BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gregório T, Pipa S, Cavaleiro P, Atanásio G, Albuquerque I, Chaves PC, Azevedo L. Prognostic models for intracerebral hemorrhage: systematic review and meta-analysis. BMC Med Res Methodol 2018;18:145. [PMID: 30458727 DOI: 10.1186/s12874-018-0613-8] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Florez WA, García-Ballestas E, Deora H, Agrawal A, Martinez-Perez R, Galwankar S, Keni R, Menon GR, Joaquim A, Moscote-Salazar LR. Intracranial hypertension in patients with aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. Neurosurg Rev 2021;44:203-11. [PMID: 32008128 DOI: 10.1007/s10143-020-01248-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
2 Lim MJR. Letter: Machine Learning and Artificial Intelligence in Neurosurgery: Status, Prospects, and Challenges. Neurosurgery 2021;89:E333-4. [PMID: 34498686 DOI: 10.1093/neuros/nyab337] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Simon-Pimmel J, Foucher Y, Léger M, Feuillet F, Bodet-Contentin L, Cinotti R, Frasca D, Dantan E. Methodological quality of multivariate prognostic models for intracranial haemorrhages in intensive care units: a systematic review. BMJ Open 2021;11:e047279. [PMID: 34548347 DOI: 10.1136/bmjopen-2020-047279] [Reference Citation Analysis]
4 Zhou Z, Zhou H, Song Z, Chen Y, Guo D, Cai J. Location-Specific Radiomics Score: Novel Imaging Marker for Predicting Poor Outcome of Deep and Lobar Spontaneous Intracerebral Hemorrhage. Front Neurosci 2021;15:766228. [PMID: 34899168 DOI: 10.3389/fnins.2021.766228] [Reference Citation Analysis]
5 Sufriyana H, Husnayain A, Chen YL, Kuo CY, Singh O, Yeh TY, Wu YW, Su EC. Comparison of Multivariable Logistic Regression and Other Machine Learning Algorithms for Prognostic Prediction Studies in Pregnancy Care: Systematic Review and Meta-Analysis. JMIR Med Inform 2020;8:e16503. [PMID: 33200995 DOI: 10.2196/16503] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
6 Xu M, Li B, Zhong D, Cheng Y, Wu Q, Zhang S, Zhang S, Wu B, Liu M. Cerebral Small Vessel Disease Load Predicts Functional Outcome and Stroke Recurrence After Intracerebral Hemorrhage: A Median Follow-Up of 5 Years. Front Aging Neurosci 2021;13:628271. [PMID: 33679377 DOI: 10.3389/fnagi.2021.628271] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Yang YL, Zhang L, He X, Zhou YM, Chen GQ, Xu M, Zhou JX. Use of the Bispectral Index to Predict Recovery of Consciousness in Patients with Spontaneous Intracerebral Hemorrhage After Surgical Hematoma Evacuation: A Prospective Cohort Study. Med Sci Monit 2019;25:3446-53. [PMID: 31071717 DOI: 10.12659/MSM.916509] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
8 Lim MJR, Quek RHC, Ng KJ, Loh NW, Lwin S, Teo K, Nga VDW, Yeo TT, Motani M. Machine Learning Models Prognosticate Functional Outcomes Better than Clinical Scores in Spontaneous Intracerebral Haemorrhage. J Stroke Cerebrovasc Dis 2021;31:106234. [PMID: 34896819 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106234] [Reference Citation Analysis]
9 Cui Z, Liu S, Hou L, Sun Y, Chen H, Mao H, Zhao Y, Qiao L. Effect of Tongfu Xingshen capsule on the endogenous neural stem cells of experimental rats with intracerebral hemorrhage. Mol Med Rep 2021;24:624. [PMID: 34212980 DOI: 10.3892/mmr.2021.12263] [Reference Citation Analysis]
10 Rodriguez-Calienes A, Malaga M, Alva-Diaz C, Saal-Zapata G. Validation of the ICH score and ICH-GS in a Peruvian surgical cohort: a retrospective study. Neurosurg Rev 2021. [PMID: 34275028 DOI: 10.1007/s10143-021-01605-2] [Reference Citation Analysis]
11 Sondag L, Jacobs FA, Schreuder FH, Boogaarts JD, Peter Vandertop W, Dammers R, Klijn CJ. Variation in medical management and neurosurgical treatment of patients with supratentorial spontaneous intracerebral haemorrhage. Eur Stroke J 2021;6:134-42. [PMID: 34414288 DOI: 10.1177/23969873211005915] [Reference Citation Analysis]
12 Salazar P, Di Napoli M, Jafari M, Jafarli A, Ziai W, Petersen A, Mayer SA, Bershad EM, Damani R, Divani AA. Exploration of Multiparameter Hematoma 3D Image Analysis for Predicting Outcome After Intracerebral Hemorrhage. Neurocrit Care 2020;32:539-49. [PMID: 31359310 DOI: 10.1007/s12028-019-00783-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
13 Nawabi J, Kniep H, Elsayed S, Friedrich C, Sporns P, Rusche T, Böhmer M, Morotti A, Schlunk F, Dührsen L, Broocks G, Schön G, Quandt F, Thomalla G, Fiehler J, Hanning U. Imaging-Based Outcome Prediction of Acute Intracerebral Hemorrhage. Transl Stroke Res 2021. [PMID: 33547592 DOI: 10.1007/s12975-021-00891-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Witsch J, Siegerink B, Nolte CH, Sprügel M, Steiner T, Endres M, Huttner HB. Prognostication after intracerebral hemorrhage: a review. Neurol Res Pract 2021;3:22. [PMID: 33934715 DOI: 10.1186/s42466-021-00120-5] [Reference Citation Analysis]
15 Chen EP, Arslanian-Engoren C, Newhouse W, Egleston D, Sahgal S, Yande A, Fagerlin A, Zahuranec DB. Development and usability testing of Understanding Stroke, a tailored life-sustaining treatment decision support tool for stroke surrogate decision makers. BMC Palliat Care 2020;19:110. [PMID: 32689982 DOI: 10.1186/s12904-020-00617-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
16 Ji R, Wang W, Liu X, Wang L, Jiang R, Zhang R, Wang D, Jia J, Feng H, Ding Z, Liu Y, Liu G, Lu J, Ju Y, Zhao X. Head-to-head comparison of prognostic models of spontaneous intracerebral hemorrhage: tools for personalized care and clinical trial in ICH. Neurol Res 2021;:1-10. [PMID: 34431446 DOI: 10.1080/01616412.2021.1967678] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]