020.01.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
28 Shen B, Zhu W, Liu X, Jiang J. NAP1L1 Functions as a Novel Prognostic Biomarker Associated With Macrophages and Promotes Tumor Progression by Influencing the Wnt/β-Catenin Pathway in Hepatocellular Carcinoma. Front Genet 2022;13:876253. [DOI: 10.3389/fgene.2022.876253] [Reference Citation Analysis]
29 Toledo DM, Pioli PA. Macrophages in Systemic Sclerosis: Novel Insights and Therapeutic Implications. Curr Rheumatol Rep 2019;21:31. [PMID: 31123840 DOI: 10.1007/s11926-019-0831-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
30 Stein MC, Braun F, Krebs CF, Bunders MJ. Kidney organoid systems for studies of immune-mediated kidney diseases: challenges and opportunities. Cell Tissue Res 2021. [PMID: 34309728 DOI: 10.1007/s00441-021-03499-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Yuan C, Yang D, Ma J, Yang J, Xue J, Song F, Liu X. Modulation of Wnt/β-catenin signaling in IL-17A-mediated macrophage polarization of RAW264.7 cells. Braz J Med Biol Res 2020;53:e9488. [PMID: 32578719 DOI: 10.1590/1414-431X20209488] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
32 Gui Y, Li J, Lu Q, Feng Y, Wang M, He W, Yang J, Dai C. Yap/Taz mediates mTORC2-stimulated fibroblast activation and kidney fibrosis. J Biol Chem 2018;293:16364-75. [PMID: 30154246 DOI: 10.1074/jbc.RA118.004073] [Cited by in Crossref: 24] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
33 Yang SR, Hung SC, Chu LJ, Hua KF, Wei CW, Tsai IL, Kao CC, Sung CC, Chu P, Wu CY, Chen A, Wu ATH, Liu FC, Huang HS, Ka SM. NSC828779 Alleviates Renal Tubulointerstitial Lesions Involving Interleukin-36 Signaling in Mice. Cells 2021;10:3060. [PMID: 34831283 DOI: 10.3390/cells10113060] [Reference Citation Analysis]
34 Cosin-Roger J, Ortiz-Masià MD, Barrachina MD. Macrophages as an Emerging Source of Wnt Ligands: Relevance in Mucosal Integrity. Front Immunol 2019;10:2297. [PMID: 31608072 DOI: 10.3389/fimmu.2019.02297] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
35 Li Y, Yan J, Wang M, Lv J, Yan F, Chen J. Uremic toxin indoxyl sulfate promotes proinflammatory macrophage activation by regulation of β-catenin and YAP pathways. J Mol Histol 2021;52:197-205. [PMID: 33387144 DOI: 10.1007/s10735-020-09936-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Liu Y, Feng Q, Miao J, Wu Q, Zhou S, Shen W, Feng Y, Hou FF, Liu Y, Zhou L. C-X-C motif chemokine receptor 4 aggravates renal fibrosis through activating JAK/STAT/GSK3β/β-catenin pathway. J Cell Mol Med 2020;24:3837-55. [PMID: 32119183 DOI: 10.1111/jcmm.14973] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
37 Fu H, Gui Y, Liu S, Wang Y, Bastacky SI, Qiao Y, Zhang R, Bonin C, Hargis G, Yu Y, Kreutzer DL, Biswas PS, Zhou Y, Wang Y, Tian XJ, Liu Y, Zhou D. The hepatocyte growth factor/c-met pathway is a key determinant of the fibrotic kidney local microenvironment. iScience 2021;24:103112. [PMID: 34622165 DOI: 10.1016/j.isci.2021.103112] [Reference Citation Analysis]
38 Luo Z, Qi B, Sun Y, Chen Y, Lin J, Qin H, Wang N, Shi R, Shang X, Chen S, Chen J. Engineering Bioactive M2 Macrophage-Polarized, Anti-inflammatory, miRNA-Based Liposomes for Functional Muscle Repair: From Exosomal Mechanisms to Biomaterials. Small 2022;:e2201957. [PMID: 35802903 DOI: 10.1002/smll.202201957] [Reference Citation Analysis]
39 Wang X, Chen J, Xu J, Xie J, Harris DCH, Zheng G. The Role of Macrophages in Kidney Fibrosis. Front Physiol 2021;12:705838. [PMID: 34421643 DOI: 10.3389/fphys.2021.705838] [Reference Citation Analysis]
40 Larionova I, Kazakova E, Patysheva M, Kzhyshkowska J. Transcriptional, Epigenetic and Metabolic Programming of Tumor-Associated Macrophages. Cancers (Basel) 2020;12:E1411. [PMID: 32486098 DOI: 10.3390/cancers12061411] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 9.0] [Reference Citation Analysis]
41 Yuan Q, Tang B, Zhang C. Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal Transduct Target Ther 2022;7:182. [PMID: 35680856 DOI: 10.1038/s41392-022-01036-5] [Reference Citation Analysis]
42 Schunk SJ, Beisswenger C, Ritzmann F, Herr C, Wagner M, Triem S, Hütter G, Schmit D, Zewinger S, Sarakpi T, Honecker A, Mahadevan P, Boor P, Wagenpfeil S, Jörres R, Watz H, Welte T, Vogelmeier CF, Gröne HJ, Fliser D, Speer T, Bals R. Measurement of urinary Dickkopf-3 uncovered silent progressive kidney injury in patients with chronic obstructive pulmonary disease. Kidney Int 2021;100:1081-91. [PMID: 34237325 DOI: 10.1016/j.kint.2021.06.029] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
43 Han M, Yu H, Yang K, Liu P, Yan H, Yang Z, Yang H. A Network Pharmacology-Based Approach to Investigating the Mechanisms of Fushen Granule Effects on Intestinal Barrier Injury in Chronic Renal Failure. Evid Based Complement Alternat Med 2021;2021:2097569. [PMID: 33747100 DOI: 10.1155/2021/2097569] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Lu X, Rudemiller NP, Ren J, Wen Y, Yang B, Griffiths R, Privratsky JR, Madan B, Virshup DM, Crowley SD. Opposing actions of renal tubular- and myeloid-derived porcupine in obstruction-induced kidney fibrosis. Kidney Int 2019;96:1308-19. [PMID: 31585741 DOI: 10.1016/j.kint.2019.06.020] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
45 Feng Y, Liang Y, Zhu X, Wang M, Gui Y, Lu Q, Gu M, Xue X, Sun X, He W, Yang J, Johnson RL, Dai C. The signaling protein Wnt5a promotes TGFβ1-mediated macrophage polarization and kidney fibrosis by inducing the transcriptional regulators Yap/Taz. J Biol Chem 2018;293:19290-302. [PMID: 30333225 DOI: 10.1074/jbc.RA118.005457] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 9.5] [Reference Citation Analysis]
46 Tian X, Wu Y, Yang Y, Wang J, Niu M, Gao S, Qin T, Bao D. Long noncoding RNA LINC00662 promotes M2 macrophage polarization and hepatocellular carcinoma progression via activating Wnt/β-catenin signaling. Mol Oncol 2020;14:462-83. [PMID: 31785055 DOI: 10.1002/1878-0261.12606] [Cited by in Crossref: 28] [Cited by in F6Publishing: 36] [Article Influence: 9.3] [Reference Citation Analysis]
47 Yang J, Wang Y, Yang D, Ma J, Wu S, Cai Q, Xue J, Yuan C, Wang J, Liu X. Wnt/β-catenin signaling regulates lipopolysaccharide-altered polarizations of RAW264.7 cells and alveolar macrophages in mouse lungs. Eur J Inflamm 2021;19:205873922110593. [DOI: 10.1177/20587392211059362] [Reference Citation Analysis]
48 Sun S, Wu Y, Maimaitijiang A, Huang Q, Chen Q. Ferroptotic cardiomyocyte-derived exosomes promote cardiac macrophage M1 polarization during myocardial infarction. PeerJ 2022;10:e13717. [DOI: 10.7717/peerj.13717] [Reference Citation Analysis]
49 Raghavan S, Mehta P, Xie Y, Lei YL, Mehta G. Ovarian cancer stem cells and macrophages reciprocally interact through the WNT pathway to promote pro-tumoral and malignant phenotypes in 3D engineered microenvironments. J Immunother Cancer 2019;7:190. [PMID: 31324218 DOI: 10.1186/s40425-019-0666-1] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 15.0] [Reference Citation Analysis]
50 Khoramjoo SM, Kazemifard N, Baradaran Ghavami S, Farmani M, Shahrokh S, Asadzadeh Aghdaei H, Sherkat G, Zali MR. Overview of Three Proliferation Pathways (Wnt, Notch, and Hippo) in Intestine and Immune System and Their Role in Inflammatory Bowel Diseases (IBDs). Front Med 2022;9:865131. [DOI: 10.3389/fmed.2022.865131] [Reference Citation Analysis]
51 Miao J, Liu J, Niu J, Zhang Y, Shen W, Luo C, Liu Y, Li C, Li H, Yang P, Liu Y, Hou FF, Zhou L. Wnt/β-catenin/RAS signaling mediates age-related renal fibrosis and is associated with mitochondrial dysfunction. Aging Cell 2019;18:e13004. [PMID: 31318148 DOI: 10.1111/acel.13004] [Cited by in Crossref: 74] [Cited by in F6Publishing: 67] [Article Influence: 24.7] [Reference Citation Analysis]
52 Baek JH. The Impact of Versatile Macrophage Functions on Acute Kidney Injury and Its Outcomes. Front Physiol 2019;10:1016. [PMID: 31447703 DOI: 10.3389/fphys.2019.01016] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
53 Xu Y, Xu W, Liu W, Chen G, Jiang S, Chen J, Jian X, Zhang H, Liu P, Mu Y. Yiguanjian decoction inhibits macrophage M1 polarization and attenuates hepatic fibrosis induced by CCl4/2-AAF. Pharm Biol 2021;59:1150-60. [PMID: 34425061 DOI: 10.1080/13880209.2021.1961820] [Reference Citation Analysis]
54 Lu Y, Liu S, Yang P, Kou Y, Li C, Liu H, Li M. Exendin-4 and eldecalcitol synergistically promote osteogenic differentiation of bone marrow mesenchymal stem cells through M2 macrophages polarization via PI3K/AKT pathway. Stem Cell Res Ther 2022;13:113. [PMID: 35313964 DOI: 10.1186/s13287-022-02800-8] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Ruenjaiman V, Butta P, Leu YW, Pongpanich M, Leelahavanichkul A, Kueanjinda P, Palaga T. Profile of Histone H3 Lysine 4 Trimethylation and the Effect of Lipopolysaccharide/Immune Complex-Activated Macrophages on Endotoxemia. Front Immunol 2019;10:2956. [PMID: 31998290 DOI: 10.3389/fimmu.2019.02956] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
56 Zhang H, Nie X, Shi X, Zhao J, Chen Y, Yao Q, Sun C, Yang J. Regulatory Mechanisms of the Wnt/β-Catenin Pathway in Diabetic Cutaneous Ulcers. Front Pharmacol 2018;9:1114. [PMID: 30386236 DOI: 10.3389/fphar.2018.01114] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
57 Liu Q, Song J, Pan Y, Shi D, Yang C, Wang S, Xiong B. Wnt5a/CaMKII/ERK/CCL2 axis is required for tumor-associated macrophages to promote colorectal cancer progression. Int J Biol Sci 2020;16:1023-34. [PMID: 32140070 DOI: 10.7150/ijbs.40535] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
58 Dissanayake WC, Oh JK, Sorrenson B, Shepherd PR. Glucose regulates expression of pro-inflammatory genes, IL-1β and IL-12, through a mechanism involving hexosamine biosynthesis pathway-dependent regulation of α-E catenin. Biosci Rep 2021;41:BSR20211066. [PMID: 34139004 DOI: 10.1042/BSR20211066] [Reference Citation Analysis]
59 Malsin ES, Kim S, Lam AP, Gottardi CJ. Macrophages as a Source and Recipient of Wnt Signals. Front Immunol 2019;10:1813. [PMID: 31417574 DOI: 10.3389/fimmu.2019.01813] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
60 Geng XQ, Ma A, He JZ, Wang L, Jia YL, Shao GY, Li M, Zhou H, Lin SQ, Ran JH, Yang BX. Ganoderic acid hinders renal fibrosis via suppressing the TGF-β/Smad and MAPK signaling pathways. Acta Pharmacol Sin 2020;41:670-7. [PMID: 31804606 DOI: 10.1038/s41401-019-0324-7] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 17.0] [Reference Citation Analysis]
61 Rayego-Mateos S, Marquez-Expósito L, Rodrigues-Diez R, Sanz AB, Guiteras R, Doladé N, Rubio-Soto I, Manonelles A, Codina S, Ortiz A, Cruzado JM, Ruiz-Ortega M, Sola A. Molecular Mechanisms of Kidney Injury and Repair. Int J Mol Sci 2022;23:1542. [PMID: 35163470 DOI: 10.3390/ijms23031542] [Reference Citation Analysis]
62 Jiang Y, Cai C, Zhang P, Luo Y, Guo J, Li J, Rong R, Zhang Y, Zhu T. Transcriptional profile changes after treatment of ischemia reperfusion injury-induced kidney fibrosis with 18β-glycyrrhetinic acid. Ren Fail 2022;44:660-71. [PMID: 35699239 DOI: 10.1080/0886022X.2022.2061998] [Reference Citation Analysis]