BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: He W, Tan RJ, Li Y, Wang D, Nie J, Hou FF, Liu Y. Matrix metalloproteinase-7 as a surrogate marker predicts renal Wnt/β-catenin activity in CKD. J Am Soc Nephrol. 2012;23:294-304. [PMID: 22095947 DOI: 10.1681/asn.2011050490] [Cited by in Crossref: 87] [Cited by in F6Publishing: 68] [Article Influence: 7.9] [Reference Citation Analysis]
Number Citing Articles
1 Zhang JT, Wang Y, Chen JJ, Zhang XH, Dong JD, Tsang LL, Huang XR, Cai Z, Lan HY, Jiang XH, Chan HC. Defective CFTR leads to aberrant β-catenin activation and kidney fibrosis. Sci Rep 2017;7:5233. [PMID: 28701694 DOI: 10.1038/s41598-017-05435-5] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
2 Wysocki J, Goodling A, Burgaya M, Whitlock K, Ruzinski J, Batlle D, Afkarian M. Urine RAS components in mice and people with type 1 diabetes and chronic kidney disease. Am J Physiol Renal Physiol 2017;313:F487-94. [PMID: 28468961 DOI: 10.1152/ajprenal.00074.2017] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
3 Zhang Y, Kaminski N. Biomarkers in idiopathic pulmonary fibrosis. Curr Opin Pulm Med. 2012;18:441-446. [PMID: 22847105 DOI: 10.1097/mcp.0b013e328356d03c] [Cited by in Crossref: 69] [Cited by in F6Publishing: 34] [Article Influence: 6.9] [Reference Citation Analysis]
4 Zhou D, Tan RJ, Zhou L, Li Y, Liu Y. Kidney tubular β-catenin signaling controls interstitial fibroblast fate via epithelial-mesenchymal communication. Sci Rep 2013;3:1878. [PMID: 23698793 DOI: 10.1038/srep01878] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 4.8] [Reference Citation Analysis]
5 Zhou D, Tian Y, Sun L, Zhou L, Xiao L, Tan RJ, Tian J, Fu H, Hou FF, Liu Y. Matrix Metalloproteinase-7 Is a Urinary Biomarker and Pathogenic Mediator of Kidney Fibrosis. J Am Soc Nephrol 2017;28:598-611. [PMID: 27624489 DOI: 10.1681/ASN.2016030354] [Cited by in Crossref: 57] [Cited by in F6Publishing: 40] [Article Influence: 9.5] [Reference Citation Analysis]
6 Tan RJ, Zhou D, Zhou L, Liu Y. Wnt/β-catenin signaling and kidney fibrosis. Kidney Int Suppl (2011). 2014;4:84-90. [PMID: 26312156 DOI: 10.1038/kisup.2014.16] [Cited by in Crossref: 135] [Cited by in F6Publishing: 132] [Article Influence: 16.9] [Reference Citation Analysis]
7 Maluf DG, Dumur CI, Suh JL, Scian MJ, King AL, Cathro H, Lee JK, Gehrau RC, Brayman KL, Gallon L. The urine microRNA profile may help monitor post-transplant renal graft function. Kidney Int. 2014;85:439-449. [PMID: 24025639 DOI: 10.1038/ki.2013.338] [Cited by in Crossref: 68] [Cited by in F6Publishing: 63] [Article Influence: 7.6] [Reference Citation Analysis]
8 do Amaral CMCA, Casarini DE, Andrade MC, da Cruz ML, Macedo A Jr. Study of serum and urinary markers of the renin-angiotensin-aldosterone system in myelomeningocele patients with renal injury detected by DMSA. Int Braz J Urol 2020;46:805-13. [PMID: 32648420 DOI: 10.1590/S1677-5538.IBJU.2019.0797] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
9 Zhou L, Li Y, Zhou D, Tan RJ, Liu Y. Loss of Klotho contributes to kidney injury by derepression of Wnt/β-catenin signaling. J Am Soc Nephrol. 2013;24:771-785. [PMID: 23559584 DOI: 10.1681/asn.2012080865] [Cited by in Crossref: 214] [Cited by in F6Publishing: 140] [Article Influence: 23.8] [Reference Citation Analysis]
10 Afratis NA, Klepfish M, Karamanos NK, Sagi I. The apparent competitive action of ECM proteases and cross-linking enzymes during fibrosis: Applications to drug discovery. Adv Drug Deliv Rev 2018;129:4-15. [PMID: 29627371 DOI: 10.1016/j.addr.2018.03.004] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 7.0] [Reference Citation Analysis]
11 Ke B, Fan C, Yang L, Fang X. Matrix Metalloproteinases-7 and Kidney Fibrosis. Front Physiol. 2017;8:21. [PMID: 28239354 DOI: 10.3389/fphys.2017.00021] [Cited by in Crossref: 13] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
12 Afkarian M, Hirsch IB, Tuttle KR, Greenbaum C, Himmelfarb J, de Boer IH. Urinary excretion of RAS, BMP, and WNT pathway components in diabetic kidney disease. Physiol Rep 2014;2:e12010. [PMID: 24793984 DOI: 10.14814/phy2.12010] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
13 Wozniak J, Floege J, Ostendorf T, Ludwig A. Key metalloproteinase-mediated pathways in the kidney. Nat Rev Nephrol 2021;17:513-27. [PMID: 33879883 DOI: 10.1038/s41581-021-00415-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Xiao L, Zhou D, Tan RJ, Fu H, Zhou L, Hou FF, Liu Y. Sustained Activation of Wnt/β-Catenin Signaling Drives AKI to CKD Progression. J Am Soc Nephrol 2016;27:1727-40. [PMID: 26453613 DOI: 10.1681/ASN.2015040449] [Cited by in Crossref: 116] [Cited by in F6Publishing: 80] [Article Influence: 16.6] [Reference Citation Analysis]
15 Duni A, Liakopoulos V, Roumeliotis S, Peschos D, Dounousi E. Oxidative Stress in the Pathogenesis and Evolution of Chronic Kidney Disease: Untangling Ariadne's Thread. Int J Mol Sci 2019;20:E3711. [PMID: 31362427 DOI: 10.3390/ijms20153711] [Cited by in Crossref: 53] [Cited by in F6Publishing: 50] [Article Influence: 17.7] [Reference Citation Analysis]
16 Guo Y, Xiao L, Sun L, Liu F. Wnt/β-Catenin Signaling: a Promising New Target for Fibrosis Diseases. Physiol Res. [DOI: 10.33549/physiolres.932289] [Cited by in Crossref: 127] [Cited by in F6Publishing: 131] [Article Influence: 12.7] [Reference Citation Analysis]
17 Liu Z, Tan RJ, Liu Y. The Many Faces of Matrix Metalloproteinase-7 in Kidney Diseases. Biomolecules 2020;10:E960. [PMID: 32630493 DOI: 10.3390/biom10060960] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
18 Vaisar T, Durbin-Johnson B, Whitlock K, Babenko I, Mehrotra R, Rocke DM, Afkarian M. Urine Complement Proteins and the Risk of Kidney Disease Progression and Mortality in Type 2 Diabetes. Diabetes Care 2018;41:2361-9. [PMID: 30150236 DOI: 10.2337/dc18-0699] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
19 Tan RJ, Chartoumpekis DV, Rush BM, Zhou D, Fu H, Kensler TW, Liu Y. Keap1 hypomorphism protects against ischemic and obstructive kidney disease. Sci Rep 2016;6:36185. [PMID: 27804998 DOI: 10.1038/srep36185] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.2] [Reference Citation Analysis]
20 Wong DW, Yiu WH, Wu HJ, Li RX, Liu Y, Chan KW, Leung JC, Chan LY, Lai KN, Tang SC. Downregulation of renal tubular Wnt/β-catenin signaling by Dickkopf-3 induces tubular cell death in proteinuric nephropathy. Cell Death Dis 2016;7:e2155. [PMID: 27010856 DOI: 10.1038/cddis.2016.62] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
21 Song C, Broadie K. Dysregulation of BMP, Wnt, and Insulin Signaling in Fragile X Syndrome. Front Cell Dev Biol 2022;10:934662. [DOI: 10.3389/fcell.2022.934662] [Reference Citation Analysis]
22 Nava P, Kamekura R, Nusrat A. Cleavage of transmembrane junction proteins and their role in regulating epithelial homeostasis. Tissue Barriers. 2013;1:e24783. [PMID: 24665393 DOI: 10.4161/tisb.24783] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 3.4] [Reference Citation Analysis]
23 Fu H, Zhou D, Zhu H, Liao J, Lin L, Hong X, Hou FF, Liu Y. Matrix metalloproteinase-7 protects against acute kidney injury by priming renal tubules for survival and regeneration. Kidney Int 2019;95:1167-80. [PMID: 30878215 DOI: 10.1016/j.kint.2018.11.043] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 6.3] [Reference Citation Analysis]
24 Yang X, Chen C, Teng S, Fu X, Zha Y, Liu H, Wang L, Tian J, Zhang X, Liu Y, Nie J, Hou FF. Urinary Matrix Metalloproteinase-7 Predicts Severe AKI and Poor Outcomes after Cardiac Surgery. J Am Soc Nephrol 2017;28:3373-82. [PMID: 28698269 DOI: 10.1681/ASN.2017020142] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 4.6] [Reference Citation Analysis]
25 Meng X, Mao Z, Li X, Zhong D, Li M, Jia Y, Wei J, Yang B, Zhou H. Baicalein decreases uric acid and prevents hyperuricemic nephropathy in mice. Oncotarget 2017;8:40305-17. [PMID: 28445133 DOI: 10.18632/oncotarget.16928] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
26 Zhou D, Fu H, Zhang L, Zhang K, Min Y, Xiao L, Lin L, Bastacky SI, Liu Y. Tubule-Derived Wnts Are Required for Fibroblast Activation and Kidney Fibrosis. J Am Soc Nephrol 2017;28:2322-36. [PMID: 28336721 DOI: 10.1681/ASN.2016080902] [Cited by in Crossref: 56] [Cited by in F6Publishing: 37] [Article Influence: 11.2] [Reference Citation Analysis]
27 Ju W, Nair V, Smith S, Zhu L, Shedden K, Song PXK, Mariani LH, Eichinger FH, Berthier CC, Randolph A, Lai JY, Zhou Y, Hawkins JJ, Bitzer M, Sampson MG, Thier M, Solier C, Duran-Pacheco GC, Duchateau-Nguyen G, Essioux L, Schott B, Formentini I, Magnone MC, Bobadilla M, Cohen CD, Bagnasco SM, Barisoni L, Lv J, Zhang H, Wang HY, Brosius FC, Gadegbeku CA, Kretzler M; ERCB, C-PROBE, NEPTUNE, and PKU-IgAN Consortium. Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker. Sci Transl Med 2015;7:316ra193. [PMID: 26631632 DOI: 10.1126/scitranslmed.aac7071] [Cited by in Crossref: 178] [Cited by in F6Publishing: 166] [Article Influence: 29.7] [Reference Citation Analysis]
28 Schunk SJ, Floege J, Fliser D, Speer T. WNT-β-catenin signalling - a versatile player in kidney injury and repair. Nat Rev Nephrol 2021;17:172-84. [PMID: 32989282 DOI: 10.1038/s41581-020-00343-w] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
29 Zhou D, Tan RJ, Fu H, Liu Y. Wnt/β-catenin signaling in kidney injury and repair: a double-edged sword. Lab Invest 2016;96:156-67. [PMID: 26692289 DOI: 10.1038/labinvest.2015.153] [Cited by in Crossref: 90] [Cited by in F6Publishing: 90] [Article Influence: 12.9] [Reference Citation Analysis]
30 Göteson A, Isgren A, Sparding T, Holmén-Larsson J, Jakobsson J, Pålsson E, Landén M. A serum proteomic study of two case-control cohorts identifies novel biomarkers for bipolar disorder. Transl Psychiatry 2022;12:55. [PMID: 35136035 DOI: 10.1038/s41398-022-01819-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
31 Yu Y, Guan X, Nie L, Liu Y, He T, Xiong J, Xu X, Li Y, Yang K, Wang Y, Huang Y, Feng B, Zhang J, Zhao J. DNA hypermethylation of sFRP5 contributes to indoxyl sulfate-induced renal fibrosis. J Mol Med (Berl) 2017;95:601-13. [PMID: 28508124 DOI: 10.1007/s00109-017-1538-0] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
32 Yang F, Hou ZF, Zhu HY, Chen XX, Li WY, Cao RS, Li YX, Chen R, Zhang W. Catalpol Protects Against Pulmonary Fibrosis Through Inhibiting TGF-β1/Smad3 and Wnt/β-Catenin Signaling Pathways. Front Pharmacol 2020;11:594139. [PMID: 33584272 DOI: 10.3389/fphar.2020.594139] [Reference Citation Analysis]
33 Liu Y, Feng Q, Miao J, Wu Q, Zhou S, Shen W, Feng Y, Hou FF, Liu Y, Zhou L. C-X-C motif chemokine receptor 4 aggravates renal fibrosis through activating JAK/STAT/GSK3β/β-catenin pathway. J Cell Mol Med 2020;24:3837-55. [PMID: 32119183 DOI: 10.1111/jcmm.14973] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
34 Zhou L, Li Y, He W, Zhou D, Tan RJ, Nie J, Hou FF, Liu Y. Mutual antagonism of Wilms' tumor 1 and β-catenin dictates podocyte health and disease. J Am Soc Nephrol 2015;26:677-91. [PMID: 25071087 DOI: 10.1681/ASN.2013101067] [Cited by in Crossref: 34] [Cited by in F6Publishing: 21] [Article Influence: 4.3] [Reference Citation Analysis]
35 Wang WJ, Cai GY, Chen XM. Cellular senescence, senescence-associated secretory phenotype, and chronic kidney disease. Oncotarget 2017;8:64520-33. [PMID: 28969091 DOI: 10.18632/oncotarget.17327] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 7.0] [Reference Citation Analysis]
36 Valianou M, Filippidou N, Johnson DL, Vogel P, Zhang EY, Liu X, Lu Y, Yu JJ, Bissler JJ, Astrinidis A. Rapalog resistance is associated with mesenchymal-type changes in Tsc2-null cells. Sci Rep 2019;9:3015. [PMID: 30816188 DOI: 10.1038/s41598-019-39418-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
37 Zou XR, Wang XQ, Hu YL, Zhou HL. Effects of Shen'an granules on Wnt signaling pathway in mouse models of diabetic nephropathy. Exp Ther Med 2016;12:3515-20. [PMID: 28105085 DOI: 10.3892/etm.2016.3800] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
38 de Cos M, Xipell M, García-Herrera A, Lledo GM, Guillen E, Blasco M, Espinosa G, Cervera R, Quintana LF. Assessing and counteracting fibrosis is a cornerstone of the treatment of CKD secondary to systemic and renal limited autoimmune disorders. Autoimmun Rev 2021;21:103014. [PMID: 34896651 DOI: 10.1016/j.autrev.2021.103014] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Tan RJ, Li Y, Rush BM, Cerqueira DM, Zhou D, Fu H, Ho J, Beer Stolz D, Liu Y. Tubular injury triggers podocyte dysfunction by β-catenin-driven release of MMP-7. JCI Insight 2019;4:122399. [PMID: 31743113 DOI: 10.1172/jci.insight.122399] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
40 Malik SA, Modarage K, Goggolidou P. The Role of Wnt Signalling in Chronic Kidney Disease (CKD). Genes (Basel) 2020;11:E496. [PMID: 32365994 DOI: 10.3390/genes11050496] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
41 Zhou L, Li Y, Hao S, Zhou D, Tan RJ, Nie J, Hou FF, Kahn M, Liu Y. Multiple genes of the renin-angiotensin system are novel targets of Wnt/β-catenin signaling. J Am Soc Nephrol 2015;26:107-20. [PMID: 25012166 DOI: 10.1681/ASN.2014010085] [Cited by in Crossref: 118] [Cited by in F6Publishing: 91] [Article Influence: 14.8] [Reference Citation Analysis]
42 Tan RJ, Liu Y. Matrix metalloproteinases in kidney homeostasis and diseases. Am J Physiol Renal Physiol 2012;302:F1351-61. [PMID: 22492945 DOI: 10.1152/ajprenal.00037.2012] [Cited by in Crossref: 142] [Cited by in F6Publishing: 129] [Article Influence: 14.2] [Reference Citation Analysis]
43 Ihara K, Skupien J, Kobayashi H, Md Dom ZI, Wilson JM, O'Neil K, Badger HS, Bowsman LM, Satake E, Breyer MD, Duffin KL, Krolewski AS. Profibrotic Circulating Proteins and Risk of Early Progressive Renal Decline in Patients With Type 2 Diabetes With and Without Albuminuria. Diabetes Care 2020;43:2760-7. [PMID: 32887710 DOI: 10.2337/dc20-0630] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
44 Wang Y, Zhou CJ, Liu Y. Wnt Signaling in Kidney Development and Disease. Prog Mol Biol Transl Sci 2018;153:181-207. [PMID: 29389516 DOI: 10.1016/bs.pmbts.2017.11.019] [Cited by in Crossref: 51] [Cited by in F6Publishing: 49] [Article Influence: 10.2] [Reference Citation Analysis]
45 Morimoto M, Myung C, Beirnes K, Choi K, Asakura Y, Bokenkamp A, Bonneau D, Brugnara M, Charrow J, Colin E, Davis A, Deschenes G, Gentile M, Giordano M, Gormley AK, Govender R, Joseph M, Keller K, Lerut E, Levtchenko E, Massella L, Mayfield C, Najafian B, Parham D, Spranger J, Stenzel P, Yis U, Yu Z, Zonana J, Hendson G, Boerkoel CF. Increased Wnt and Notch signaling: a clue to the renal disease in Schimke immuno-osseous dysplasia? Orphanet J Rare Dis 2016;11:149. [PMID: 27816064 DOI: 10.1186/s13023-016-0519-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 2.2] [Reference Citation Analysis]
46 Zhou L, Liu Y. Wnt/β-catenin signalling and podocyte dysfunction in proteinuric kidney disease. Nat Rev Nephrol 2015;11:535-45. [PMID: 26055352 DOI: 10.1038/nrneph.2015.88] [Cited by in Crossref: 99] [Cited by in F6Publishing: 103] [Article Influence: 14.1] [Reference Citation Analysis]
47 Wang JM, Huang FC, Kuo MH, Wang ZF, Tseng TY, Chang LC, Yen SJ, Chang TC, Lin JJ. Inhibition of cancer cell migration and invasion through suppressing the Wnt1-mediating signal pathway by G-quadruplex structure stabilizers. J Biol Chem 2014;289:14612-23. [PMID: 24713700 DOI: 10.1074/jbc.M114.548230] [Cited by in Crossref: 27] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
48 Chen L, Li M, Li Q, Wang CJ, Xie SQ. DKK1 promotes hepatocellular carcinoma cell migration and invasion through β-catenin/MMP7 signaling pathway. Mol Cancer. 2013;12:157. [PMID: 24325363 DOI: 10.1186/1476-4598-12-157] [Cited by in Crossref: 74] [Cited by in F6Publishing: 77] [Article Influence: 8.2] [Reference Citation Analysis]
49 Gu GL, Zhu XQ, Wei XM, Ren L, Li DC, Wang SL. Epithelial-mesenchymal transition in colorectal cancer tissue of patients with Lynch syndrome. World J Gastroenterol 2014; 20(1): 250-257 [PMID: 24415879 DOI: 10.3748/wjg.v20.i1.250] [Cited by in CrossRef: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
50 Cai T, Sun D, Duan Y, Qiu Y, Dai C, Yang J, He W. FHL2 promotes tubular epithelial-to-mesenchymal transition through modulating β-catenin signalling. J Cell Mol Med 2018;22:1684-95. [PMID: 29193729 DOI: 10.1111/jcmm.13446] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
51 Wang C, Liu J, Zhang X, Chen Q, Bai X, Hong X, Zhou L, Liu Y. Role of miRNA-671-5p in Mediating Wnt/β-Catenin-Triggered Podocyte Injury. Front Pharmacol 2021;12:784489. [PMID: 35111054 DOI: 10.3389/fphar.2021.784489] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Tao QR, Chu YM, Wei L, Tu C, Han YY. Antiangiogenic therapy in diabetic nephropathy: A double‑edged sword (Review). Mol Med Rep 2021;23:260. [PMID: 33655322 DOI: 10.3892/mmr.2021.11899] [Reference Citation Analysis]
53 Derrick T, Ramadhani AM, Mtengai K, Massae P, Burton MJ, Holland MJ. miRNAs that associate with conjunctival inflammation and ocular Chlamydia trachomatis infection do not predict progressive disease. Pathog Dis 2017;75. [PMID: 28175294 DOI: 10.1093/femspd/ftx016] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
54 Li Z, Zhu Z, Liu Y, Liu Y, Zhao H. Function and regulation of GPX4 in the development and progression of fibrotic disease. J Cell Physiol 2022. [PMID: 35605092 DOI: 10.1002/jcp.30780] [Reference Citation Analysis]
55 Luo C, Zhou S, Zhou Z, Liu Y, Yang L, Liu J, Zhang Y, Li H, Liu Y, Hou FF, Zhou L. Wnt9a Promotes Renal Fibrosis by Accelerating Cellular Senescence in Tubular Epithelial Cells. J Am Soc Nephrol 2018;29:1238-56. [PMID: 29440280 DOI: 10.1681/ASN.2017050574] [Cited by in Crossref: 63] [Cited by in F6Publishing: 41] [Article Influence: 15.8] [Reference Citation Analysis]
56 Xu H, Xu B, Wang Z, Tan G, Shen S. Inhibition of Wnt/β-catenin signal is alleviated reactive gliosis in rats with hydrocephalus. Childs Nerv Syst 2015;31:227-34. [PMID: 25564198 DOI: 10.1007/s00381-014-2613-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
57 Zeng J, Pan H, Liu Y, Xu H, Zhao Z, Li H, Ren J, Chen L, Hu X, Yan Y. Effects of Weipixiao (胃痞消) on Wnt pathway-associated proteins in gastric mucosal epithelial cells from rats with gastric precancerous lesions. Chin J Integr Med 2016;22:267-75. [DOI: 10.1007/s11655-015-2131-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
58 Ng LF, Kaur P, Bunnag N, Suresh J, Sung ICH, Tan QH, Gruber J, Tolwinski NS. WNT Signaling in Disease. Cells. 2019;8:826. [PMID: 31382613 DOI: 10.3390/cells8080826] [Cited by in Crossref: 55] [Cited by in F6Publishing: 45] [Article Influence: 18.3] [Reference Citation Analysis]
59 Liu X, Zhang X, Zhao Y, Qu K, Yu X. Research Progress of Chinese Herbal Medicine Intervention in Renal Interstitial Fibrosis. Front Pharmacol 2022;13:900491. [DOI: 10.3389/fphar.2022.900491] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Chang YC, Hsu SY, Yang CC, Sung PH, Chen YL, Huang TH, Kao GS, Chen SY, Chen KH, Chiang HJ, Yip HK, Lee FY. Enhanced protection against renal ischemia-reperfusion injury with combined melatonin and exendin-4 in a rodent model. Exp Biol Med (Maywood) 2016;241:1588-602. [PMID: 27037275 DOI: 10.1177/1535370216642528] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
61 Li X, Zhuang S. Recent advances in renal interstitial fibrosis and tubular atrophy after kidney transplantation. Fibrogenesis Tissue Repair 2014;7:15. [PMID: 25285155 DOI: 10.1186/1755-1536-7-15] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 4.1] [Reference Citation Analysis]
62 Ye X, Chen W, Tu P, Jia R, Liu Y, Tang Q, Chen C, Yang C, Zheng X, Chu Q. Antihyperglycemic effect of an anthocyanin, cyanidin-3-O-glucoside, is achieved by regulating GLUT-1 via the Wnt/β-catenin-WISP1 signaling pathway. Food Funct 2022;13:4612-23. [PMID: 35357376 DOI: 10.1039/d1fo03730g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
63 Fang F, Luo W, Yang M, Yang P, Yang X. Urinary Matrix Metalloproteinase-7 and Prediction of AKI Progression Post Cardiac Surgery. Dis Markers 2019;2019:9217571. [PMID: 31827648 DOI: 10.1155/2019/9217571] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
64 Hu L, Ding M, He W. Emerging Therapeutic Strategies for Attenuating Tubular EMT and Kidney Fibrosis by Targeting Wnt/β-Catenin Signaling. Front Pharmacol 2021;12:830340. [PMID: 35082683 DOI: 10.3389/fphar.2021.830340] [Reference Citation Analysis]
65 Yang L, Sun X, Zhan Y, Liu H, Wen Y, Mao H, Dong XI, Li P. Yi Qi Qing Re Gao-containing serum inhibits lipopolysaccharide-induced rat mesangial cell proliferation by suppressing the Wnt pathway and TGF-β1 expression. Exp Ther Med 2016;11:1410-6. [PMID: 27073458 DOI: 10.3892/etm.2016.3027] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
66 He W, Dai C. Key Fibrogenic Signaling. Curr Pathobiol Rep 2015;3:183-92. [PMID: 25973345 DOI: 10.1007/s40139-015-0077-z] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 5.6] [Reference Citation Analysis]
67 Xu X, Xiao L, Xiao P, Yang S, Chen G, Liu F, Kanwar YS, Sun L. A glimpse of matrix metalloproteinases in diabetic nephropathy. Curr Med Chem. 2014;21:3244-3260. [PMID: 25039784 DOI: 10.2174/0929867321666140716092052] [Cited by in Crossref: 48] [Cited by in F6Publishing: 46] [Article Influence: 6.9] [Reference Citation Analysis]
68 Krochmal M, Kontostathi G, Magalhães P, Makridakis M, Klein J, Husi H, Leierer J, Mayer G, Bascands JL, Denis C, Zoidakis J, Zürbig P, Delles C, Schanstra JP, Mischak H, Vlahou A. Urinary peptidomics analysis reveals proteases involved in diabetic nephropathy. Sci Rep 2017;7:15160. [PMID: 29123184 DOI: 10.1038/s41598-017-15359-9] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
69 Tan RJ, Zhou D, Liu Y. Signaling Crosstalk between Tubular Epithelial Cells and Interstitial Fibroblasts after Kidney Injury. Kidney Dis (Basel) 2016;2:136-44. [PMID: 27921041 DOI: 10.1159/000446336] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 7.3] [Reference Citation Analysis]
70 Miao J, Liu J, Niu J, Zhang Y, Shen W, Luo C, Liu Y, Li C, Li H, Yang P, Liu Y, Hou FF, Zhou L. Wnt/β-catenin/RAS signaling mediates age-related renal fibrosis and is associated with mitochondrial dysfunction. Aging Cell 2019;18:e13004. [PMID: 31318148 DOI: 10.1111/acel.13004] [Cited by in Crossref: 74] [Cited by in F6Publishing: 67] [Article Influence: 24.7] [Reference Citation Analysis]
71 Afkarian M, Zelnick LR, Ruzinski J, Kestenbaum B, Himmelfarb J, de Boer IH, Mehrotra R. Urine matrix metalloproteinase-7 and risk of kidney disease progression and mortality in type 2 diabetes. J Diabetes Complications 2015;29:1024-31. [PMID: 26412030 DOI: 10.1016/j.jdiacomp.2015.08.024] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
72 He L, Wei Q, Liu J, Yi M, Liu Y, Liu H, Sun L, Peng Y, Liu F, Venkatachalam MA, Dong Z. AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms. Kidney Int 2017;92:1071-83. [PMID: 28890325 DOI: 10.1016/j.kint.2017.06.030] [Cited by in Crossref: 118] [Cited by in F6Publishing: 115] [Article Influence: 23.6] [Reference Citation Analysis]
73 Wang L, Wang J, Wang Y, Fu Q, Lei YH, Nie ZY, Qiu J, Bao TY. Protective effect of exogenous matrix metalloproteinase-9 on chronic renal failure. Exp Ther Med 2014;7:329-34. [PMID: 24396399 DOI: 10.3892/etm.2013.1409] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
74 Chang LC, Chen TC, Chen SJ, Chen CL, Lee CC, Wu SH, Yen Y, Huang HS, Lin JJ. Identification of a new class of WNT1 inhibitor: Cancer cells migration, G-quadruplex stabilization and target validation. Oncotarget 2016;7:67986-8001. [PMID: 27626678 DOI: 10.18632/oncotarget.6622] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
75 Zhou L, Mo H, Miao J, Zhou D, Tan RJ, Hou FF, Liu Y. Klotho Ameliorates Kidney Injury and Fibrosis and Normalizes Blood Pressure by Targeting the Renin-Angiotensin System. Am J Pathol. 2015;185:3211-3223. [PMID: 26475416 DOI: 10.1016/j.ajpath.2015.08.004] [Cited by in Crossref: 77] [Cited by in F6Publishing: 74] [Article Influence: 11.0] [Reference Citation Analysis]
76 de Sousa JR, Lucena Neto FD, Sotto MN, Quaresma JAS. Immunohistochemical characterization of the M4 macrophage population in leprosy skin lesions. BMC Infect Dis 2018;18:576. [PMID: 30442123 DOI: 10.1186/s12879-018-3478-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
77 Zhou L, Zhou S, Yang P, Tian Y, Feng Z, Xie XQ, Liu Y. Targeted inhibition of the type 2 cannabinoid receptor is a novel approach to reduce renal fibrosis. Kidney Int 2018;94:756-72. [PMID: 30093080 DOI: 10.1016/j.kint.2018.05.023] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
78 Hsu SH, Chou LF, Hong CH, Chang MY, Tsai CY, Tian YC, Yang HY, Yang CW. Crosstalk between E-Cadherin/β-Catenin and NF-κB Signaling Pathways: The Regulation of Host-Pathogen Interaction during Leptospirosis. Int J Mol Sci 2021;22:13132. [PMID: 34884937 DOI: 10.3390/ijms222313132] [Reference Citation Analysis]
79 Zhang ZH, He JQ, Zhao YY, Chen HC, Tan NH. Asiatic acid prevents renal fibrosis in UUO rats via promoting the production of 15d-PGJ2, an endogenous ligand of PPAR-γ. Acta Pharmacol Sin 2020;41:373-82. [PMID: 31705123 DOI: 10.1038/s41401-019-0319-4] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]