BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Loboda A, Sobczak M, Jozkowicz A, Dulak J. TGF-β1/Smads and miR-21 in Renal Fibrosis and Inflammation. Mediators Inflamm 2016;2016:8319283. [PMID: 27610006 DOI: 10.1155/2016/8319283] [Cited by in Crossref: 134] [Cited by in F6Publishing: 135] [Article Influence: 22.3] [Reference Citation Analysis]
Number Citing Articles
1 Shang J, Sun S, Zhang L, Hao F, Zhang D. miR-211 alleviates ischaemia/reperfusion-induced kidney injury by targeting TGFβR2/TGF-β/SMAD3 pathway. Bioengineered 2020;11:547-57. [PMID: 32375588 DOI: 10.1080/21655979.2020.1765501] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
2 Chatterjee A, Kosmacek EA, Oberley-Deegan RE. MnTE-2-PyP Treatment, or NOX4 Inhibition, Protects against Radiation-Induced Damage in Mouse Primary Prostate Fibroblasts by Inhibiting the TGF-Beta 1 Signaling Pathway. Radiat Res 2017;187:367-81. [PMID: 28225655 DOI: 10.1667/RR14623.1] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 4.2] [Reference Citation Analysis]
3 Mai M, Jiang Y, Wu X, Liu G, Zhu Y, Zhu W. Association of TGF-β1, IL-4, and IL-10 Polymorphisms With Chronic Kidney Disease Susceptibility: A Meta-Analysis. Front Genet 2020;11:79. [PMID: 32174964 DOI: 10.3389/fgene.2020.00079] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
4 Madhyastha R, Madhyastha H, Nurrahmah QI, Purbasari B, Maruyama M, Nakajima Y. MicroRNA 21 Elicits a Pro-inflammatory Response in Macrophages, with Exosomes Functioning as Delivery Vehicles. Inflammation 2021;44:1274-87. [PMID: 33501624 DOI: 10.1007/s10753-021-01415-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
5 Hachana S, Larrivée B. TGF-β Superfamily Signaling in the Eye: Implications for Ocular Pathologies. Cells 2022;11:2336. [DOI: 10.3390/cells11152336] [Reference Citation Analysis]
6 Yu ZW, Xu YQ, Zhang XJ, Pan JR, Xiang HX, Gu XH, Ji SB, Qian J. Mutual regulation between miR-21 and the TGFβ/Smad signaling pathway in human bronchial fibroblasts promotes airway remodeling. J Asthma 2019;56:341-9. [PMID: 29621415 DOI: 10.1080/02770903.2018.1455859] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
7 Liu R, Wang Q, Ding Z, Zhang X, Li Y, Zang Y, Zhang G. Silibinin Augments the Antifibrotic Effect of Valsartan Through Inactivation of TGF-β1 Signaling in Kidney. Drug Des Devel Ther 2020;14:603-11. [PMID: 32103902 DOI: 10.2147/DDDT.S224308] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
8 Yuan H, Fan Y, Wang Y, Gao T, Shao Y, Zhao B, Li H, Xu C, Wei C. Calcium‑sensing receptor promotes high glucose‑induced myocardial fibrosis via upregulation of the TGF‑β1/Smads pathway in cardiac fibroblasts. Mol Med Rep 2019;20:1093-102. [PMID: 31173208 DOI: 10.3892/mmr.2019.10330] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
9 Zhang Z, Gao Y, Xu M, Wang C, Fu X, Liu J, Han D, Jiang H, Yuan B, Zhang J. miR-181a regulate porcine preadipocyte differentiation by targeting TGFBR1. Gene 2019;681:45-51. [DOI: 10.1016/j.gene.2018.09.046] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
10 Wang L, Liang Y. MicroRNAs as T Lymphocyte Regulators in Multiple Sclerosis. Front Mol Neurosci 2022;15:865529. [DOI: 10.3389/fnmol.2022.865529] [Reference Citation Analysis]
11 Yang X, Chen Z, Chen C, Han C, Zhou Y, Li X, Tian H, Cheng X, Zhang K, Qin A, Zhou T, Zhao J. Bleomycin induces fibrotic transformation of bone marrow stromal cells to treat height loss of intervertebral disc through the TGFβR1/Smad2/3 pathway. Stem Cell Res Ther 2021;12:34. [PMID: 33413668 DOI: 10.1186/s13287-020-02093-9] [Reference Citation Analysis]
12 Liu G, Liu X, Yang Y. Comparative transcriptome analysis of miRNA in hydronephrosis male children caused by ureteropelvic junction obstruction with or without renal functional injury. PeerJ 2022;10:e12962. [DOI: 10.7717/peerj.12962] [Reference Citation Analysis]
13 Huang G, Yao Q, Ye Z, Huang Y, Zhang C, Jiang Y, Xi X. Gender Differential Expression of AR/miR-21 Signaling Axis and Its Protective Effect on Renal Ischemia-Reperfusion Injury. Front Cell Dev Biol 2022;10:861327. [DOI: 10.3389/fcell.2022.861327] [Reference Citation Analysis]
14 Lavoz C, Rayego-Mateos S, Orejudo M, Opazo-Ríos L, Marchant V, Marquez-Exposito L, Tejera-Muñoz A, Navarro-González JF, Droguett A, Ortiz A, Egido J, Mezzano S, Rodrigues-Diez RR, Ruiz-Ortega M. Could IL-17A Be a Novel Therapeutic Target in Diabetic Nephropathy? J Clin Med 2020;9:E272. [PMID: 31963845 DOI: 10.3390/jcm9010272] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
15 Kinget L, Roussel E, Lambrechts D, Boeckx B, Vanginderhuysen L, Albersen M, Rodríguez-Antona C, Graña-Castro O, Inglada-Pérez L, Verbiest A, Zucman-Rossi J, Couchy G, Caruso S, Laenen A, Baldewijns M, Beuselinck B. MicroRNAs Possibly Involved in the Development of Bone Metastasis in Clear-Cell Renal Cell Carcinoma. Cancers (Basel) 2021;13:1554. [PMID: 33800656 DOI: 10.3390/cancers13071554] [Reference Citation Analysis]
16 Yan H, Zhang X, Xu Y. Aberrant expression of miR-21 in patients with inflammatory bowel disease: A protocol for systematic review and meta analysis. Medicine (Baltimore) 2020;99:e19693. [PMID: 32332611 DOI: 10.1097/MD.0000000000019693] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
17 Rendina D, D Elia L, Abate V, Rebellato A, Buondonno I, Succoio M, Martinelli F, Muscariello R, De Filippo G, D Amelio P, Fallo F, Strazzullo P, Faraonio R. Vitamin D Status, Cardiovascular Risk Profile, and miRNA-21 Levels in Hypertensive Patients: Results of the HYPODD Study. Nutrients 2022;14:2683. [PMID: 35807864 DOI: 10.3390/nu14132683] [Reference Citation Analysis]
18 Gora IM, Ciechanowska A, Ladyzynski P. NLRP3 Inflammasome at the Interface of Inflammation, Endothelial Dysfunction, and Type 2 Diabetes. Cells 2021;10:314. [PMID: 33546399 DOI: 10.3390/cells10020314] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
19 Chen X, Yin J, Xu Y, Qiu Z, Liu J, Chen X. Effect of selective inhibition or activation of PGE2 EP1 receptor on glomerulosclerosis. Mol Med Rep 2020;22:2887-95. [PMID: 32700746 DOI: 10.3892/mmr.2020.11353] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
20 Uehara Y, Furusawa Y, Islam MS, Yamato O, Hatai H, Ichii O, Yabuki A. Immunohistochemical Expression of TGF-β1 in Kidneys of Cats with Chronic Kidney Disease. Veterinary Sciences 2022;9:114. [DOI: 10.3390/vetsci9030114] [Reference Citation Analysis]
21 Matz M, Heinrich F, Lorkowski C, Wu K, Klotsche J, Zhang Q, Lachmann N, Durek P, Budde K, Mashreghi MF. MicroRNA regulation in blood cells of renal transplanted patients with interstitial fibrosis/tubular atrophy and antibody-mediated rejection. PLoS One. 2018;13:e0201925. [PMID: 30102719 DOI: 10.1371/journal.pone.0201925] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
22 Ruiz-Ortega M, Rayego-Mateos S, Lamas S, Ortiz A, Rodrigues-Diez RR. Targeting the progression of chronic kidney disease. Nat Rev Nephrol 2020;16:269-88. [PMID: 32060481 DOI: 10.1038/s41581-019-0248-y] [Cited by in Crossref: 74] [Cited by in F6Publishing: 73] [Article Influence: 37.0] [Reference Citation Analysis]
23 Giordo R, Ahmed YMA, Allam H, Abusnana S, Pappalardo L, Nasrallah GK, Mangoni AA, Pintus G. EndMT Regulation by Small RNAs in Diabetes-Associated Fibrotic Conditions: Potential Link With Oxidative Stress. Front Cell Dev Biol 2021;9:683594. [PMID: 34095153 DOI: 10.3389/fcell.2021.683594] [Reference Citation Analysis]
24 Liao W, Liang P, Liu B, Xu Z, Zhang L, Feng M, Tang Y, Xu A. MicroRNA-140-5p Mediates Renal Fibrosis Through TGF-β1/Smad Signaling Pathway by Directly Targeting TGFBR1. Front Physiol 2020;11:1093. [PMID: 33013464 DOI: 10.3389/fphys.2020.01093] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
25 Sakuma H, Hagiwara S, Kantharidis P, Gohda T, Suzuki Y. Potential Targeting of Renal Fibrosis in Diabetic Kidney Disease Using MicroRNAs. Front Pharmacol 2020;11:587689. [PMID: 33364960 DOI: 10.3389/fphar.2020.587689] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
26 Fujii R, Yamada H, Munetsuna E, Yamazaki M, Ohashi K, Ishikawa H, Maeda K, Hagiwara C, Ando Y, Hashimoto S, Hamajima N, Suzuki K. Associations of Circulating MicroRNAs (miR-17, miR-21, and miR-150) and Chronic Kidney Disease in a Japanese Population. J Epidemiol 2020;30:177-82. [PMID: 30905898 DOI: 10.2188/jea.JE20180233] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
27 Song N, Zhang T, Xu X, Lu Z, Yu X, Fang Y, Hu J, Jia P, Teng J, Ding X. miR-21 Protects Against Ischemia/Reperfusion-Induced Acute Kidney Injury by Preventing Epithelial Cell Apoptosis and Inhibiting Dendritic Cell Maturation. Front Physiol 2018;9:790. [PMID: 30013485 DOI: 10.3389/fphys.2018.00790] [Cited by in Crossref: 48] [Cited by in F6Publishing: 45] [Article Influence: 12.0] [Reference Citation Analysis]
28 Aslani S, Sobhani S, Gharibdoost F, Jamshidi A, Mahmoudi M. Epigenetics and pathogenesis of systemic sclerosis; the ins and outs. Hum Immunol 2018;79:178-87. [PMID: 29330110 DOI: 10.1016/j.humimm.2018.01.003] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 4.8] [Reference Citation Analysis]
29 Kim A, Han J, Ryu C, Yu HY, Lee S, Kim Y, Jeong SU, Cho YM, Shin D, Choo M. Histopathological characteristics of interstitial cystitis/bladder pain syndrome without Hunner lesion. Histopathology 2017;71:415-24. [DOI: 10.1111/his.13235] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 6.2] [Reference Citation Analysis]
30 Zheng Q, Cui X, Zhang D, Yang Y, Yan X, Liu M, Niang B, Aziz F, Liu S, Yan Q, Liu J. miR-200b inhibits proliferation and metastasis of breast cancer by targeting fucosyltransferase IV and α1,3-fucosylated glycans. Oncogenesis 2017;6:e358. [PMID: 28692034 DOI: 10.1038/oncsis.2017.58] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 6.6] [Reference Citation Analysis]
31 Posadino AM, Erre GL, Cossu A, Emanueli C, Eid AH, Zinellu A, Pintus G, Giordo R. NADPH-derived ROS generation drives fibrosis and endothelial-to-mesenchymal transition in systemic sclerosis: Potential cross talk with circulating miRNAs. Biomol Concepts 2022;13:11-24. [PMID: 35189048 DOI: 10.1515/bmc-2021-0023] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Dong X, Li Y, Cao R, Xu H. MicroRNA-363-3p Inhibits the Expression of Renal Fibrosis Markers in TGF-β1-Treated HK-2 Cells by Targeting TGF-β2. Biochem Genet 2021;59:1033-48. [PMID: 33630202 DOI: 10.1007/s10528-021-10044-z] [Reference Citation Analysis]
33 Song Y, Lv S, Wang F, Liu X, Cheng J, Liu S, Wang X, Chen W, Guan G, Liu G, Peng C. Overexpression of BMP‑7 reverses TGF‑β1‑induced epithelial‑mesenchymal transition by attenuating the Wnt3/β‑catenin and TGF-β1/Smad2/3 signaling pathways in HK‑2 cells. Mol Med Rep 2020;21:833-41. [PMID: 31974602 DOI: 10.3892/mmr.2019.10875] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
34 Zhao M, Yang B, Li L, Si Y, Chang M, Ma S, Li R, Wang Y, Zhang Y. Efficacy of Modified Huangqi Chifeng decoction in alleviating renal fibrosis in rats with IgA nephropathy by inhibiting the TGF-β1/Smad3 signaling pathway through exosome regulation. J Ethnopharmacol 2021;:114795. [PMID: 34737009 DOI: 10.1016/j.jep.2021.114795] [Reference Citation Analysis]
35 Bhayana S, Song F, Jacob J, Fadda P, Denko NC, Xu-Welliver M, Chakravarti A, Jacob NK. Urinary miRNAs as Biomarkers for Noninvasive Evaluation of Radiation-Induced Renal Tubular Injury. Radiat Res 2017;188:626-35. [PMID: 28977780 DOI: 10.1667/RR14828.1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
36 Liu L, Li N, Zhang Q, Zhou J, Lin L, He X. Inhibition of ERK1/2 Signaling Impairs the Promoting Effects of TGF-β1 on Hepatocellular Carcinoma Cell Invasion and Epithelial-Mesenchymal Transition. Oncol Res 2017;25:1607-16. [PMID: 28492136 DOI: 10.3727/096504017X14938093512742] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
37 Ai K, Zhu X, Kang Y, Li H, Zhang L. miR-130a-3p inhibition protects against renal fibrosis in vitro via the TGF-β1/Smad pathway by targeting SnoN. Exp Mol Pathol 2020;112:104358. [PMID: 31836508 DOI: 10.1016/j.yexmp.2019.104358] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
38 Qiao B, Cai JH, Lam AK, He BX. MicroRNA-542-3p inhibits oral squamous cell carcinoma progression by inhibiting ILK/TGF-β1/Smad2/3 signaling. Oncotarget 2017;8:70761-76. [PMID: 29050317 DOI: 10.18632/oncotarget.19986] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
39 Fan Y, Chen H, Huang Z, Zheng H, Zhou J. Emerging role of miRNAs in renal fibrosis. RNA Biol 2020;17:1-12. [PMID: 31550975 DOI: 10.1080/15476286.2019.1667215] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
40 Zong M, Zhao H, Li Q, Li Y, Zhang J. Irbesartan ameliorates myocardial fibrosis in diabetic cardiomyopathy rats by inhibiting the TGFβ1/Smad2/3 pathway. Exp Ther Med 2020;20:117. [PMID: 33005243 DOI: 10.3892/etm.2020.9245] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Sun H, Ke C, Zhang L, Tian C, Zhang Z, Wu S. Long Non-Coding RNA (LncRNA)-ATB Promotes Inflammation, Cell Apoptosis and Senescence in Transforming Growth Factor-β1 (TGF-β1) Induced Human Kidney 2 (HK-2) Cells via TGFβ/SMAD2/3 Signaling Pathway. Med Sci Monit 2020;26:e922029. [PMID: 32447340 DOI: 10.12659/MSM.922029] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
42 Calle P, Torrico S, Muñoz A, Hotter G. CPT1a downregulation protects against cholesterol-induced fibrosis in tubular epithelial cells by downregulating TGFβ-1 and inflammasome. Biochemical and Biophysical Research Communications 2019;517:715-21. [DOI: 10.1016/j.bbrc.2019.07.121] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
43 Morgan A, Galal MK, Ogaly HA, Ibrahim MA, Abd-Elsalam RM, Noshy P. Tiron ameliorates oxidative stress and inflammation in titanium dioxide nanoparticles induced nephrotoxicity of male rats. Biomed Pharmacother 2017;93:779-87. [PMID: 28709131 DOI: 10.1016/j.biopha.2017.07.006] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
44 Hu M, Liu W, Ma P, Wu Y, Li H, Men Y, Tang X, Que L, Cao Y, Li C. Smad7 attenuates TGF-β-mediated aging-related hypofunction of submandibular glands. Exp Biol Med (Maywood) 2021;246:1269-73. [PMID: 33641444 DOI: 10.1177/1535370221993430] [Reference Citation Analysis]
45 Liang L, Li S, Liu H, Mao Y, Liu L, Zhang X, Peng W, Xiao Y, Zhang F, Shi M, Wang Y, Guo B. Blood glucose control contributes to protein stability of Ski-related novel protein N in a rat model of diabetes. Exp Ther Med 2021;22:1341. [PMID: 34630695 DOI: 10.3892/etm.2021.10776] [Reference Citation Analysis]
46 Guo J, Song W, Boulanger J, Xu EY, Wang F, Zhang Y, He Q, Wang S, Yang L, Pryce C, Phillips L, MacKenna D, Leberer E, Ibraghimov-Beskrovnaya O, Ding J, Liu S. Dysregulated Expression of microRNA-21 and Disease-Related Genes in Human Patients and in a Mouse Model of Alport Syndrome. Hum Gene Ther 2019;30:865-81. [PMID: 30808234 DOI: 10.1089/hum.2018.205] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
47 Zhang Y, Zou J, Tolbert E, Zhao TC, Bayliss G, Zhuang S. Identification of histone deacetylase 8 as a novel therapeutic target for renal fibrosis. FASEB J 2020;34:7295-310. [PMID: 32281211 DOI: 10.1096/fj.201903254R] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
48 Zhang H, Wei X, Lu S, Lin X, Huang J, Chen L, Huang X, Jiang L, Li Y, Qin L, Wei J, Huang R. Protective effect of DMDD, isolated from the root of Averrhoa carambola L., on high glucose induced EMT in HK-2 cells by inhibiting the TLR4-BAMBI-Smad2/3 signaling pathway. Biomed Pharmacother 2019;113:108705. [PMID: 30877882 DOI: 10.1016/j.biopha.2019.108705] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
49 Jung JH, Choi JE, Song JH, Ahn SH. Human CD36 overexpression in renal tubules accelerates the progression of renal diseases in a mouse model of folic acid-induced acute kidney injury. Kidney Res Clin Pract 2018;37:30-40. [PMID: 29629275 DOI: 10.23876/j.krcp.2018.37.1.30] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
50 Akan E, Cetinkaya B, Kipmen-Korgun D, Ozmen A, Koksoy S, Mendilcioğlu İ, Sakinci M, Suleymanlar G, Korgun ET. Effects of amnion derived mesenchymal stem cells on fibrosis in a 5/6 nephrectomy model in rats. Biotech Histochem 2021;:1-14. [PMID: 33522283 DOI: 10.1080/10520295.2021.1875502] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
51 Tsuji K, Kitamura S, Wada J. Immunomodulatory and Regenerative Effects of Mesenchymal Stem Cell-Derived Extracellular Vesicles in Renal Diseases. Int J Mol Sci 2020;21:E756. [PMID: 31979395 DOI: 10.3390/ijms21030756] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
52 Zhuang Q, Ma R, Yin Y, Lan T, Yu M, Ming Y. Mesenchymal Stem Cells in Renal Fibrosis: The Flame of Cytotherapy. Stem Cells Int. 2019;2019:8387350. [PMID: 30766607 DOI: 10.1155/2019/8387350] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
53 Szeto CC, Ng JK, Fung WW, Luk CC, Wang G, Chow KM, Lai KB, Li PK, Lai FM. Kidney microRNA-21 Expression and Kidney Function in IgA Nephropathy. Kidney Med 2021;3:76-82.e1. [PMID: 33604541 DOI: 10.1016/j.xkme.2020.11.009] [Reference Citation Analysis]
54 Bai L, Lin Y, Xie J, Zhang Y, Wang H, Zheng D. MiR-27b-3p inhibits the progression of renal fibrosis via suppressing STAT1. Hum Cell 2021;34:383-93. [PMID: 33454903 DOI: 10.1007/s13577-020-00474-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Nonaka CKV, Sampaio GL, Silva KN, Khouri R, Macedo CT, Chagas Translational Research Consortium, Rogatto SR, Ribeiro Dos Santos R, Souza BSF, Soares MBP. Therapeutic miR-21 Silencing Reduces Cardiac Fibrosis and Modulates Inflammatory Response in Chronic Chagas Disease. Int J Mol Sci 2021;22:3307. [PMID: 33804922 DOI: 10.3390/ijms22073307] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
56 Liang M, Zhang D, Zheng D, He W, Jin J. Exosomes from miR-374a-5p-modified mesenchymal stem cells inhibit the progression of renal fibrosis by regulating MAPK6/MK5/YAP axis. Bioengineered 2022;13:4517-27. [PMID: 35137672 DOI: 10.1080/21655979.2022.2033465] [Reference Citation Analysis]
57 Widiasta A, Sribudiani Y, Nugrahapraja H, Hilmanto D, Sekarwana N, Rachmadi D. Potential role of ACE2-related microRNAs in COVID-19-associated nephropathy. Noncoding RNA Res 2020;5:153-66. [PMID: 32923747 DOI: 10.1016/j.ncrna.2020.09.001] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 8.5] [Reference Citation Analysis]
58 Li Y, Huang J, Hu C, Zhou J, Xu D, Hou Y, Wu C, Zhao J, Li M, Zeng X, Liu C, Wang Q, Zhao Y. MicroRNA-320a: an important regulator in the fibrotic process in interstitial lung disease of systemic sclerosis. Arthritis Res Ther 2021;23:21. [PMID: 33430962 DOI: 10.1186/s13075-020-02411-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Yu Y, Hu D, Zhou Y, Xiang H, Liu B, Shen L, Long C, Liu X, Lin T, He D, Zhang Y, Xu T, Zhang D, Wei G. Human umbilical cord mesenchymal stem cell attenuates renal fibrosis via TGF-β/Smad signaling pathways in vivo and in vitro. Eur J Pharmacol 2020;883:173343. [PMID: 32629029 DOI: 10.1016/j.ejphar.2020.173343] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
60 Tang WY, Liang JT, Wu J, Liu L, Lu MZ, He XY, Wu LJ, Jiang HY, Wang F, Meng X, Li SP. Efficacy and Safety of Dahuang Zhechong Pill in Silicosis: A Randomized Controlled Trial. Evid Based Complement Alternat Med 2021;2021:4354054. [PMID: 34840587 DOI: 10.1155/2021/4354054] [Reference Citation Analysis]
61 Ren YC, Zhao Q, He Y, Li B, Wu Z, Dai J, Wen L, Wang X, Hu G. Legumain promotes fibrogenesis in chronic pancreatitis via activation of transforming growth factor β1. J Mol Med (Berl) 2020;98:863-74. [PMID: 32415356 DOI: 10.1007/s00109-020-01911-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
62 Liu D, Kong F, Yuan Y, Seth P, Xu W, Wang H, Xiao F, Wang L, Zhang Q, Yang Y. Decorin-Modified Umbilical Cord Mesenchymal Stem Cells (MSCs) Attenuate Radiation-Induced Lung Injuries via Regulating Inflammation, Fibrotic Factors, and Immune Responses. Int J Radiat Oncol Biol Phys. 2018;101:945-956. [PMID: 29976507 DOI: 10.1016/j.ijrobp.2018.04.007] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 4.8] [Reference Citation Analysis]
63 Watroba M, Szukiewicz D. Sirtuins at the Service of Healthy Longevity. Front Physiol 2021;12:724506. [PMID: 34899370 DOI: 10.3389/fphys.2021.724506] [Reference Citation Analysis]
64 Guan R, Lin R, Jin R, Lu L, Liu X, Hu S, Sun L. Chitinase-like protein YKL-40 regulates human bronchial epithelial cells proliferation, apoptosis, and migration through TGF-β1/Smads pathway. Hum Exp Toxicol 2020;39:451-63. [PMID: 31797699 DOI: 10.1177/0960327119891218] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
65 He S, Huang Y, Dong S, Qiao C, Yang G, Zhang S, Wang C, Xu Y, Zheng F, Yan M. MiR-199a-3p/5p participated in TGF-β and EGF induced EMT by targeting DUSP5/MAP3K11 in pterygium. J Transl Med 2020;18:332. [PMID: 32867783 DOI: 10.1186/s12967-020-02499-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
66 Chun-yan L, Zi-yi Z, Tian-lin Y, Yi-li W, Bao L, Jiao L, Wei-jun D. Liquid biopsy biomarkers of renal interstitial fibrosis based on urinary exosome. Experimental and Molecular Pathology 2018;105:223-8. [DOI: 10.1016/j.yexmp.2018.08.004] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
67 Mafi A, Aghadavod E, Mirhosseini N, Mobini M, Asemi Z. The effects of expression of different microRNAs on insulin secretion and diabetic nephropathy progression. J Cell Physiol 2019;234:42-50. [DOI: 10.1002/jcp.26895] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
68 Yang K, Li W, Bai T, Xiao Y, Yu W, Luo P, Cheng F. Mindin deficiency alleviates renal fibrosis through inhibiting NF-κB and TGF-β/Smad pathways. J Cell Mol Med 2020;24:5740-50. [PMID: 32253812 DOI: 10.1111/jcmm.15236] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
69 Liu R, Du J, Zhou J, Zhong B, Ba L, Zhang J, Liu Y, Liu S. Elevated microRNA-21 Is a Brake of Inflammation Involved in the Development of Nasal Polyps. Front Immunol 2021;12:530488. [PMID: 33936025 DOI: 10.3389/fimmu.2021.530488] [Reference Citation Analysis]
70 Chae SA, Pyo MC, Yoo HJ, Lee KW. Ochratoxin a induces hepatic fibrosis through TGF-β receptor I/Smad2/3 signaling pathway. Environ Toxicol 2022. [PMID: 35543154 DOI: 10.1002/tox.23552] [Reference Citation Analysis]
71 Wang Y, Han L, Shen M, Jones ES, Spizzo I, Walton SL, Denton KM, Gaspari TA, Samuel CS, Widdop RE. Serelaxin and the AT2 Receptor Agonist CGP42112 Evoked a Similar, Nonadditive, Cardiac Antifibrotic Effect in High Salt-Fed Mice That Were Refractory to Candesartan Cilexetil. ACS Pharmacol Transl Sci 2020;3:76-87. [PMID: 32259090 DOI: 10.1021/acsptsci.9b00095] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
72 Wang HJ, Liu H, Lin YH, Zhang SJ. MiR-32-5p knockdown inhibits epithelial to mesenchymal transition and renal fibrosis by targeting SMAD7 in diabetic nephropathy. Hum Exp Toxicol 2021;40:587-95. [PMID: 32959695 DOI: 10.1177/0960327120952157] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
73 Dong L, Yu L, Zhong J. Histone lysine-specific demethylase 1 induced renal fibrosis via decreasing sirtuin 3 expression and activating TGF-β1/Smad3 pathway in diabetic nephropathy. Diabetol Metab Syndr 2022;14:2. [PMID: 34983623 DOI: 10.1186/s13098-021-00771-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
74 Wei W, Yao Y, Bi H, Xu W, Gao Y. Circular RNA circ_0068,888 protects against lipopolysaccharide-induced HK-2 cell injury via sponging microRNA-21-5p. Biochem Biophys Res Commun 2021;540:1-7. [PMID: 33429194 DOI: 10.1016/j.bbrc.2020.12.018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
75 Rayego-Mateos S, Valdivielso JM. New therapeutic targets in chronic kidney disease progression and renal fibrosis. Expert Opin Ther Targets 2020;24:655-70. [PMID: 32338087 DOI: 10.1080/14728222.2020.1762173] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
76 Jiang R, Chen X, Ge S, Wang Q, Liu Y, Chen H, Xu J, Wu J. MiR-21-5p Induces Pyroptosis in Colorectal Cancer via TGFBI. Front Oncol 2020;10:610545. [PMID: 33614494 DOI: 10.3389/fonc.2020.610545] [Reference Citation Analysis]
77 Qi SS, Shao ML, Ze S, Zheng HX. Salidroside from Rhodiola rosea L. attenuates diabetic nephropathy in STZ induced diabetic rats via anti-oxidative stress, anti-inflammation, and inhibiting TGF-β1/Smad pathway. Journal of Functional Foods 2021;77:104329. [DOI: 10.1016/j.jff.2020.104329] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
78 Cao L, Huang F, Massey IY, Wen C, Zheng S, Xu S, Yang F. Effects of Microcystin-LR on the Microstructure and Inflammation-Related Factors of Jejunum in Mice. Toxins (Basel) 2019;11:E482. [PMID: 31438657 DOI: 10.3390/toxins11090482] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
79 Wu HY, Wu JL, Ni ZL. Overexpression of microRNA-202-3p protects against myocardial ischemia-reperfusion injury through activation of TGF-β1/Smads signaling pathway by targeting TRPM6. Cell Cycle 2019;18:621-37. [PMID: 30810438 DOI: 10.1080/15384101.2019.1580494] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
80 El-said YAM, Sallam NAA, Ain-shoka AA, Abdel-latif HA. Geraniol ameliorates diabetic nephropathy via interference with miRNA-21/PTEN/Akt/mTORC1 pathway in rats. Naunyn-Schmiedeberg's Arch Pharmacol 2020;393:2325-37. [DOI: 10.1007/s00210-020-01944-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
81 Chen C, Zhou T, Sun X, Han C, Zhang K, Zhao C, Li X, Tian H, Yang X, Zhou Y, Chen Z, Qin A, Zhao J. Autologous fibroblasts induce fibrosis of the nucleus pulposus to maintain the stability of degenerative intervertebral discs. Bone Res 2020;8:7. [PMID: 32128275 DOI: 10.1038/s41413-019-0082-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
82 Zhou JX, Li X. Non-Coding RNAs in Hereditary Kidney Disorders. Int J Mol Sci 2021;22:3014. [PMID: 33809516 DOI: 10.3390/ijms22063014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
83 Wang D, Horton JR, Zheng Y, Blumenthal RM, Zhang X, Cheng X. Role for first zinc finger of WT1 in DNA sequence specificity: Denys-Drash syndrome-associated WT1 mutant in ZF1 enhances affinity for a subset of WT1 binding sites. Nucleic Acids Res 2018;46:3864-77. [PMID: 29294058 DOI: 10.1093/nar/gkx1274] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
84 Li Z, Guo H, Li J, Ma T, Zhou S, Zhang Z, Miao L, Cai L. Sulforaphane prevents type 2 diabetes-induced nephropathy via AMPK-mediated activation of lipid metabolic pathways and Nrf2 antioxidative function. Clin Sci (Lond) 2020;134:2469-87. [PMID: 32940670 DOI: 10.1042/CS20191088] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
85 Yuan H, Xu J, Zhu Y, Li L, Wang Q, Yu Y, Zhou B, Liu Y, Xu X, Wang Z. Activation of calcium‑sensing receptor‑mediated autophagy in high glucose‑induced cardiac fibrosis in vitro. Mol Med Rep 2020;22:2021-31. [PMID: 32705187 DOI: 10.3892/mmr.2020.11277] [Reference Citation Analysis]
86 Kim IY, Lee MY, Park MW, Seong EY, Lee DW, Lee SB, Bae SS, Kim SS, Song SH. Deletion of Akt1 Promotes Kidney Fibrosis in a Murine Model of Unilateral Ureteral Obstruction. Biomed Res Int 2020;2020:6143542. [PMID: 33299873 DOI: 10.1155/2020/6143542] [Reference Citation Analysis]
87 Zhang H, Lu S, Chen L, Huang X, Jiang L, Li Y, Liao P, Wu X, Zhou X, Qin L, Wei J, Huang R. 2-Dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione, isolated from the root of Averrhoa carambola L., protects against diabetic kidney disease by inhibiting TLR4/TGFβ signaling pathway. Int Immunopharmacol 2020;80:106120. [PMID: 31972423 DOI: 10.1016/j.intimp.2019.106120] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
88 Szóstek-Mioduchowska A, Słowińska M, Pacewicz J, Skarzynski DJ, Okuda K. Matrix metallopeptidase expression and modulation by transforming growth factor-β1 in equine endometrosis. Sci Rep 2020;10:1119. [PMID: 31980722 DOI: 10.1038/s41598-020-58109-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
89 Li N, Liu TH, Yu JZ, Li CX, Liu Y, Wu YY, Yang ZS, Yuan JL. Curcumin and Curcumol Inhibit NF-κB and TGF-β 1/Smads Signaling Pathways in CSE-Treated RAW246.7 Cells. Evid Based Complement Alternat Med 2019;2019:3035125. [PMID: 31007701 DOI: 10.1155/2019/3035125] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
90 Zeng D, Xiao Z, Xu Q, Luo H, Wen L, Tang C, Shan Y, Tian J, Wei J, Li Y. Norcantharidin protects against renal interstitial fibrosis by suppressing TWEAK-mediated Smad3 phosphorylation. Life Sci 2020;260:118488. [PMID: 32979359 DOI: 10.1016/j.lfs.2020.118488] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
91 Ghai V, Wu X, Bheda-Malge A, Argyropoulos CP, Bernardo JF, Orchard T, Galas D, Wang K. Genome-wide Profiling of Urinary Extracellular Vesicle microRNAs Associated With Diabetic Nephropathy in Type 1 Diabetes. Kidney Int Rep 2018;3:555-72. [PMID: 29854963 DOI: 10.1016/j.ekir.2017.11.019] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 6.2] [Reference Citation Analysis]
92 Liu Y, Su YY, Yang Q, Zhou T. Stem cells in the treatment of renal fibrosis: a review of preclinical and clinical studies of renal fibrosis pathogenesis. Stem Cell Res Ther 2021;12:333. [PMID: 34112221 DOI: 10.1186/s13287-021-02391-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
93 Chen J, Li D. Telbivudine attenuates UUO-induced renal fibrosis via TGF-β/Smad and NF-κB signaling. Int Immunopharmacol 2018;55:1-8. [PMID: 29207359 DOI: 10.1016/j.intimp.2017.11.043] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 3.2] [Reference Citation Analysis]
94 Shi N, Wang Z, Zhu H, Liu W, Zhao M, Jiang X, Zhao J, Ren C, Zhang Y, Luo L. Research progress on drugs targeting the TGF-β signaling pathway in fibrotic diseases. Immunol Res 2022. [PMID: 35147920 DOI: 10.1007/s12026-022-09267-y] [Reference Citation Analysis]
95 Alhasson F, Seth RK, Sarkar S, Kimono DA, Albadrani MS, Dattaroy D, Chandrashekaran V, Scott GI, Raychoudhury S, Nagarkatti M, Nagarkatti P, Diehl AM, Chatterjee S. High circulatory leptin mediated NOX-2-peroxynitrite-miR21 axis activate mesangial cells and promotes renal inflammatory pathology in nonalcoholic fatty liver disease. Redox Biol 2018;17:1-15. [PMID: 29660503 DOI: 10.1016/j.redox.2018.04.002] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
96 Loboda A, Stachurska A, Sobczak M, Podkalicka P, Mucha O, Jozkowicz A, Dulak J. Nrf2 deficiency exacerbates ochratoxin A-induced toxicity in vitro and in vivo. Toxicology 2017;389:42-52. [DOI: 10.1016/j.tox.2017.07.004] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 4.8] [Reference Citation Analysis]
97 Nong Q, Li S, Wu Y, Liu D. LncRNA COL1A2-AS1 inhibits the scar fibroblasts proliferation via regulating miR-21/Smad7 pathway. Biochem Biophys Res Commun 2018;495:319-24. [PMID: 29117538 DOI: 10.1016/j.bbrc.2017.11.027] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 4.4] [Reference Citation Analysis]
98 Ichii O, Horino T. MicroRNAs associated with the development of kidney diseases in humans and animals. J Toxicol Pathol 2018;31:23-34. [PMID: 29479137 DOI: 10.1293/tox.2017-0051] [Cited by in Crossref: 47] [Cited by in F6Publishing: 44] [Article Influence: 9.4] [Reference Citation Analysis]
99 Zhang W, Li X, Tang Y, Chen C, Jing R, Liu T. miR-155-5p Implicates in the Pathogenesis of Renal Fibrosis via Targeting SOCS1 and SOCS6. Oxid Med Cell Longev 2020;2020:6263921. [PMID: 32587662 DOI: 10.1155/2020/6263921] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
100 Wei Y, Tanaka M, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Kawate H, Cui N, Kakihara S, Zhao Y, Aruga K, Sanjo H, Shindo T. Adrenomedullin Ameliorates Pulmonary Fibrosis by Regulating TGF-ß-Smads Signaling and Myofibroblast Differentiation. Endocrinology 2021;162:bqab090. [PMID: 33955458 DOI: 10.1210/endocr/bqab090] [Reference Citation Analysis]
101 Huang C, Wang XL, Qi FF, Pang ZL. Berberine inhibits epithelial-mesenchymal transition and promotes apoptosis of tumour-associated fibroblast-induced colonic epithelial cells through regulation of TGF-β signalling. J Cell Commun Signal 2020;14:53-66. [PMID: 31399854 DOI: 10.1007/s12079-019-00525-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
102 Yang X, Hu J, Shi C, Dai J. Activation of TGF-β1 Pathway by SCUBE3 Regulates TWIST1 Expression and Promotes Breast Cancer Progression. Cancer Biotherapy and Radiopharmaceuticals 2020;35:120-8. [DOI: 10.1089/cbr.2019.2990] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
103 Sun X, Yang Y, Sun X, Meng H, Hao W, Yin J, Ma F, Guo X, Du L, Sun L, Wu H. Krill Oil Turns Off TGF-β1 Profibrotic Signaling in the Prevention of Diabetic Nephropathy. J Agric Food Chem 2022. [PMID: 35916281 DOI: 10.1021/acs.jafc.2c02850] [Reference Citation Analysis]
104 Qiu J, Wang Y, Guo W, Xu L, Mou Y, Cui L, Han F, Sun Y. Role of TGF-β1-mediated epithelial-mesenchymal transition in the pathogenesis of tympanosclerosis. Exp Ther Med 2021;21:6. [PMID: 33235615 DOI: 10.3892/etm.2020.9438] [Reference Citation Analysis]
105 Talib WH, Mahmod AI, Kamal A, Rashid HM, Alashqar AMD, Khater S, Jamal D, Waly M. Ketogenic Diet in Cancer Prevention and Therapy: Molecular Targets and Therapeutic Opportunities. Curr Issues Mol Biol 2021;43:558-89. [PMID: 34287243 DOI: 10.3390/cimb43020042] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
106 Lv C, Ding W, Wang Y, Zhao Z, Li J, Chen Y, Lv J. A PEG-based method for the isolation of urinary exosomes and its application in renal fibrosis diagnostics using cargo miR-29c and miR-21 analysis. Int Urol Nephrol 2018;50:973-82. [DOI: 10.1007/s11255-017-1779-4] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
107 Mohamed HE, Asker ME, Keshawy MM, Hasan RA, Mahmoud YK. Inhibition of tumor necrosis factor-α enhanced the antifibrotic effect of empagliflozin in an animal model with renal insulin resistance. Mol Cell Biochem 2020;466:45-54. [PMID: 31933108 DOI: 10.1007/s11010-020-03686-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
108 Ichii O, Ohta H, Horino T, Nakamura T, Hosotani M, Mizoguchi T, Morishita K, Nakamura K, Sasaki N, Takiguchi M, Sato R, Oyamada K, Elewa YHA, Kon Y. Urinary Exosome-Derived microRNAs Reflecting the Changes in Renal Function in Cats. Front Vet Sci 2018;5:289. [PMID: 30525049 DOI: 10.3389/fvets.2018.00289] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
109 Rogler G, Hausmann M. Factors Promoting Development of Fibrosis in Crohn's Disease. Front Med (Lausanne) 2017;4:96. [PMID: 28736729 DOI: 10.3389/fmed.2017.00096] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
110 Melnik BC, John SM, Carrera-Bastos P, Schmitz G. MicroRNA-21-Enriched Exosomes as Epigenetic Regulators in Melanomagenesis and Melanoma Progression: The Impact of Western Lifestyle Factors. Cancers (Basel) 2020;12:E2111. [PMID: 32751207 DOI: 10.3390/cancers12082111] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
111 Aghaei Zarch SM, Dehghan Tezerjani M, Talebi M, Vahidi Mehrjardi MY. Molecular biomarkers in diabetes mellitus (DM). Med J Islam Repub Iran 2020;34:28. [PMID: 32617267 DOI: 10.34171/mjiri.34.28] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
112 Pereira RO, Correia LA, Farah D, Komoni G, Farah V, Fiorino P. Wistar rat as an animal model to study high-fat induced kidney damage: a systematic review. Arch Physiol Biochem 2021;:1-10. [PMID: 34915796 DOI: 10.1080/13813455.2021.2017462] [Reference Citation Analysis]
113 Pavkovic M, Pantano L, Gerlach CV, Brutus S, Boswell SA, Everley RA, Shah JV, Sui SH, Vaidya VS. Multi omics analysis of fibrotic kidneys in two mouse models. Sci Data 2019;6:92. [PMID: 31201317 DOI: 10.1038/s41597-019-0095-5] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
114 Sun L, Xu T, Chen Y, Qu W, Sun D, Song X, Yuan Q, Yao L. Pioglitazone attenuates kidney fibrosis via miR-21-5p modulation. Life Sciences 2019;232:116609. [DOI: 10.1016/j.lfs.2019.116609] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
115 He G, Ding J, Zhang Y, Cai M, Yang J, Cho WC, Zheng Y. microRNA-21: a key modulator in oncogenic viral infections. RNA Biol 2021;18:809-17. [PMID: 33499700 DOI: 10.1080/15476286.2021.1880756] [Reference Citation Analysis]
116 Lai CY, Yeh KY, Lin CY, Hsieh YW, Lai HH, Chen JR, Hsu CC, Her GM. MicroRNA-21 Plays Multiple Oncometabolic Roles in the Process of NAFLD-Related Hepatocellular Carcinoma via PI3K/AKT, TGF-β, and STAT3 Signaling. Cancers (Basel) 2021;13:940. [PMID: 33668153 DOI: 10.3390/cancers13050940] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
117 Zhang XT, Wang G, Ye LF, Pu Y, Li RT, Liang J, Wang L, Lee KKH, Yang X. Baicalin reversal of DNA hypermethylation-associated Klotho suppression ameliorates renal injury in type 1 diabetic mouse model. Cell Cycle 2020;19:3329-47. [PMID: 33190590 DOI: 10.1080/15384101.2020.1843815] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
118 Liu B, Tan P. PPAR γ/TLR4/TGF-β1 axis mediates the protection effect of erythropoietin on cyclosporin A-induced chronic nephropathy in rat. Ren Fail 2020;42:216-24. [PMID: 32090669 DOI: 10.1080/0886022X.2020.1729188] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
119 Wang Z, Zhou H, Cheng F, Zhang Z, Long S. MiR-21 regulates epithelial–mesenchymal transition in intestinal fibrosis of Crohn's disease by targeting PTEN/mTOR. Digestive and Liver Disease 2022. [DOI: 10.1016/j.dld.2022.04.007] [Reference Citation Analysis]
120 Zhang Y, Zuo X. miR-25-3p protects renal tubular epithelial cells from apoptosis induced by renal IRI by targeting DKK3. Open Life Sci 2021;16:1393-404. [PMID: 35174294 DOI: 10.1515/biol-2021-0127] [Reference Citation Analysis]
121 Franco-Acevedo A, Melo Z, Echavarria R. Diagnostic, Prognostic, and Therapeutic Value of Non-Coding RNA Expression Profiles in Renal Transplantation. Diagnostics (Basel) 2020;10:E60. [PMID: 31978997 DOI: 10.3390/diagnostics10020060] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
122 Liu Z, Liang X, Li X, Liu X, Zhu M, Gu Y, Zhou P. MiRNA-21 functions in ionizing radiation-induced epithelium-to-mesenchymal transition (EMT) by downregulating PTEN. Toxicol Res (Camb) 2019;8:328-40. [PMID: 31160967 DOI: 10.1039/c9tx00019d] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
123 Li Z, Shi L, Li Q, Zhao J, Lu W, Wang J. The Expression and Bioinformatics Analysis of Circular RNAs in Endometritis Mouse Uterus Tissues. Molecules 2022;27:3682. [PMID: 35744807 DOI: 10.3390/molecules27123682] [Reference Citation Analysis]
124 Chavda V, Chaurasia B, Deora H, Umana GE. Chronic Kidney disease and stroke: A Bi-directional risk cascade and therapeutic update. Brain Disorders 2021;3:100017. [DOI: 10.1016/j.dscb.2021.100017] [Reference Citation Analysis]
125 Manzano-Moreno FJ, Costela-Ruiz VJ, Melguizo-Rodríguez L, Illescas-Montes R, García-Martínez O, Ruiz C, Ramos-Torrecillas J. Inhibition of VEGF gene expression in osteoblast cells by different NSAIDs. Arch Oral Biol 2018;92:75-8. [PMID: 29763781 DOI: 10.1016/j.archoralbio.2018.05.006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
126 Bian Y, Yang L, Zhang B, Li W, Wang S, Jiang S, Chen X, Li W, Zeng L. LincRNA Cox-2 Regulates Lipopolysaccharide-Induced Inflammatory Response of Human Peritoneal Mesothelial Cells via Modulating miR-21/NF-κB Axis. Mediators Inflamm 2019;2019:8626703. [PMID: 31885500 DOI: 10.1155/2019/8626703] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
127 Wang X, Gao Y, Tian N, Zou D, Shi Y, Zhang N. Astragaloside IV improves renal function and fibrosis via inhibition of miR-21-induced podocyte dedifferentiation and mesangial cell activation in diabetic mice. Drug Des Devel Ther 2018;12:2431-42. [PMID: 30122901 DOI: 10.2147/DDDT.S170840] [Cited by in Crossref: 20] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
128 Zhu Y, Yu C, Zhuang S. Protein arginine methyltransferase 1 mediates renal fibroblast activation and fibrogenesis through activation of Smad3 signaling. Am J Physiol Renal Physiol 2020;318:F375-87. [PMID: 31813251 DOI: 10.1152/ajprenal.00487.2019] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
129 Lee J, Lee Y, Kim KH, Kim DK, Joo KW, Shin SJ, Kim YS, Yang SH. Chemokine (C-C Motif) Ligand 8 and Tubulo-Interstitial Injury in Chronic Kidney Disease. Cells 2022;11:658. [PMID: 35203308 DOI: 10.3390/cells11040658] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
130 Solé C, Moliné T, Vidal M, Ordi-Ros J, Cortés-Hernández J. An Exosomal Urinary miRNA Signature for Early Diagnosis of Renal Fibrosis in Lupus Nephritis. Cells 2019;8:E773. [PMID: 31349698 DOI: 10.3390/cells8080773] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 11.7] [Reference Citation Analysis]
131 Wang J, Xiang H, Lu Y, Wu T, Ji G. New progress in drugs treatment of diabetic kidney disease. Biomed Pharmacother 2021;141:111918. [PMID: 34328095 DOI: 10.1016/j.biopha.2021.111918] [Reference Citation Analysis]
132 Zong J, Zhang H, Li FF, Liang K, Liu JL, Xu LH, Qian WH. NLRP1 promotes TGF-β1-induced myofibroblast differentiation in neonatal rat cardiac fibroblasts. J Mol Histol 2018;49:509-18. [PMID: 30120609 DOI: 10.1007/s10735-018-9789-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
133 Rusanova I, Fernández-Martínez J, Fernández-Ortiz M, Aranda-Martínez P, Escames G, García-García FJ, Mañas L, Acuña-Castroviejo D. Involvement of plasma miRNAs, muscle miRNAs and mitochondrial miRNAs in the pathophysiology of frailty. Exp Gerontol 2019;124:110637. [PMID: 31199979 DOI: 10.1016/j.exger.2019.110637] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
134 Ren L, Li F, Di Z, Xiong Y, Zhang S, Ma Q, Bian X, Lang Z, Ye Q, Wang Y. Estradiol Ameliorates Acute Kidney Ischemia-Reperfusion Injury by Inhibiting the TGF-βRI-SMAD Pathway. Front Immunol 2022;13:822604. [PMID: 35281024 DOI: 10.3389/fimmu.2022.822604] [Reference Citation Analysis]
135 Zhao Z, Hao J, Li X, Chen Y, Qi X. MiR-21-5p regulates mycobacterial survival and inflammatory responses by targeting Bcl-2 and TLR4 in Mycobacterium tuberculosis-infected macrophages. FEBS Lett 2019;593:1326-35. [PMID: 31090056 DOI: 10.1002/1873-3468.13438] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
136 Jiménez-Alesanco A, Marcuello M, Pastor-Jiménez M, López-Puerto L, Bonjoch L, Gironella M, Carrascal M, Abian J, de-Madaria E, Closa D. Acute pancreatitis promotes the generation of two different exosome populations. Sci Rep 2019;9:19887. [PMID: 31882721 DOI: 10.1038/s41598-019-56220-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
137 Gao F, Liu P, Narayanan J, Yang M, Fish BL, Liu Y, Liang M, Jacobs ER, Medhora M. Changes in miRNA in the lung and whole blood after whole thorax irradiation in rats. Sci Rep 2017;7:44132. [PMID: 28303893 DOI: 10.1038/srep44132] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
138 Yang M, Chen G, Zhang X, Guo Y, Yu Y, Tian L, Chang S, Chen ZK. Inhibition of class I HDACs attenuates renal interstitial fibrosis in a murine model. Pharmacol Res 2019;142:192-204. [PMID: 30807866 DOI: 10.1016/j.phrs.2019.02.011] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
139 Zhou XL, Xu H, Liu ZB, Wu QC, Zhu RR, Liu JC. miR-21 promotes cardiac fibroblast-to-myofibroblast transformation and myocardial fibrosis by targeting Jagged1. J Cell Mol Med 2018. [PMID: 29808534 DOI: 10.1111/jcmm.13654] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 8.3] [Reference Citation Analysis]
140 Khaleel EF. l-Thyroxine induces left ventricular remodeling and fibrosis in rats by upregulating miR-21 in a reactive oxygen-dependent mechanism: a protective role of N-acetylcysteine. Drug Chem Toxicol 2021;:1-11. [PMID: 34641738 DOI: 10.1080/01480545.2021.1986251] [Reference Citation Analysis]
141 Donderski R, Szczepanek J, Naruszewicz N, Naruszewicz R, Tretyn A, Skoczylas-Makowska N, Tyloch J, Odrowąż-Sypniewska G, Manitius J. Analysis of profibrogenic microRNAs (miRNAs) expression in urine and serum of chronic kidney disease (CKD) stage 1-4 patients and their relationship with proteinuria and kidney function. Int Urol Nephrol 2021. [PMID: 34312814 DOI: 10.1007/s11255-021-02928-1] [Reference Citation Analysis]
142 Yu L, Bian X, Zhang C, Wu Z, Huang N, Yang J, Jin W, Feng Z, Li D, Huo X, Wu T, Jiang Z, Liu X, Sun D, Mladenka P. Ginkgolic acid improves bleomycin-induced pulmonary fibrosis by inhibiting SMAD4 SUMOylation. Oxidative Medicine and Cellular Longevity 2022;2022:1-18. [DOI: 10.1155/2022/8002566] [Reference Citation Analysis]
143 Frossi B, Mion F, Sibilano R, Danelli L, Pucillo CEM. Is it time for a new classification of mast cells? What do we know about mast cell heterogeneity? Immunol Rev 2018;282:35-46. [PMID: 29431204 DOI: 10.1111/imr.12636] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 13.0] [Reference Citation Analysis]
144 Yao J, Wu X. Upregulation Of miR-149-3p Suppresses Spinal Chordoma Malignancy By Targeting Smad3. Onco Targets Ther 2019;12:9987-97. [PMID: 31819495 DOI: 10.2147/OTT.S222380] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
145 Ma Z, Wei Q, Zhang M, Chen JK, Dong Z. Dicer deficiency in proximal tubules exacerbates renal injury and tubulointerstitial fibrosis and upregulates Smad2/3. Am J Physiol Renal Physiol 2018;315:F1822-32. [PMID: 30280598 DOI: 10.1152/ajprenal.00402.2018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
146 Kataoka S, Norikura T, Sato S. Maternal green tea polyphenol intake during lactation attenuates kidney injury in high-fat-diet-fed male offspring programmed by maternal protein restriction in rats. The Journal of Nutritional Biochemistry 2018;56:99-108. [DOI: 10.1016/j.jnutbio.2018.01.012] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
147 Zhao J, Chan YC, He B, Duan TT, Yu ZL. A patent herbal drug Yi-Shen-Hua-Shi granule ameliorates C-BSA-induced chronic glomerulonephritis and inhabits TGFβ signaling in rats. J Ethnopharmacol 2019;236:258-62. [PMID: 30836175 DOI: 10.1016/j.jep.2019.02.044] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
148 Liu E, Lv L, Zhan Y, Ma Y, Feng J, He Y, Wen Y, Zhang Y, Pu Q, Ji F, Yang X, Wen JG. METTL3/N6-methyladenosine/ miR-21-5p promotes obstructive renal fibrosis by regulating inflammation through SPRY1/ERK/NF-κB pathway activation. J Cell Mol Med 2021;25:7660-74. [PMID: 34164910 DOI: 10.1111/jcmm.16603] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
149 Hu T, Chen F, Chen D, Liang H. DNMT3a negatively regulates PTEN to activate the PI3K/AKT pathway to aggravate renal fibrosis. Cell Signal 2022;:110352. [PMID: 35523401 DOI: 10.1016/j.cellsig.2022.110352] [Reference Citation Analysis]
150 Chen L, Yang T, Lu D, Zhao H, Feng Y, Chen H, Chen D, Vaziri ND, Zhao Y. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Biomedicine & Pharmacotherapy 2018;101:670-81. [DOI: 10.1016/j.biopha.2018.02.090] [Cited by in Crossref: 124] [Cited by in F6Publishing: 120] [Article Influence: 31.0] [Reference Citation Analysis]
151 Tu C, Wei L, Wang L, Tang Y. Eight Differential miRNAs in DN Identified by Microarray Analysis as Novel Biomarkers. Diabetes Metab Syndr Obes 2022;15:907-20. [PMID: 35359345 DOI: 10.2147/DMSO.S355783] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
152 Hu D, Zhang D, Liu B, Liu Y, Zhou Y, Yu Y, Shen L, Long C, Zhang D, Liu X, Lin T, He D, Xu T, Timashev P, Butnaru D, Zhang Y, Wei G. Human ucMSCs seeded in a decellularized kidney scaffold attenuate renal fibrosis by reducing epithelial–mesenchymal transition via the TGF-β/Smad signaling pathway. Pediatr Res 2020;88:192-201. [DOI: 10.1038/s41390-019-0736-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
153 Huang D, Chen Z, Wang J, Chen Y, Liu D, Lin K. MicroRNA-221 is a potential biomarker of myocardial hypertrophy and fibrosis in hypertrophic obstructive cardiomyopathy. Biosci Rep 2020;40:BSR20191234. [PMID: 31868204 DOI: 10.1042/BSR20191234] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
154 Hu HH, Chen DQ, Wang YN, Feng YL, Cao G, Vaziri ND, Zhao YY. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem Biol Interact 2018;292:76-83. [PMID: 30017632 DOI: 10.1016/j.cbi.2018.07.008] [Cited by in Crossref: 214] [Cited by in F6Publishing: 216] [Article Influence: 53.5] [Reference Citation Analysis]
155 Tan XY, Jing HY, Ma YR. Interleukin-33/ Suppression of Tumorigenicity 2 in Renal Fibrosis: Emerging Roles in Prognosis and Treatment. Front Physiol 2021;12:792897. [PMID: 35046838 DOI: 10.3389/fphys.2021.792897] [Reference Citation Analysis]
156 Shen H, He Q, Dong Y, Shao L, Liu Y, Gong J. Upregulation of miRNA-1228-3p alleviates TGF-β-induced fibrosis in renal tubular epithelial cells. Histol Histopathol 2020;35:1125-33. [PMID: 32720699 DOI: 10.14670/HH-18-242] [Reference Citation Analysis]
157 Liu JR, Cai GY, Ning YC, Wang JC, Lv Y, Guo YN, Fu B, Hong Q, Sun XF, Chen XM. Caloric restriction alleviates aging-related fibrosis of kidney through downregulation of miR-21 in extracellular vesicles. Aging (Albany NY) 2020;12:18052-72. [PMID: 32963130 DOI: 10.18632/aging.103591] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
158 Sheng W, Xu H, Zheng L, Zhuang Y, Jiao L, Zhou J, Zhuge D, Chi T, Zhao Y, Lan L. Intrarenal delivery of bFGF-loaded liposome under guiding of ultrasound-targeted microbubble destruction prevent diabetic nephropathy through inhibition of inflammation. Artificial Cells, Nanomedicine, and Biotechnology 2018;46:373-85. [DOI: 10.1080/21691401.2018.1457538] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
159 Tsai PJ, Chang ML, Hsin CM, Chuang CC, Chuang LT, Wu WH. Antilipotoxicity Activity of Osmanthus fragrans and Chrysanthemum morifolium Flower Extracts in Hepatocytes and Renal Glomerular Mesangial Cells. Mediators Inflamm 2017;2017:4856095. [PMID: 29358848 DOI: 10.1155/2017/4856095] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.6] [Reference Citation Analysis]
160 Clark SD, Song W, Cianciolo R, Lees G, Nabity M, Liu S. Abnormal Expression of miR-21 in Kidney Tissue of Dogs With X-Linked Hereditary Nephropathy: A Canine Model of Chronic Kidney Disease. Vet Pathol 2019;56:93-105. [DOI: 10.1177/0300985818806050] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
161 Guo X, Li Y, Wang W, Wang L, Hu S, Xiao X, Hu C, Dai Y, Zhang Y, Li Z, Li J, Ma X, Zeng J. The construction of preclinical evidence for the treatment of liver fibrosis with quercetin: A systematic review and meta-analysis. Phytother Res 2022. [PMID: 35918855 DOI: 10.1002/ptr.7569] [Reference Citation Analysis]
162 Szóstek-Mioduchowska AZ, Baclawska A, Rebordão MR, Ferreira-Dias G, Skarzynski DJ. Prostaglandins effect on matrix metallopeptidases and collagen in mare endometrial fibroblasts. Theriogenology 2020;153:74-84. [PMID: 32442743 DOI: 10.1016/j.theriogenology.2020.04.040] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
163 Du K, Wu W, Feng X, Ke J, Xie H, Chen Y. Puerarin Attenuates Complete Freund's Adjuvant-Induced Trigeminal Neuralgia and Inflammation in a Mouse Model via Sirt1-Mediated TGF-β1/Smad3 Inhibition. J Pain Res 2021;14:2469-79. [PMID: 34421312 DOI: 10.2147/JPR.S323588] [Reference Citation Analysis]