BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kufareva I, Gustavsson M, Zheng Y, Stephens BS, Handel TM. What Do Structures Tell Us About Chemokine Receptor Function and Antagonism? Annu Rev Biophys 2017;46:175-98. [PMID: 28532213 DOI: 10.1146/annurev-biophys-051013-022942] [Cited by in Crossref: 57] [Cited by in F6Publishing: 59] [Article Influence: 11.4] [Reference Citation Analysis]
Number Citing Articles
1 Stewart V, Ronald PC. Sulfotyrosine residues: interaction specificity determinants for extracellular protein-protein interactions. Journal of Biological Chemistry 2022. [DOI: 10.1016/j.jbc.2022.102232] [Reference Citation Analysis]
2 Singh I, Seth A, Billesbølle CB, Braz J, Rodriguiz RM, Roy K, Bekele B, Craik V, Huang X, Boytsov D, Lak P, O’donnell H, Sandtner W, Roth BL, Basbaum AI, Wetsel WC, Manglik A, Shoichet BK, Rudnick G. Structure-based Discovery of Conformationally Selective Inhibitors of the Serotonin Transporter.. [DOI: 10.1101/2022.06.13.495991] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Chen K, Gao H, Yao Y. Prospects of cell chemotactic factors in bone and cartilage tissue engineering. Expert Opinion on Biological Therapy. [DOI: 10.1080/14712598.2022.2087471] [Reference Citation Analysis]
4 Shao Z, Tan Y, Shen Q, Hou L, Yao B, Qin J, Xu P, Mao C, Chen L, Zhang H, Shen D, Zhang C, Li W, Du X, Li F, Chen Z, Jiang Y, Xu HE, Ying S, Ma H, Zhang Y, Shen H. Molecular insights into ligand recognition and activation of chemokine receptors CCR2 and CCR3. Cell Discov 2022;8. [DOI: 10.1038/s41421-022-00403-4] [Reference Citation Analysis]
5 Gerken OJ, Artinger M, Legler DF. Shifting CCR7 towards Its Monomeric Form Augments CCL19 Binding and Uptake. Cells 2022;11:1444. [PMID: 35563750 DOI: 10.3390/cells11091444] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Eberle SA, Gustavsson M. A Scintillation Proximity Assay for Real-Time Kinetic Analysis of Chemokine–Chemokine Receptor Interactions. Cells 2022;11:1317. [DOI: 10.3390/cells11081317] [Reference Citation Analysis]
7 Sonawani A, Kharche S, Dasgupta D, Sengupta D. Allosteric modulation of the chemokine receptor-chemokine CXCR4-CXCL12 complex by tyrosine sulfation. Int J Biol Macromol 2022;206:812-22. [PMID: 35306016 DOI: 10.1016/j.ijbiomac.2022.03.078] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Larsen O, van der Velden WJC, Mavri M, Schuermans S, Rummel PC, Karlshøj S, Gustavsson M, Proost P, Våbenø J, Rosenkilde MM. Identification of a conserved chemokine receptor motif that enables ligand discrimination. Sci Signal 2022;15:eabg7042. [PMID: 35258997 DOI: 10.1126/scisignal.abg7042] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Karl K, Light TP, Hristova K. Receptor Tyrosine Kinases. Comprehensive Pharmacology 2022. [DOI: 10.1016/b978-0-12-820472-6.00135-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Shao Z, Shen Q, Yao B, Mao C, Chen LN, Zhang H, Shen DD, Zhang C, Li W, Du X, Li F, Ma H, Chen ZH, Xu HE, Ying S, Zhang Y, Shen H. Identification and mechanism of G protein-biased ligands for chemokine receptor CCR1. Nat Chem Biol 2021. [PMID: 34949837 DOI: 10.1038/s41589-021-00918-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
11 Stewart V, Ronald PC. Sulfotyrosine, an interaction specificity determinant for extracellular protein-protein interactions.. [DOI: 10.1101/2021.10.29.466493] [Reference Citation Analysis]
12 Grison CM, Lambey P, Jeannot S, Del Nero E, Fontanel S, Peysson F, Heuninck J, Sounier R, Durroux T, Leyrat C, Granier S, Bechara C. Molecular insights into mechanisms of GPCR hijacking by Staphylococcus aureus. Proc Natl Acad Sci U S A 2021;118:e2108856118. [PMID: 34663701 DOI: 10.1073/pnas.2108856118] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
13 Ortiz Zacarías NV, Bemelmans MP, Handel TM, de Visser KE, Heitman LH. Anticancer opportunities at every stage of chemokine function. Trends Pharmacol Sci 2021;42:912-28. [PMID: 34521537 DOI: 10.1016/j.tips.2021.08.001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 12.0] [Reference Citation Analysis]
14 Kharche S, Joshi M, Chattopadhyay A, Sengupta D. Conformational plasticity and dynamic interactions of the N-terminal domain of the chemokine receptor CXCR1. PLoS Comput Biol 2021;17:e1008593. [PMID: 34014914 DOI: 10.1371/journal.pcbi.1008593] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
15 Jørgensen AS, Daugvilaite V, De Filippo K, Berg C, Mavri M, Benned-Jensen T, Juzenaite G, Hjortø G, Rankin S, Våbenø J, Rosenkilde MM. Biased action of the CXCR4-targeting drug plerixafor is essential for its superior hematopoietic stem cell mobilization. Commun Biol 2021;4:569. [PMID: 33980979 DOI: 10.1038/s42003-021-02070-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
16 Berg C, Rosenkilde MM, Benfield T, Nielsen L, Sundelin T, Lüttichau HR. The frequency of cytomegalovirus non-ELR UL146 genotypes in neonates with congenital CMV disease is comparable to strains in the background population. BMC Infect Dis 2021;21:386. [PMID: 33902487 DOI: 10.1186/s12879-021-06076-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Madhurima K, Nandi B, Sekhar A. Metamorphic proteins: the Janus proteins of structural biology. Open Biol 2021;11:210012. [PMID: 33878950 DOI: 10.1098/rsob.210012] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
18 Rodríguez‐fernández JL, Criado‐garcía O. Chemoattraction: Basic Concepts and Role in the Immune Response. eLS 2021. [DOI: 10.1002/9780470015902.a0029241] [Reference Citation Analysis]
19 Wu X, Zhang H, Sui Z, Wang Y, Yu Z. The biological role of the CXCL12/CXCR4 axis in esophageal squamous cell carcinoma. Cancer Biol Med 2021:j. [PMID: 33710803 DOI: 10.20892/j.issn.2095-3941.2020.0140] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
20 Grison CM, Leyrat C, Lambey P, Jeannot S, Del Nero E, Fontanel S, Peysson F, Heuninck J, Sounier R, Durroux T, Granier S, Bechara C. Mechanisms of GPCR hijacking byStaphylococcus aureus.. [DOI: 10.1101/2021.02.08.430206] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Light TP, King C, Hristova K. Methods | Ligand Binding to Receptor Tyrosine Kinases: Thermodynamic Cycles and Experimental Approaches. Encyclopedia of Biological Chemistry III 2021. [DOI: 10.1016/b978-0-12-819460-7.00078-5] [Reference Citation Analysis]
22 Mikolajczyk TP, Szczepaniak P, Vidler F, Maffia P, Graham GJ, Guzik TJ. Role of inflammatory chemokines in hypertension. Pharmacol Ther 2021;223:107799. [PMID: 33359600 DOI: 10.1016/j.pharmthera.2020.107799] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 8.5] [Reference Citation Analysis]
23 Kharche S, Joshi M, Chattopadhyay A, Sengupta D. Conformational plasticity and dynamic interactions of the N-terminal domain of the chemokine receptor CXCR1.. [DOI: 10.1101/2020.12.17.423199] [Reference Citation Analysis]
24 Eiger DS, Boldizsar N, Honeycutt CC, Gardner J, Rajagopal S. Biased agonism at chemokine receptors. Cell Signal 2021;78:109862. [PMID: 33249087 DOI: 10.1016/j.cellsig.2020.109862] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
25 Shang X, Wang L, Liu Y, Liu X, Lv J, Zhou X, Wang H, Nazierhan S, Wang J, Ma X. Diagnostic value of CXCR3 and its ligands in spinal tuberculosis. Exp Ther Med 2021;21:73. [PMID: 33365073 DOI: 10.3892/etm.2020.9505] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
26 Karl K, Paul MD, Pasquale EB, Hristova K. Ligand bias in receptor tyrosine kinase signaling. J Biol Chem 2020;295:18494-507. [PMID: 33122191 DOI: 10.1074/jbc.REV120.015190] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
27 Haider S, Barakat A, Ul-Haq Z. Discovery of Potential Chemical Probe as Inhibitors of CXCL12 Using Ligand-Based Virtual Screening and Molecular Dynamic Simulation. Molecules 2020;25:E4829. [PMID: 33092204 DOI: 10.3390/molecules25204829] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Wedemeyer MJ, Mahn SA, Getschman AE, Crawford KS, Peterson FC, Marchese A, McCorvy JD, Volkman BF. The chemokine X-factor: Structure-function analysis of the CXC motif at CXCR4 and ACKR3. J Biol Chem 2020;295:13927-39. [PMID: 32788219 DOI: 10.1074/jbc.RA120.014244] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
29 Erdinest N, London N, Solomon A. Chemokines in allergic conjunctivitis. Curr Opin Allergy Clin Immunol 2020;20:516-27. [PMID: 32739979 DOI: 10.1097/ACI.0000000000000676] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
30 Stephens BS, Ngo T, Kufareva I, Handel TM. Functional anatomy of the full-length CXCR4-CXCL12 complex systematically dissected by quantitative model-guided mutagenesis. Sci Signal 2020;13:eaay5024. [PMID: 32665413 DOI: 10.1126/scisignal.aay5024] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
31 Samson GPB, Legler DF. Membrane Compartmentalization and Scaffold Proteins in Leukocyte Migration. Front Cell Dev Biol 2020;8:285. [PMID: 32411706 DOI: 10.3389/fcell.2020.00285] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
32 Jaracz-Ros A, Bernadat G, Cutolo P, Gallego C, Gustavsson M, Cecon E, Baleux F, Kufareva I, Handel TM, Bachelerie F, Levoye A. Differential activity and selectivity of N-terminal modified CXCL12 chemokines at the CXCR4 and ACKR3 receptors. J Leukoc Biol 2020;107:1123-35. [PMID: 32374043 DOI: 10.1002/JLB.2MA0320-383RR] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
33 Ngo T, Stephens BS, Gustavsson M, Holden LG, Abagyan R, Handel TM, Kufareva I. Crosslinking-guided geometry of a complete CXC receptor-chemokine complex and the basis of chemokine subfamily selectivity. PLoS Biol 2020;18:e3000656. [PMID: 32271748 DOI: 10.1371/journal.pbio.3000656] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
34 Liu Y, Feng Q, Miao J, Wu Q, Zhou S, Shen W, Feng Y, Hou FF, Liu Y, Zhou L. C-X-C motif chemokine receptor 4 aggravates renal fibrosis through activating JAK/STAT/GSK3β/β-catenin pathway. J Cell Mol Med 2020;24:3837-55. [PMID: 32119183 DOI: 10.1111/jcmm.14973] [Cited by in Crossref: 13] [Cited by in F6Publishing: 18] [Article Influence: 6.5] [Reference Citation Analysis]
35 Stein RM, Kang HJ, McCorvy JD, Glatfelter GC, Jones AJ, Che T, Slocum S, Huang XP, Savych O, Moroz YS, Stauch B, Johansson LC, Cherezov V, Kenakin T, Irwin JJ, Shoichet BK, Roth BL, Dubocovich ML. Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature 2020;579:609-14. [PMID: 32040955 DOI: 10.1038/s41586-020-2027-0] [Cited by in Crossref: 101] [Cited by in F6Publishing: 108] [Article Influence: 50.5] [Reference Citation Analysis]
36 Gustavsson M. New insights into the structure and function of chemokine receptor:chemokine complexes from an experimental perspective. J Leukoc Biol 2020;107:1115-22. [DOI: 10.1002/jlb.2mr1219-288r] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
37 Stephens BS, Ngo T, Kufareva I, Handel TM. Functional anatomy of the full length CXCR4-CXCL12 complex systematically dissected by quantitative model-guided mutagenesis.. [DOI: 10.1101/2020.01.21.913772] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Ngo T, Stephens BS, Gustavsson M, Holden LG, Abagyan R, Handel TM, Kufareva I. Crosslinking-guided geometry of a complete CXC receptor-chemokine complex and the basis of chemokine subfamily selectivity.. [DOI: 10.1101/2020.01.10.900951] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
39 Bhattacharya S, Kawamura A. Using evasins to target the chemokine network in inflammation. Adv Protein Chem Struct Biol 2020;119:1-38. [PMID: 31997766 DOI: 10.1016/bs.apcsb.2019.09.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
40 Bhusal RP, Eaton JRO, Chowdhury ST, Power CA, Proudfoot AEI, Stone MJ, Bhattacharya S. Evasins: Tick Salivary Proteins that Inhibit Mammalian Chemokines. Trends Biochem Sci 2020;45:108-22. [PMID: 31679840 DOI: 10.1016/j.tibs.2019.10.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
41 Jørgensen AS, Larsen O, Uetz-von Allmen E, Lückmann M, Legler DF, Frimurer TM, Veldkamp CT, Hjortø GM, Rosenkilde MM. Biased Signaling of CCL21 and CCL19 Does Not Rely on N-Terminal Differences, but Markedly on the Chemokine Core Domains and Extracellular Loop 2 of CCR7. Front Immunol 2019;10:2156. [PMID: 31572374 DOI: 10.3389/fimmu.2019.02156] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
42 Gustavsson M, Dyer DP, Zhao C, Handel TM. Kinetics of CXCL12 binding to atypical chemokine receptor 3 reveal a role for the receptor N terminus in chemokine binding. Sci Signal 2019;12:eaaw3657. [PMID: 31506383 DOI: 10.1126/scisignal.aaw3657] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
43 Bobkov V, Arimont M, Zarca A, De Groof TWM, van der Woning B, de Haard H, Smit MJ. Antibodies Targeting Chemokine Receptors CXCR4 and ACKR3. Mol Pharmacol 2019;96:753-64. [PMID: 31481460 DOI: 10.1124/mol.119.116954] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
44 Arimont M, Hoffmann C, de Graaf C, Leurs R. Chemokine Receptor Crystal Structures: What Can Be Learned from Them? Mol Pharmacol 2019;96:765-77. [PMID: 31266800 DOI: 10.1124/mol.119.117168] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
45 Henrot P, Prevel R, Berger P, Dupin I. Chemokines in COPD: From Implication to Therapeutic Use. Int J Mol Sci 2019;20:E2785. [PMID: 31174392 DOI: 10.3390/ijms20112785] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 15.0] [Reference Citation Analysis]
46 Lee AW, Deruaz M, Lynch C, Davies G, Singh K, Alenazi Y, Eaton JRO, Kawamura A, Shaw J, Proudfoot AEI, Dias JM, Bhattacharya S. A knottin scaffold directs the CXC-chemokine-binding specificity of tick evasins. J Biol Chem 2019;294:11199-212. [PMID: 31167786 DOI: 10.1074/jbc.RA119.008817] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
47 Perera SMDC, Chawla U, Shrestha UR, Bhowmik D, Struts AV, Qian S, Chu XQ, Brown MF. Small-Angle Neutron Scattering Reveals Energy Landscape for Rhodopsin Photoactivation. J Phys Chem Lett 2018;9:7064-71. [PMID: 30489081 DOI: 10.1021/acs.jpclett.8b03048] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
48 Ghosh S, Bierig T, Lee S, Jana S, Löhle A, Schnapp G, Tautermann CS, Vaidehi N. Engineering Salt Bridge Networks between Transmembrane Helices Confers Thermostability in G-Protein-Coupled Receptors. J Chem Theory Comput 2018;14:6574-85. [PMID: 30359017 DOI: 10.1021/acs.jctc.8b00602] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
49 Wedemeyer MJ, Mueller BK, Bender BJ, Meiler J, Volkman BF. Modeling the complete chemokine-receptor interaction. Methods Cell Biol 2019;149:289-314. [PMID: 30616825 DOI: 10.1016/bs.mcb.2018.09.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
50 Joseph PRB, Spyracopoulos L, Rajarathnam K. Dynamics-Derived Insights into Complex Formation between the CXCL8 Monomer and CXCR1 N-Terminal Domain: An NMR Study. Molecules 2018;23:E2825. [PMID: 30384436 DOI: 10.3390/molecules23112825] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
51 Thelen M, Legler DF. Membrane lipid environment: Potential modulation of chemokine receptor function. Cytokine 2018;109:72-5. [DOI: 10.1016/j.cyto.2018.02.011] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
52 Miles TF, Spiess K, Jude KM, Tsutsumi N, Burg JS, Ingram JR, Waghray D, Hjorto GM, Larsen O, Ploegh HL, Rosenkilde MM, Garcia KC. Viral GPCR US28 can signal in response to chemokine agonists of nearly unlimited structural degeneracy. Elife 2018;7:e35850. [PMID: 29882741 DOI: 10.7554/eLife.35850] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 7.8] [Reference Citation Analysis]
53 Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. FEBS J 2018;285:2944-71. [PMID: 29637711 DOI: 10.1111/febs.14466] [Cited by in Crossref: 413] [Cited by in F6Publishing: 440] [Article Influence: 103.3] [Reference Citation Analysis]
54 Uetz-von Allmen E, Rippl AV, Farhan H, Legler DF. A unique signal sequence of the chemokine receptor CCR7 promotes package into COPII vesicles for efficient receptor trafficking. J Leukoc Biol 2018;104:375-89. [PMID: 29603364 DOI: 10.1002/JLB.2VMA1217-492R] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
55 Eaton JRO, Alenazi Y, Singh K, Davies G, Geis-Asteggiante L, Kessler B, Robinson CV, Kawamura A, Bhattacharya S. The N-terminal domain of a tick evasin is critical for chemokine binding and neutralization and confers specific binding activity to other evasins. J Biol Chem 2018;293:6134-46. [PMID: 29487134 DOI: 10.1074/jbc.RA117.000487] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
56 Berkamp S, Park SH, De Angelis AA, Marassi FM, Opella SJ. Structure of monomeric Interleukin-8 and its interactions with the N-terminal Binding Site-I of CXCR1 by solution NMR spectroscopy. J Biomol NMR 2017;69:111-21. [PMID: 29143165 DOI: 10.1007/s10858-017-0128-3] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 5.4] [Reference Citation Analysis]
57 Flanagan CA, Manilall A. Gonadotropin-Releasing Hormone (GnRH) Receptor Structure and GnRH Binding. Front Endocrinol (Lausanne) 2017;8:274. [PMID: 29123501 DOI: 10.3389/fendo.2017.00274] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 7.2] [Reference Citation Analysis]
58 Proudfoot AEI, Johnson Z, Bonvin P, Handel TM. Glycosaminoglycan Interactions with Chemokines Add Complexity to a Complex System. Pharmaceuticals (Basel) 2017;10:E70. [PMID: 28792472 DOI: 10.3390/ph10030070] [Cited by in Crossref: 70] [Cited by in F6Publishing: 77] [Article Influence: 14.0] [Reference Citation Analysis]