BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Astrup E, Janardhanan J, Otterdal K, Ueland T, Prakash JA, Lekva T, Strand ØA, Abraham OC, Thomas K, Damås JK, Mathews P, Mathai D, Aukrust P, Varghese GM. Cytokine network in scrub typhus: high levels of interleukin-8 are associated with disease severity and mortality. PLoS Negl Trop Dis 2014;8:e2648. [PMID: 24516677 DOI: 10.1371/journal.pntd.0002648] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 3.4] [Reference Citation Analysis]
Number Citing Articles
1 Kang SJ, Park KJ, Jin HM, Cho YN, Oh TH, Kim SE, Kim UJ, Park KH, Jung SI, Kim TO, Kim HS, Jo YG, Ju JK, Kee SJ, Park YW. Circulating Plasmacytoid and Conventional Dendritic Cells Are Numerically and Functionally Deficient in Patients With Scrub Typhus. Front Immunol 2021;12:700755. [PMID: 34276693 DOI: 10.3389/fimmu.2021.700755] [Reference Citation Analysis]
2 Adhikari S, Poudel RS, Shrestha S, Lamichhane P. Predictors of Mortality in Scrub Typhus Infection Requiring Intensive Care Admission in Tertiary Healthcare Centre of Nepal. Interdiscip Perspect Infect Dis 2018;2018:4867958. [PMID: 29971099 DOI: 10.1155/2018/4867958] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
3 Kang SJ, Jin HM, Cho YN, Kim SE, Kim UJ, Park KH, Jang HC, Jung SI, Kee SJ, Park YW. Increased level and interferon-γ production of circulating natural killer cells in patients with scrub typhus. PLoS Negl Trop Dis 2017;11:e0005815. [PMID: 28750012 DOI: 10.1371/journal.pntd.0005815] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
4 Yang HJ, Kim SM, Choi JS, Oh JH, Cho AY, Lee MS, Lee KY, Sun IO. Clinical significance of abnormal chest radiographic findings for acute kidney injury in patients with scrub typhus. Kidney Res Clin Pract 2020;39:54-9. [PMID: 32164121 DOI: 10.23876/j.krcp.19.122] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
5 Soong L. Dysregulated Th1 Immune and Vascular Responses in Scrub Typhus Pathogenesis. J Immunol 2018;200:1233-40. [PMID: 29431689 DOI: 10.4049/jimmunol.1701219] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
6 Chen H, Ning Z, Qiu Y, Liao Y, Chang H, Ai Y, Wei Y, Deng Y, Shen Y. Elevated levels of von Willebrand factor and high mobility group box 1 (HMGB1) are associated with disease severity and clinical outcome of scrub typhus. Int J Infect Dis 2017;61:114-20. [PMID: 28652214 DOI: 10.1016/j.ijid.2017.06.015] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
7 Paris DH, Stephan F, Bulder I, Wouters D, van der Poll T, Newton PN, Day NP, Zeerleder S. Increased Nucleosomes and Neutrophil Activation Link to Disease Progression in Patients with Scrub Typhus but Not Murine Typhus in Laos. PLoS Negl Trop Dis 2015;9:e0003990. [PMID: 26317419 DOI: 10.1371/journal.pntd.0003990] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
8 Otterdal K, Janardhanan J, Astrup E, Ueland T, Prakash JA, Lekva T, Abraham OC, Thomas K, Damås JK, Mathews P, Mathai D, Aukrust P, Varghese GM. Increased endothelial and macrophage markers are associated with disease severity and mortality in scrub typhus. J Infect 2014;69:462-9. [PMID: 24995849 DOI: 10.1016/j.jinf.2014.06.018] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]
9 Liang Y, Fisher J, Gonzales C, Trent B, Card G, Sun J, Tumanov AV, Soong L. Distinct Role of TNFR1 and TNFR2 in Protective Immunity Against Orientia tsutsugamushi Infection in Mice. Front Immunol 2022;13:867924. [DOI: 10.3389/fimmu.2022.867924] [Reference Citation Analysis]
10 Eisermann P, Rauch J, Reuter S, Eberwein L, Mehlhoop U, Allartz P, Muntau B, Tappe D. Complex Cytokine Responses in Imported Scrub Typhus Cases, Germany, 2010-2018. Am J Trop Med Hyg 2020;102:63-8. [PMID: 31769398 DOI: 10.4269/ajtmh.19-0498] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 Trent B, Liang Y, Xing Y, Esqueda M, Wei Y, Cho NH, Kim HI, Kim YS, Shelite TR, Cai J, Sun J, Bouyer DH, Liu J, Soong L. Polarized lung inflammation and Tie2/angiopoietin-mediated endothelial dysfunction during severe Orientia tsutsugamushi infection. PLoS Negl Trop Dis 2020;14:e0007675. [PMID: 32119672 DOI: 10.1371/journal.pntd.0007675] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
12 Luce-Fedrow A, Chattopadhyay S, Chan TC, Pearson G, Patton JB, Richards AL. Comparison of Lethal and Nonlethal Mouse Models of Orientia tsutsugamushi Infection Reveals T-Cell Population-Associated Cytokine Signatures Correlated with Lethality and Protection. Trop Med Infect Dis 2021;6:121. [PMID: 34287349 DOI: 10.3390/tropicalmed6030121] [Reference Citation Analysis]
13 Narayanasamy DK, Arun Babu T, Vijayadevagaran V, Kittu D, Ananthakrishnan S. Predictors of Severity in Pediatric Scrub Typhus. Indian J Pediatr 2018;85:613-7. [DOI: 10.1007/s12098-018-2612-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
14 Bora T, Khan SA. Evaluation of Th1 and Th2 immune response in clinical and sub-clinical scrub typhus infection. Hum Immunol 2019;80:503-9. [PMID: 30904436 DOI: 10.1016/j.humimm.2019.03.013] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
15 Petermann M, Orfanos Z, Sellau J, Gharaibeh M, Lotter H, Fleischer B, Keller C. CCR2 Deficiency Impairs Ly6Clo and Ly6Chi Monocyte Responses in Orientia tsutsugamushi Infection. Front Immunol 2021;12:670219. [PMID: 34290699 DOI: 10.3389/fimmu.2021.670219] [Reference Citation Analysis]
16 Trent B, Fisher J, Soong L. Scrub Typhus Pathogenesis: Innate Immune Response and Lung Injury During Orientia tsutsugamushi Infection. Front Microbiol 2019;10:2065. [PMID: 31555249 DOI: 10.3389/fmicb.2019.02065] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
17 Ueland T, Astrup E, Otterdal K, Lekva T, Janardhanan J, Prakash JAJ, Thomas K, Michelsen AE, Aukrust P, Varghese GM, Damås JK. Secreted Wnt antagonists in scrub typhus. PLoS Negl Trop Dis 2021;15:e0009185. [PMID: 33914733 DOI: 10.1371/journal.pntd.0009185] [Reference Citation Analysis]
18 Jiang L, Morris EK, Aguilera-Olvera R, Zhang Z, Chan TC, Shashikumar S, Chao CC, Casares SA, Ching WM. Dissemination of Orientia tsutsugamushi, a Causative Agent of Scrub Typhus, and Immunological Responses in the Humanized DRAGA Mouse. Front Immunol 2018;9:816. [PMID: 29760694 DOI: 10.3389/fimmu.2018.00816] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
19 Kang SJ, Jin HM, Won EJ, Cho YN, Jung HJ, Kwon YS, Kee HJ, Ju JK, Kim JC, Kim UJ, Jang HC, Jung SI, Kee SJ, Park YW. Activation, Impaired Tumor Necrosis Factor-α Production, and Deficiency of Circulating Mucosal-Associated Invariant T Cells in Patients with Scrub Typhus. PLoS Negl Trop Dis 2016;10:e0004832. [PMID: 27463223 DOI: 10.1371/journal.pntd.0004832] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
20 Kim HL, Park HR, Kim CM, Cha YJ, Yun NR, Kim DM. Indicators of severe prognosis of scrub typhus: prognostic factors of scrub typhus severity. BMC Infect Dis 2019;19:283. [PMID: 30909868 DOI: 10.1186/s12879-019-3903-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
21 Kang SJ, Jin HM, Cho YN, Oh TH, Kim SE, Kim UJ, Park KH, Jang HC, Jung SI, Kee SJ, Park YW. Dysfunction of Circulating Natural Killer T Cells in Patients With Scrub Typhus. J Infect Dis 2018;218:1813-21. [PMID: 29982731 DOI: 10.1093/infdis/jiy402] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
22 Soong L, Mendell NL, Olano JP, Rockx-Brouwer D, Xu G, Goez-Rivillas Y, Drom C, Shelite TR, Valbuena G, Walker DH, Bouyer DH. An Intradermal Inoculation Mouse Model for Immunological Investigations of Acute Scrub Typhus and Persistent Infection. PLoS Negl Trop Dis 2016;10:e0004884. [PMID: 27479584 DOI: 10.1371/journal.pntd.0004884] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
23 Saraswati K, Phanichkrivalkosil M, Day NPJ, Blacksell SD. The validity of diagnostic cut-offs for commercial and in-house scrub typhus IgM and IgG ELISAs: A review of the evidence. PLoS Negl Trop Dis 2019;13:e0007158. [PMID: 30716070 DOI: 10.1371/journal.pntd.0007158] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
24 Otten T, de Mast Q, Koeneman B, Althaus T, Lubell Y, van der Ven A. Value of C-reactive protein in differentiating viral from bacterial aetiologies in patients with non-malaria acute undifferentiated fever in tropical areas: a meta-analysis and individual patient data study. Trans R Soc Trop Med Hyg 2021:traa186. [PMID: 33644814 DOI: 10.1093/trstmh/traa186] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
25 Fisher J, Card G, Soong L. Neuroinflammation associated with scrub typhus and spotted fever group rickettsioses. PLoS Negl Trop Dis 2020;14:e0008675. [PMID: 33091013 DOI: 10.1371/journal.pntd.0008675] [Reference Citation Analysis]
26 Sun IO, Shin SH, Cho AY, Yoon HJ, Chang MY, Lee KY. Clinical significance of NGAL and KIM-1 for acute kidney injury in patients with scrub typhus. PLoS One 2017;12:e0175890. [PMID: 28419138 DOI: 10.1371/journal.pone.0175890] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]