BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jang HH, Park SB, Hong JS, Lee HL, Song YH, Kim J, Jung YH, Kim C, Kim DM, Lee SE, Jeong YI, Kang DH. Piperlongumine-Eluting Gastrointestinal Stent Using Reactive Oxygen Species-Sensitive Nanofiber Mats for Inhibition of Cholangiocarcinoma Cells. Nanoscale Res Lett 2019;14:58. [PMID: 30778693 DOI: 10.1186/s11671-019-2887-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
Number Citing Articles
1 Yang SW, Jeong YI, Kook MS, Kim BH. Reactive Oxygen Species and Folate Receptor-Targeted Nanophotosensitizers Composed of Folic Acid-Conjugated and Poly(ethylene glycol)-Chlorin e6 Tetramer Having Diselenide Linkages for Targeted Photodynamic Treatment of Cancer Cells. Int J Mol Sci 2022;23:3117. [PMID: 35328538 DOI: 10.3390/ijms23063117] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
2 Dabbour NM, Salama AM, Donia T, Al-deeb RT, Abd Elghane AM, Badry KH, Loutfy SA. Managing GSH elevation and hypoxia to overcome resistance of cancer therapies using functionalized nanocarriers. Journal of Drug Delivery Science and Technology 2022;67:103022. [DOI: 10.1016/j.jddst.2021.103022] [Reference Citation Analysis]
3 Yang J, Lee H, Choi S, Kim J, Yu Y, Jeong Y, Kang D. Reactive Oxygen Species-Sensitive Nanophotosensitizers of Methoxy Poly(ethylene glycol)-Chlorin e6/Phenyl Boronic Acid Pinacol Ester Conjugates Having Diselenide Linkages for Photodynamic Therapy of Cervical Cancer Cells. Materials 2021;15:138. [DOI: 10.3390/ma15010138] [Reference Citation Analysis]
4 Song J, Kook MS, Kim BH, Jeong YI, Oh KJ. Ciprofloxacin-Releasing ROS-Sensitive Nanoparticles Composed of Poly(Ethylene Glycol)/Poly(D,L-lactide-co-glycolide) for Antibacterial Treatment. Materials (Basel) 2021;14:4125. [PMID: 34361319 DOI: 10.3390/ma14154125] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
5 Zhu P, Qian J, Xu Z, Meng C, Zhu W, Ran F, Zhang W, Zhang Y, Ling Y. Overview of piperlongumine analogues and their therapeutic potential. Eur J Med Chem 2021;220:113471. [PMID: 33930801 DOI: 10.1016/j.ejmech.2021.113471] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
6 He X, Zhu Y, Wang Y, Hao Y, Hong J. Advances in stent therapy for malignant biliary obstruction. Abdom Radiol (NY) 2021;46:351-61. [PMID: 32451676 DOI: 10.1007/s00261-020-02593-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
7 Azimi B, Maleki H, Zavagna L, De la Ossa JG, Linari S, Lazzeri A, Danti S. Bio-Based Electrospun Fibers for Wound Healing. J Funct Biomater 2020;11:E67. [PMID: 32971968 DOI: 10.3390/jfb11030067] [Cited by in Crossref: 60] [Cited by in F6Publishing: 65] [Article Influence: 20.0] [Reference Citation Analysis]
8 Jeon H, Kim K, Kim Y, Lee S. Naturally occurring Piper plant amides potential in agricultural and pharmaceutical industries: perspectives of piperine and piperlongumine. Appl Biol Chem 2019;62. [DOI: 10.1186/s13765-019-0471-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
9 Jeon H, Kim K, Kim Y, Lee S. Antimelanogenic activities of piperlongumine derived from Piper longum on murine B16F10 melanoma cells in vitro and zebrafish embryos in vivo: its molecular mode of depigmenting action. Appl Biol Chem 2019;62. [DOI: 10.1186/s13765-019-0468-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]