BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nlandu-Khodo S, Neelisetty S, Phillips M, Manolopoulou M, Bhave G, May L, Clark PE, Yang H, Fogo AB, Harris RC, Taketo MM, Lee E, Gewin LS. Blocking TGF-β and β-Catenin Epithelial Crosstalk Exacerbates CKD. J Am Soc Nephrol 2017;28:3490-503. [PMID: 28701516 DOI: 10.1681/ASN.2016121351] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Osaki Y, Manolopoulou M, Ivanova AV, Vartanian N, Mignemi MP, Kern J, Chen J, Yang H, Fogo AB, Zhang M, Robinson-Cohen C, Gewin LS. Blocking cell cycle progression through CDK4/6 protects against chronic kidney disease. JCI Insight 2022;7:e158754. [PMID: 35730565 DOI: 10.1172/jci.insight.158754] [Reference Citation Analysis]
2 Nlandu-Khodo S, Osaki Y, Scarfe L, Yang H, Phillips-Mignemi M, Tonello J, Saito-Diaz K, Neelisetty S, Ivanova A, Huffstater T, McMahon R, Taketo MM, deCaestecker M, Kasinath B, Harris RC, Lee E, Gewin LS. Tubular β-catenin and FoxO3 interactions protect in chronic kidney disease. JCI Insight 2020;5:135454. [PMID: 32369448 DOI: 10.1172/jci.insight.135454] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Zhang L, Chen L, Gao C, Chen E, Lightle AR, Foulke L, Zhao B, Higgins PJ, Zhang W. Loss of Histone H3 K79 Methyltransferase Dot1l Facilitates Kidney Fibrosis by Upregulating Endothelin 1 through Histone Deacetylase 2. J Am Soc Nephrol 2020;31:337-49. [PMID: 31843983 DOI: 10.1681/ASN.2019070739] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 3.3] [Reference Citation Analysis]
4 Basile DP, Mehrotra P. Surprising Enhancement of Fibrosis by Tubule-Specific Deletion of the TGF-β Receptor: A New Twist on an Old Paradigm. J Am Soc Nephrol 2017;28:3427-9. [PMID: 29074738 DOI: 10.1681/ASN.2017080947] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
5 Steiger S, Grill JF, Ma Q, Bäuerle T, Jordan J, Smolle M, Böhland C, Lech M, Anders HJ. Anti-Transforming Growth Factor β IgG Elicits a Dual Effect on Calcium Oxalate Crystallization and Progressive Nephrocalcinosis-Related Chronic Kidney Disease. Front Immunol 2018;9:619. [PMID: 29651290 DOI: 10.3389/fimmu.2018.00619] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
6 Li SS, Sun Q, Hua MR, Suo P, Chen JR, Yu XY, Zhao YY. Targeting the Wnt/β-Catenin Signaling Pathway as a Potential Therapeutic Strategy in Renal Tubulointerstitial Fibrosis. Front Pharmacol 2021;12:719880. [PMID: 34483931 DOI: 10.3389/fphar.2021.719880] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Feng W, Ying WZ, Li X, Curtis LM, Sanders PW. Renoprotective effect of Stat1 deletion in murine aristolochic acid nephropathy. Am J Physiol Renal Physiol 2021;320:F87-96. [PMID: 33283645 DOI: 10.1152/ajprenal.00401.2020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Zhang Y, Jin, Kang X, Zhou R, Sun Y, Lian F, Tong X. Signaling Pathways Involved in Diabetic Renal Fibrosis. Front Cell Dev Biol 2021;9:696542. [PMID: 34327204 DOI: 10.3389/fcell.2021.696542] [Reference Citation Analysis]
9 Schunk SJ, Floege J, Fliser D, Speer T. WNT-β-catenin signalling - a versatile player in kidney injury and repair. Nat Rev Nephrol 2021;17:172-84. [PMID: 32989282 DOI: 10.1038/s41581-020-00343-w] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
10 Black LM, Lever JM, Agarwal A. Renal Inflammation and Fibrosis: A Double-edged Sword. J Histochem Cytochem 2019;67:663-81. [PMID: 31116067 DOI: 10.1369/0022155419852932] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 8.7] [Reference Citation Analysis]
11 Song Y, Lv S, Wang F, Liu X, Cheng J, Liu S, Wang X, Chen W, Guan G, Liu G, Peng C. Overexpression of BMP‑7 reverses TGF‑β1‑induced epithelial‑mesenchymal transition by attenuating the Wnt3/β‑catenin and TGF-β1/Smad2/3 signaling pathways in HK‑2 cells. Mol Med Rep 2020;21:833-41. [PMID: 31974602 DOI: 10.3892/mmr.2019.10875] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
12 Ajay AK, Zhao L, Vig S, Fujiwara M, Thakurela S, Jadhav S, Cho A, Chiu I, Ding Y, Ramachandran K, Mithal A, Bhatt A, Chaluvadi P, Gupta MK, Shah SI, Sabbisetti VS, Waaga-gasser AM, Frank DA, Murugaiyan G, Bonventre JV, Hsiao L. Deletion of STAT3 from Foxd1 cell population protects mice from kidney fibrosis by inhibiting pericytes trans-differentiation and migration. Cell Reports 2022;38:110473. [DOI: 10.1016/j.celrep.2022.110473] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Gewin LS. Renal fibrosis: Primacy of the proximal tubule. Matrix Biol 2018;68-69:248-62. [PMID: 29425694 DOI: 10.1016/j.matbio.2018.02.006] [Cited by in Crossref: 76] [Cited by in F6Publishing: 75] [Article Influence: 19.0] [Reference Citation Analysis]
14 Gewin LS, Summers ME, Harral JW, Gaskill CF, Khodo SN, Neelisetty S, Sullivan TM, Hopp K, Reese JJ, Klemm DJ, Kon V, Ess KC, Shi W, Majka SM. Inactivation of Tsc2 in Abcg2 lineage-derived cells drives the appearance of polycystic lesions and fibrosis in the adult kidney. Am J Physiol Renal Physiol 2019;317:F1201-10. [PMID: 31461347 DOI: 10.1152/ajprenal.00629.2018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
15 Gewin LS. Renal Tubule Repair: Is Wnt/β-Catenin a Friend or Foe? Genes (Basel) 2018;9:E58. [PMID: 29364168 DOI: 10.3390/genes9020058] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
16 Luther JM, Fogo AB. The role of mineralocorticoid receptor activation in kidney inflammation and fibrosis. Kidney International Supplements 2022;12:63-8. [DOI: 10.1016/j.kisu.2021.11.006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
17 Rianto F, Kuma A, Ellis CL, Hassounah F, Rodriguez EL, Wang XH, Sands JM, Klein JD. UT-A1/A3 knockout mice show reduced fibrosis following unilateral ureteral obstruction. Am J Physiol Renal Physiol 2020;318:F1160-6. [PMID: 32174141 DOI: 10.1152/ajprenal.00008.2020] [Reference Citation Analysis]
18 Liu Z, Tan RJ, Liu Y. The Many Faces of Matrix Metalloproteinase-7 in Kidney Diseases. Biomolecules 2020;10:E960. [PMID: 32630493 DOI: 10.3390/biom10060960] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
19 Gewin L. The many talents of transforming growth factor-β in the kidney. Curr Opin Nephrol Hypertens 2019;28:203-10. [PMID: 30893214 DOI: 10.1097/MNH.0000000000000490] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
20 Wei Q, Su J, Dong G, Zhang M, Huo Y, Dong Z. Glycolysis inhibitors suppress renal interstitial fibrosis via divergent effects on fibroblasts and tubular cells. Am J Physiol Renal Physiol 2019;316:F1162-72. [PMID: 30969803 DOI: 10.1152/ajprenal.00422.2018] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
21 Zhao J, Zhang Y, Qiu J, Zhang X, Wei F, Feng J, Chen C, Zhang K, Feng S, Li WD. An early prediction model for chronic kidney disease. Sci Rep 2022;12:2765. [PMID: 35177746 DOI: 10.1038/s41598-022-06665-y] [Reference Citation Analysis]
22 Liu Y, Feng Q, Miao J, Wu Q, Zhou S, Shen W, Feng Y, Hou FF, Liu Y, Zhou L. C-X-C motif chemokine receptor 4 aggravates renal fibrosis through activating JAK/STAT/GSK3β/β-catenin pathway. J Cell Mol Med 2020;24:3837-55. [PMID: 32119183 DOI: 10.1111/jcmm.14973] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
23 Lu X, Rudemiller NP, Ren J, Wen Y, Yang B, Griffiths R, Privratsky JR, Madan B, Virshup DM, Crowley SD. Opposing actions of renal tubular- and myeloid-derived porcupine in obstruction-induced kidney fibrosis. Kidney Int 2019;96:1308-19. [PMID: 31585741 DOI: 10.1016/j.kint.2019.06.020] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
24 Huang L, Chen C. Kidney Injuries and Evolution of Chronic Kidney Diseases Due to Neonatal Hyperoxia Exposure Based on Animal Studies. IJMS 2022;23:8492. [DOI: 10.3390/ijms23158492] [Reference Citation Analysis]
25 Jin J, Li W, Wang T, Park BH, Park SK, Kang KP. Loss of Proximal Tubular Sirtuin 6 Aggravates Unilateral Ureteral Obstruction-Induced Tubulointerstitial Inflammation and Fibrosis by Regulation of β-Catenin Acetylation. Cells 2022;11:1477. [PMID: 35563783 DOI: 10.3390/cells11091477] [Reference Citation Analysis]
26 Geng H, Lan R, Liu Y, Chen W, Wu M, Saikumar P, Weinberg JM, Venkatachalam MA. Proximal tubule LPA1 and LPA2 receptors use divergent signaling pathways to additively increase profibrotic cytokine secretion. Am J Physiol Renal Physiol 2021;320:F359-74. [PMID: 33427061 DOI: 10.1152/ajprenal.00494.2020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Xie L, Zeng Y. Therapeutic Potential of Exosomes in Pulmonary Fibrosis. Front Pharmacol 2020;11:590972. [PMID: 33343360 DOI: 10.3389/fphar.2020.590972] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
28 Rauchman M, Griggs D. Emerging strategies to disrupt the central TGF-β axis in kidney fibrosis. Transl Res 2019;209:90-104. [PMID: 31085163 DOI: 10.1016/j.trsl.2019.04.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
29 Scurt FG, Menne J, Brandt S, Bernhardt A, Mertens PR, Haller H, Chatzikyrkou C; ROADMAP Steering Committee. Systemic Inflammation Precedes Microalbuminuria in Diabetes. Kidney Int Rep 2019;4:1373-86. [PMID: 31701047 DOI: 10.1016/j.ekir.2019.06.005] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]