BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sun X, Wang H, Zhang Y, Chen K, Davis B, Feng H. Mouse relapse model of Clostridium difficile infection. Infect Immun 2011;79:2856-64. [PMID: 21576341 DOI: 10.1128/IAI.01336-10] [Cited by in Crossref: 66] [Cited by in F6Publishing: 50] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Howerton A, Seymour CO, Murugapiran SK, Liao Z, Phan JR, Estrada A, Wagner AJ, Mefferd CC, Hedlund BP, Abel-Santos E. Effect of the Synthetic Bile Salt Analog CamSA on the Hamster Model of Clostridium difficile Infection. Antimicrob Agents Chemother 2018;62:e02251-17. [PMID: 30012758 DOI: 10.1128/AAC.02251-17] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
2 Mooyottu S, Flock G, Upadhyay A, Upadhyaya I, Maas K, Venkitanarayanan K. Protective Effect of Carvacrol against Gut Dysbiosis and Clostridium difficile Associated Disease in a Mouse Model. Front Microbiol 2017;8:625. [PMID: 28484429 DOI: 10.3389/fmicb.2017.00625] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
3 Kim HB, Wang Y, Sun X. A Detrimental Role of Immunosuppressive Drug, Dexamethasone, During Clostridium difficile Infection in Association with a Gastrointestinal Microbial Shift. J Microbiol Biotechnol 2016;26:567-71. [PMID: 26809802 DOI: 10.4014/jmb.1512.12017] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
4 Li Y, Figler RA, Kolling G, Bracken TC, Rieger J, Stevenson RW, Linden J, Guerrant RL, Warren CA. Adenosine A2A receptor activation reduces recurrence and mortality from Clostridium difficile infection in mice following vancomycin treatment. BMC Infect Dis 2012;12:342. [PMID: 23217055 DOI: 10.1186/1471-2334-12-342] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]
5 Yang Z, Shi L, Yu H, Zhang Y, Chen K, Saint Fleur A, Bai G, Feng H. Intravenous adenovirus expressing a multi-specific, single-domain antibody neutralizing TcdA and TcdB protects mice from Clostridium difficile infection. Pathog Dis 2016;74:ftw078. [PMID: 27502696 DOI: 10.1093/femspd/ftw078] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
6 Pellissery AJ, Vinayamohan PG, Kuttappan DA, Mishra N, Fragomeni BO, Maas K, Mooyottu S, Venkitanarayanan K. Protective Effect of Baicalin against Clostridioides difficile Infection in Mice. Antibiotics (Basel) 2021;10:926. [PMID: 34438975 DOI: 10.3390/antibiotics10080926] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Brown AWW, Wilson RB. Clostridium difficile colitis and zoonotic origins-a narrative review. Gastroenterol Rep (Oxf) 2018;6:157-66. [PMID: 30151199 DOI: 10.1093/gastro/goy016] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
8 Collins J, Auchtung JM, Schaefer L, Eaton KA, Britton RA. Humanized microbiota mice as a model of recurrent Clostridium difficile disease. Microbiome 2015;3:35. [PMID: 26289776 DOI: 10.1186/s40168-015-0097-2] [Cited by in Crossref: 48] [Cited by in F6Publishing: 43] [Article Influence: 6.9] [Reference Citation Analysis]
9 McDermott AJ, Higdon KE, Muraglia R, Erb-Downward JR, Falkowski NR, McDonald RA, Young VB, Huffnagle GB. The role of Gr-1(+) cells and tumour necrosis factor-α signalling during Clostridium difficile colitis in mice. Immunology 2015;144:704-16. [PMID: 25399934 DOI: 10.1111/imm.12425] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
10 Warren CA, van Opstal EJ, Riggins MS, Li Y, Moore JH, Kolling GL, Guerrant RL, Hoffman PS. Vancomycin treatment's association with delayed intestinal tissue injury, clostridial overgrowth, and recurrence of Clostridium difficile infection in mice. Antimicrob Agents Chemother 2013;57:689-96. [PMID: 23147742 DOI: 10.1128/AAC.00877-12] [Cited by in Crossref: 39] [Cited by in F6Publishing: 29] [Article Influence: 3.9] [Reference Citation Analysis]
11 Lopez CA, Beavers WN, Weiss A, Knippel RJ, Zackular JP, Chazin W, Skaar EP. The Immune Protein Calprotectin Impacts Clostridioides difficile Metabolism through Zinc Limitation. mBio 2019;10:e02289-19. [PMID: 31744916 DOI: 10.1128/mBio.02289-19] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
12 Yang Z, Ramsey J, Hamza T, Zhang Y, Li S, Yfantis HG, Lee D, Hernandez LD, Seghezzi W, Furneisen JM, Davis NM, Therien AG, Feng H. Mechanisms of protection against Clostridium difficile infection by the monoclonal antitoxin antibodies actoxumab and bezlotoxumab. Infect Immun 2015;83:822-31. [PMID: 25486992 DOI: 10.1128/IAI.02897-14] [Cited by in Crossref: 63] [Cited by in F6Publishing: 33] [Article Influence: 7.9] [Reference Citation Analysis]
13 Howerton A, Patra M, Abel-Santos E. Fate of ingested Clostridium difficile spores in mice. PLoS One 2013;8:e72620. [PMID: 24023628 DOI: 10.1371/journal.pone.0072620] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
14 Humphreys DP, Wilcox MH. Antibodies for treatment of Clostridium difficile infection. Clin Vaccine Immunol 2014;21:913-23. [PMID: 24789799 DOI: 10.1128/CVI.00116-14] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
15 Curry S. Clostridium difficile. Clin Lab Med. 2010;30:329-342. [PMID: 20513554 DOI: 10.1016/j.cll.2010.04.001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
16 Mehta KK, Paskaleva EE, Wu X, Grover N, Mundra RV, Chen K, Zhang Y, Yang Z, Feng H, Dordick JS, Kane RS. Newly identified bacteriolytic enzymes that target a wide range of clinical isolates of Clostridium difficile. Biotechnol Bioeng 2016;113:2568-76. [PMID: 27260850 DOI: 10.1002/bit.26029] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
17 Ghose C, Eugenis I, Sun X, Edwards AN, McBride SM, Pride DT, Kelly CP, Ho DD. Immunogenicity and protective efficacy of recombinant Clostridium difficile flagellar protein FliC. Emerg Microbes Infect 2016;5:e8. [PMID: 26839147 DOI: 10.1038/emi.2016.8] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 4.2] [Reference Citation Analysis]
18 Wang S, Heuler J, Wickramage I, Sun X. Genomic and Phenotypic Characterization of the Nontoxigenic Clostridioides difficile Strain CCUG37785 and Demonstration of Its Therapeutic Potential for the Prevention of C. difficile Infection. Microbiol Spectr 2022;:e0178821. [PMID: 35315695 DOI: 10.1128/spectrum.01788-21] [Reference Citation Analysis]
19 Butler MM, Shinabarger DL, Citron DM, Kelly CP, Dvoskin S, Wright GE, Feng H, Tzipori S, Bowlin TL. MBX-500, a hybrid antibiotic with in vitro and in vivo efficacy against toxigenic Clostridium difficile. Antimicrob Agents Chemother 2012;56:4786-92. [PMID: 22733075 DOI: 10.1128/AAC.00508-12] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
20 De Wolfe TJ, Kates AE, Barko L, Darien BJ, Safdar N. Modified Mouse Model of Clostridioides difficile Infection as a Platform for Probiotic Efficacy Studies. Antimicrob Agents Chemother 2019;63:e00111-19. [PMID: 30988143 DOI: 10.1128/AAC.00111-19] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
21 Zhu D, Wang S, Sun X. FliW and CsrA Govern Flagellin (FliC) Synthesis and Play Pleiotropic Roles in Virulence and Physiology of Clostridioides difficile R20291. Front Microbiol 2021;12:735616. [PMID: 34675903 DOI: 10.3389/fmicb.2021.735616] [Reference Citation Analysis]
22 Yip C, Okada NC, Howerton A, Amei A, Abel-Santos E. Pharmacokinetics of CamSA, a potential prophylactic compound against Clostridioides difficile infections. Biochem Pharmacol 2021;183:114314. [PMID: 33152344 DOI: 10.1016/j.bcp.2020.114314] [Reference Citation Analysis]
23 Ghose C, Eugenis I, Edwards AN, Sun X, McBride SM, Ho DD. Immunogenicity and protective efficacy of Clostridium difficile spore proteins. Anaerobe 2016;37:85-95. [PMID: 26688279 DOI: 10.1016/j.anaerobe.2015.12.001] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
24 Jarrad AM, Karoli T, Blaskovich MA, Lyras D, Cooper MA. Clostridium difficile drug pipeline: challenges in discovery and development of new agents. J Med Chem. 2015;58:5164-5185. [PMID: 25760275 DOI: 10.1021/jm5016846] [Cited by in Crossref: 52] [Cited by in F6Publishing: 45] [Article Influence: 7.4] [Reference Citation Analysis]
25 Wang Y, Wang S, Kelly CP, Feng H, Greenberg A, Sun X. TPL2 Is a Key Regulator of Intestinal Inflammation in Clostridium difficile Infection. Infect Immun 2018;86:e00095-18. [PMID: 29844241 DOI: 10.1128/IAI.00095-18] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
26 Babakhani F, Bouillaut L, Gomez A, Sears P, Nguyen L, Sonenshein AL. Fidaxomicin inhibits spore production in Clostridium difficile. Clin Infect Dis. 2012;55 Suppl 2:S162-S169. [PMID: 22752866 DOI: 10.1093/cid/cis453] [Cited by in Crossref: 77] [Cited by in F6Publishing: 74] [Article Influence: 7.7] [Reference Citation Analysis]
27 Wang Q, Euler CW, Delaune A, Fischetti VA. Using a Novel Lysin To Help Control Clostridium difficile Infections. Antimicrob Agents Chemother. 2015;59:7447-7457. [PMID: 26392484 DOI: 10.1128/aac.01357-15] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 3.9] [Reference Citation Analysis]
28 Garneau JR, Valiquette L, Fortier LC. Prevention of Clostridium difficile spore formation by sub-inhibitory concentrations of tigecycline and piperacillin/tazobactam. BMC Infect Dis 2014;14:29. [PMID: 24422950 DOI: 10.1186/1471-2334-14-29] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 4.6] [Reference Citation Analysis]
29 Ternan NG, Jain S, Graham RL, McMullan G. Semiquantitative analysis of clinical heat stress in Clostridium difficile strain 630 using a GeLC/MS workflow with emPAI quantitation. PLoS One 2014;9:e88960. [PMID: 24586458 DOI: 10.1371/journal.pone.0088960] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
30 Erikstrup LT, Aarup M, Hagemann-Madsen R, Dagnaes-Hansen F, Kristensen B, Olsen KE, Fuursted K. Treatment of Clostridium difficile infection in mice with vancomycin alone is as effective as treatment with vancomycin and metronidazole in combination. BMJ Open Gastroenterol 2015;2:e000038. [PMID: 26568840 DOI: 10.1136/bmjgast-2015-000038] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
31 Zhang K, Zhao S, Wang Y, Zhu X, Shen H, Chen Y, Sun X. The non-toxigenic Clostridium difficile CD37 protects mice against infection with a BI/NAP1/027 type of C. difficile strain. Anaerobe 2015;36:49-52. [PMID: 26461425 DOI: 10.1016/j.anaerobe.2015.09.009] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
32 Zhou F, Hamza T, Fleur AS, Zhang Y, Yu H, Chen K, Heath JE, Chen Y, Huang H, Feng H. Mice with Inflammatory Bowel Disease are Susceptible to Clostridium difficile Infection With Severe Disease Outcomes. Inflamm Bowel Dis 2018;24:573-82. [PMID: 29462386 DOI: 10.1093/ibd/izx059] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
33 Chen K, Zhu Y, Zhang Y, Hamza T, Yu H, Saint Fleur A, Galen J, Yang Z, Feng H. A probiotic yeast-based immunotherapy against Clostridioides difficile infection. Sci Transl Med 2020;12:eaax4905. [PMID: 33115949 DOI: 10.1126/scitranslmed.aax4905] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
34 Blount KF, Megyola C, Plummer M, Osterman D, O'Connell T, Aristoff P, Quinn C, Chrusciel RA, Poel TJ, Schostarez HJ, Stewart CA, Walker DP, Wuts PG, Breaker RR. Novel riboswitch-binding flavin analog that protects mice against Clostridium difficile infection without inhibiting cecal flora. Antimicrob Agents Chemother 2015;59:5736-46. [PMID: 26169403 DOI: 10.1128/AAC.01282-15] [Cited by in Crossref: 49] [Cited by in F6Publishing: 31] [Article Influence: 7.0] [Reference Citation Analysis]
35 Davies NL, Compson JE, Mackenzie B, O’Dowd VL, Oxbrow AK, Heads JT, Turner A, Sarkar K, Dugdale SL, Jairaj M. A mixture of functionally oligoclonal humanized monoclonal antibodies that neutralize Clostridium difficile TcdA and TcdB with high levels of in vitro potency shows in vivo protection in a hamster infection model. Clin Vaccine Immunol. 2013;20:377-390. [PMID: 23324518 DOI: 10.1128/cvi.00625-12] [Cited by in Crossref: 33] [Cited by in F6Publishing: 24] [Article Influence: 3.7] [Reference Citation Analysis]
36 Aguirre AM, Yalcinkaya N, Wu Q, Swennes A, Tessier ME, Roberts P, Miyajima F, Savidge T, Sorg JA. Bile acid-independent protection against Clostridioides difficile infection. PLoS Pathog 2021;17:e1010015. [PMID: 34665847 DOI: 10.1371/journal.ppat.1010015] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Fitzpatrick LR, Small JS, Greene WH, Karpa KD, Farmer S, Keller D. Bacillus coagulans GBI-30, 6086 limits the recurrence of Clostridium difficile-Induced colitis following vancomycin withdrawal in mice. Gut Pathog. 2012;4:13. [PMID: 23088680 DOI: 10.1186/1757-4749-4-13] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 2.1] [Reference Citation Analysis]
38 Lv Z, Peng G, Liu W, Xu H, Su J. Berberine blocks the relapse of Clostridium difficile infection in C57BL/6 mice after standard vancomycin treatment. Antimicrob Agents Chemother 2015;59:3726-35. [PMID: 25824219 DOI: 10.1128/AAC.04794-14] [Cited by in Crossref: 24] [Cited by in F6Publishing: 10] [Article Influence: 3.4] [Reference Citation Analysis]
39 Papadimitriou K, Zoumpopoulou G, Foligné B, Alexandraki V, Kazou M, Pot B, Tsakalidou E. Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches. Front Microbiol 2015;6:58. [PMID: 25741323 DOI: 10.3389/fmicb.2015.00058] [Cited by in Crossref: 141] [Cited by in F6Publishing: 107] [Article Influence: 20.1] [Reference Citation Analysis]
40 Zhang Z, Chen X, Hernandez LD, Lipari P, Flattery A, Chen SC, Kramer S, Polishook JD, Racine F, Cape H, Kelly CP, Therien AG. Toxin-mediated paracellular transport of antitoxin antibodies facilitates protection against Clostridium difficile infection. Infect Immun 2015;83:405-16. [PMID: 25385797 DOI: 10.1128/IAI.02550-14] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 3.5] [Reference Citation Analysis]
41 Wang YK, Yan YX, Kim HB, Ju X, Zhao S, Zhang K, Tzipori S, Sun X. A chimeric protein comprising the glucosyltransferase and cysteine proteinase domains of toxin B and the receptor binding domain of toxin A induces protective immunity against Clostridium difficile infection in mice and hamsters. Hum Vaccin Immunother 2015;11:2215-22. [PMID: 26036797 DOI: 10.1080/21645515.2015.1052352] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
42 Maldarelli GA, Matz H, Gao S, Chen K, Hamza T, Yfantis HG, Feng H, Donnenberg MS. Pilin Vaccination Stimulates Weak Antibody Responses and Provides No Protection in a C57Bl/6 Murine Model of Acute Clostridium difficile Infection. J Vaccines Vaccin 2016;7:321. [PMID: 27375958 DOI: 10.4172/2157-7560.1000321] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
43 Wang H, Sun X, Zhang Y, Li S, Chen K, Shi L, Nie W, Kumar R, Tzipori S, Wang J. A chimeric toxin vaccine protects against primary and recurrent Clostridium difficile infection. Infect Immun. 2012;80:2678-2688. [PMID: 22615245 DOI: 10.1128/iai.00215-12] [Cited by in Crossref: 60] [Cited by in F6Publishing: 46] [Article Influence: 6.0] [Reference Citation Analysis]
44 Sun X, Hirota SA. The roles of host and pathogen factors and the innate immune response in the pathogenesis of Clostridium difficile infection. Mol Immunol. 2015;63:193-202. [PMID: 25242213 DOI: 10.1016/j.molimm.2014.09.005] [Cited by in Crossref: 50] [Cited by in F6Publishing: 41] [Article Influence: 6.3] [Reference Citation Analysis]
45 Zhu D, Bullock J, He Y, Sun X. Cwp22, a novel peptidoglycan cross-linking enzyme, plays pleiotropic roles in Clostridioides difficile. Environ Microbiol 2019;21:3076-90. [PMID: 31173438 DOI: 10.1111/1462-2920.14706] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
46 Vinithakumari AA, Padhi P, Hernandez B, Lin SJ, Dunkerson-Kurzhumov A, Showman L, Breitzman M, Stokes C, Sulaiman Y, Tangudu C, Kuttappan DA, Muyyarikkandy MS, Willette AA, Phillips GJ, Anantharam V, Perera A, Sponseller BA, Kanthasamy A, Mooyottu S. Clostridioides difficile Infection Dysregulates Brain Dopamine Metabolism. Microbiol Spectr 2022;:e0007322. [PMID: 35323033 DOI: 10.1128/spectrum.00073-22] [Reference Citation Analysis]
47 Johnston PF, Gerding DN, Knight KL. Protection from Clostridium difficile infection in CD4 T Cell- and polymeric immunoglobulin receptor-deficient mice. Infect Immun 2014;82:522-31. [PMID: 24478068 DOI: 10.1128/IAI.01273-13] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 2.8] [Reference Citation Analysis]
48 McDermott AJ, Frank CR, Falkowski NR, McDonald RA, Young VB, Huffnagle GB. Role of GM-CSF in the inflammatory cytokine network that regulates neutrophil influx into the colonic mucosa during Clostridium difficile infection in mice. Gut Microbes 2014;5:476-84. [PMID: 25045999 DOI: 10.4161/gmic.29964] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 2.4] [Reference Citation Analysis]
49 Ma KGL, Lertpiriyapong K, Piersigilli A, Dobtsis I, Wipf JRK, Littmann ER, Leiner I, Pamer EG, Ricart Arbona RJ, Lipman NS. Outbreaks of Typhlocolitis Caused by Hypervirulent Group ST1 Clostridioides difficile in Highly Immunocompromised Strains of Mice. Comp Med 2020;70:277-90. [PMID: 32404234 DOI: 10.30802/AALAS-CM-19-000109] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
50 Zhang Y, Yang Z, Gao S, Hamza T, Yfantis HG, Lipsky M, Feng H. The role of purified Clostridium difficile glucosylating toxins in disease pathogenesis utilizing a murine cecum injection model. Anaerobe 2017;48:249-56. [PMID: 29031928 DOI: 10.1016/j.anaerobe.2017.10.006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
51 Ya-Nan G, Jun W, Hao-Jun Z, Hong-Bing J, Ping L, Xin-Zhu L. Traditional Chinese Medicine QPYF as Preventive Treatment for Clostridium difficile Associated Diarrhea in a Mouse Model. Evid Based Complement Alternat Med 2016;2016:3759819. [PMID: 27999606 DOI: 10.1155/2016/3759819] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
52 Warren CA, van Opstal E, Ballard TE, Kennedy A, Wang X, Riggins M, Olekhnovich I, Warthan M, Kolling GL, Guerrant RL, Macdonald TL, Hoffman PS. Amixicile, a novel inhibitor of pyruvate: ferredoxin oxidoreductase, shows efficacy against Clostridium difficile in a mouse infection model. Antimicrob Agents Chemother 2012;56:4103-11. [PMID: 22585229 DOI: 10.1128/AAC.00360-12] [Cited by in Crossref: 38] [Cited by in F6Publishing: 29] [Article Influence: 3.8] [Reference Citation Analysis]
53 Rodrigues RS, Oliveira RA, Li Y, Zaja-Milatovic S, Costa LB, Braga Neto MB, Kolling GL, Lima AA, Guerrant RL, Warren CA. Intestinal epithelial restitution after TcdB challenge and recovery from Clostridium difficile infection in mice with alanyl-glutamine treatment. J Infect Dis. 2013;207:1505-1515. [PMID: 23359592 DOI: 10.1093/infdis/jit041] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]