BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rzepnikowska W, Flis K, Muñoz-Braceras S, Menezes R, Escalante R, Zoladek T. Yeast and other lower eukaryotic organisms for studies of Vps13 proteins in health and disease. Traffic 2017;18:711-9. [PMID: 28846184 DOI: 10.1111/tra.12523] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 5.2] [Reference Citation Analysis]
Number Citing Articles
1 Kaminska J, Soczewka P, Rzepnikowska W, Zoladek T. Yeast as a Model to Find New Drugs and Drug Targets for VPS13-Dependent Neurodegenerative Diseases. Int J Mol Sci 2022;23:5106. [PMID: 35563497 DOI: 10.3390/ijms23095106] [Reference Citation Analysis]
2 Zhao J, Zhang H, Fan X, Yu X, Huai J. Lipid Dyshomeostasis and Inherited Cerebellar Ataxia. Mol Neurobiol 2022. [PMID: 35420383 DOI: 10.1007/s12035-022-02826-2] [Reference Citation Analysis]
3 Reichel F, Kräter M, Peikert K, Glaß H, Rosendahl P, Herbig M, Rivera Prieto A, Kihm A, Bosman G, Kaestner L, Hermann A, Guck J. Changes in Blood Cell Deformability in Chorea-Acanthocytosis and Effects of Treatment With Dasatinib or Lithium. Front Physiol 2022;13:852946. [DOI: 10.3389/fphys.2022.852946] [Reference Citation Analysis]
4 Zhu X, Li L, Wang J, Zhao L, Shi H, Bao J, Su Z, Liu X, Lin F. Vacuolar Protein-Sorting Receptor MoVps13 Regulates Conidiation and Pathogenicity in Rice Blast Fungus Magnaporthe oryzae. J Fungi (Basel) 2021;7:1084. [PMID: 34947066 DOI: 10.3390/jof7121084] [Reference Citation Analysis]
5 Kolakowski D, Rzepnikowska W, Kaniak-Golik A, Zoladek T, Kaminska J. The GTPase Arf1 Is a Determinant of Yeast Vps13 Localization to the Golgi Apparatus. Int J Mol Sci 2021;22:12274. [PMID: 34830155 DOI: 10.3390/ijms222212274] [Reference Citation Analysis]
6 Insolera R, Lőrincz P, Wishnie AJ, Juhász G, Collins CA. Mitochondrial fission, integrity and completion of mitophagy require separable functions of Vps13D in Drosophila neurons. PLoS Genet 2021;17:e1009731. [PMID: 34383748 DOI: 10.1371/journal.pgen.1009731] [Reference Citation Analysis]
7 Park JS, Hollingsworth NM, Neiman AM. Genetic Dissection of Vps13 Regulation in Yeast Using Disease Mutations from Human Orthologs. Int J Mol Sci 2021;22:6200. [PMID: 34201352 DOI: 10.3390/ijms22126200] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
8 Kohler V, Büttner S. Remodelling of Nucleus-Vacuole Junctions During Metabolic and Proteostatic Stress. Contact (Thousand Oaks) 2021;4:25152564211016608. [PMID: 34124572 DOI: 10.1177/25152564211016608] [Reference Citation Analysis]
9 Karimzadeh MR, Omidi F, Sahebalzamani A, Saeidi K. A Novel VPS13B Mutation Identified by Whole-Exome Sequencing in Iranian Patients with Cohen Syndrome. J Mol Neurosci 2021. [PMID: 34041686 DOI: 10.1007/s12031-021-01852-4] [Reference Citation Analysis]
10 Baldwin HA, Wang C, Kanfer G, Shah HV, Velayos-Baeza A, Dulovic-Mahlow M, Brüggemann N, Anding A, Baehrecke EH, Maric D, Prinz WA, Youle RJ. VPS13D promotes peroxisome biogenesis. J Cell Biol 2021;220:e202001188. [PMID: 33891012 DOI: 10.1083/jcb.202001188] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
11 Wardaszka P, Soczewka P, Sienko M, Zoladek T, Kaminska J. Partial Inhibition of Calcineurin Activity by Rcn2 as a Potential Remedy for Vps13 Deficiency. Int J Mol Sci 2021;22:1193. [PMID: 33530471 DOI: 10.3390/ijms22031193] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Adonin L, Drozdov A, Barlev NA. Sea Urchin as a Universal Model for Studies of Gene Networks. Front Genet 2020;11:627259. [PMID: 33552139 DOI: 10.3389/fgene.2020.627259] [Reference Citation Analysis]
13 Park JS, Neiman AM. XK is a partner for VPS13A: a molecular link between Chorea-Acanthocytosis and McLeod Syndrome. Mol Biol Cell 2020;31:2425-36. [PMID: 32845802 DOI: 10.1091/mbc.E19-08-0439-T] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
14 Soczewka P, Flis K, Tribouillard-Tanvier D, di Rago JP, Santos CN, Menezes R, Kaminska J, Zoladek T. Flavonoids as Potential Drugs for VPS13-Dependent Rare Neurodegenerative Diseases. Genes (Basel) 2020;11:E828. [PMID: 32708255 DOI: 10.3390/genes11070828] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
15 Momtazmanesh S, Rayzan E, Shahkarami S, Rohlfs M, Klein C, Rezaei N. A novel VPS13B mutation in Cohen syndrome: a case report and review of literature. BMC Med Genet 2020;21:140. [PMID: 32605629 DOI: 10.1186/s12881-020-01075-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
16 Ugur B, Hancock-Cerutti W, Leonzino M, De Camilli P. Role of VPS13, a protein with similarity to ATG2, in physiology and disease. Curr Opin Genet Dev 2020;65:61-8. [PMID: 32563856 DOI: 10.1016/j.gde.2020.05.027] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
17 Lee YK, Hwang SK, Lee SK, Yang JE, Kwak JH, Seo H, Ahn H, Lee YS, Kim J, Lim CS, Kaang BK, Lee JH, Lee JA, Lee K. Cohen Syndrome Patient iPSC-Derived Neurospheres and Forebrain-Like Glutamatergic Neurons Reveal Reduced Proliferation of Neural Progenitor Cells and Altered Expression of Synapse Genes. J Clin Med 2020;9:E1886. [PMID: 32560273 DOI: 10.3390/jcm9061886] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
18 Rzepnikowska W, Kaminska J, Kabzińska D, Binięda K, Kochański A. A Yeast-Based Model for Hereditary Motor and Sensory Neuropathies: A Simple System for Complex, Heterogeneous Diseases. Int J Mol Sci 2020;21:E4277. [PMID: 32560077 DOI: 10.3390/ijms21124277] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
19 Kolakowski D, Kaminska J, Zoladek T. The binding of the APT1 domains to phosphoinositides is regulated by metal ions in vitro. Biochim Biophys Acta Biomembr 2020;1862:183349. [PMID: 32407779 DOI: 10.1016/j.bbamem.2020.183349] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
20 Nishimura T, Stefan CJ. Specialized ER membrane domains for lipid metabolism and transport. Biochim Biophys Acta Mol Cell Biol Lipids 2020;1865:158492. [PMID: 31349025 DOI: 10.1016/j.bbalip.2019.07.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
21 Koike S, Jahn R. SNAREs define targeting specificity of trafficking vesicles by combinatorial interaction with tethering factors. Nat Commun 2019;10:1608. [PMID: 30962439 DOI: 10.1038/s41467-019-09617-9] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 10.3] [Reference Citation Analysis]
22 Muñoz-Braceras S, Tornero-Écija AR, Vincent O, Escalante R. VPS13A is closely associated with mitochondria and is required for efficient lysosomal degradation. Dis Model Mech 2019;12:dmm036681. [PMID: 30709847 DOI: 10.1242/dmm.036681] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 8.7] [Reference Citation Analysis]
23 Soczewka P, Kolakowski D, Smaczynska-de Rooij I, Rzepnikowska W, Ayscough KR, Kaminska J, Zoladek T. Yeast-model-based study identified myosin- and calcium-dependent calmodulin signalling as a potential target for drug intervention in chorea-acanthocytosis. Dis Model Mech 2019;12:dmm036830. [PMID: 30635263 DOI: 10.1242/dmm.036830] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
24 Kubohara Y, Kikuchi H. Dictyostelium: An Important Source of Structural and Functional Diversity in Drug Discovery. Cells 2018;8:E6. [PMID: 30583484 DOI: 10.3390/cells8010006] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
25 Peikert K, Danek A, Hermann A. Current state of knowledge in Chorea-Acanthocytosis as core Neuroacanthocytosis syndrome. European Journal of Medical Genetics 2018;61:699-705. [DOI: 10.1016/j.ejmg.2017.12.007] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
26 Lang F, Pelzl L, Hauser S, Hermann A, Stournaras C, Schöls L. To die or not to die SGK1-sensitive ORAI/STIM in cell survival. Cell Calcium 2018;74:29-34. [PMID: 29807219 DOI: 10.1016/j.ceca.2018.05.001] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
27 Gauthier J, Meijer IA, Lessel D, Mencacci NE, Krainc D, Hempel M, Tsiakas K, Prokisch H, Rossignol E, Helm MH, Rodan LH, Karamchandani J, Carecchio M, Lubbe SJ, Telegrafi A, Henderson LB, Lorenzo K, Wallace SE, Glass IA, Hamdan FF, Michaud JL, Rouleau GA, Campeau PM. Recessive mutations in VPS13D cause childhood onset movement disorders. Ann Neurol 2018;83:1089-95. [DOI: 10.1002/ana.25204] [Cited by in Crossref: 50] [Cited by in F6Publishing: 47] [Article Influence: 12.5] [Reference Citation Analysis]
28 Tamura N, Nishimura T, Sakamaki Y, Koyama-honda I, Yamamoto H, Mizushima N. Differential requirement for ATG2A domains for localization to autophagic membranes and lipid droplets. FEBS Lett 2017;591:3819-30. [DOI: 10.1002/1873-3468.12901] [Cited by in Crossref: 44] [Cited by in F6Publishing: 38] [Article Influence: 8.8] [Reference Citation Analysis]