BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bonvin P, Dunn SM, Rousseau F, Dyer DP, Shaw J, Power CA, Handel TM, Proudfoot AEI. Identification of the pharmacophore of the CC chemokine-binding proteins Evasin-1 and -4 using phage display. J Biol Chem 2014;289:31846-55. [PMID: 25266725 DOI: 10.1074/jbc.M114.599233] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 2.1] [Reference Citation Analysis]
Number Citing Articles
1 Aryal P, Devkota SR, Jeevarajah D, Law R, Payne RJ, Bhusal RP, Stone MJ. Swapping N-terminal regions among tick evasins reveals cooperative interactions influencing chemokine binding and selectivity. J Biol Chem 2022;:102382. [PMID: 35973511 DOI: 10.1016/j.jbc.2022.102382] [Reference Citation Analysis]
2 Schön MP. The tick and I: Parasite-host interactions between ticks and humans. J Dtsch Dermatol Ges 2022;20:818-53. [PMID: 35674196 DOI: 10.1111/ddg.14821] [Reference Citation Analysis]
3 Schön MP. Die Zecke und ich: Parasiten-Wirt-Interaktionen zwischen Zecken und Menschen. J Dtsch Dermatol Ges 2022;20:818-55. [PMID: 35711058 DOI: 10.1111/ddg.14821_g] [Reference Citation Analysis]
4 Bhusal RP, Aryal P, Devkota SR, Pokhrel R, Gunzburg MJ, Foster SR, Lim HD, Payne RJ, Wilce MCJ, Stone MJ. Structure-guided engineering of tick evasins for targeting chemokines in inflammatory diseases. Proc Natl Acad Sci U S A 2022;119:e2122105119. [PMID: 35217625 DOI: 10.1073/pnas.2122105119] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Handel TM, Dyer DP. Perspectives on the Biological Role of Chemokine:Glycosaminoglycan Interactions. J Histochem Cytochem 2021;69:87-91. [PMID: 33285085 DOI: 10.1369/0022155420977971] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
6 Denisov SS, Ramírez-Escudero M, Heinzmann ACA, Ippel JH, Dawson PE, Koenen RR, Hackeng TM, Janssen BJC, Dijkgraaf I. Structural characterization of anti-CCL5 activity of the tick salivary protein evasin-4. J Biol Chem 2020;295:14367-78. [PMID: 32817341 DOI: 10.1074/jbc.RA120.013891] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
7 Dyer DP. Understanding the mechanisms that facilitate specificity, not redundancy, of chemokine-mediated leukocyte recruitment. Immunology 2020;160:336-44. [PMID: 32285441 DOI: 10.1111/imm.13200] [Cited by in Crossref: 8] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
8 Bhusal RP, Eaton JRO, Chowdhury ST, Power CA, Proudfoot AEI, Stone MJ, Bhattacharya S. Evasins: Tick Salivary Proteins that Inhibit Mammalian Chemokines. Trends Biochem Sci 2020;45:108-22. [PMID: 31679840 DOI: 10.1016/j.tibs.2019.10.003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
9 Denisov SS, Ippel JH, Heinzmann ACA, Koenen RR, Ortega-Gomez A, Soehnlein O, Hackeng TM, Dijkgraaf I. Tick saliva protein Evasin-3 modulates chemotaxis by disrupting CXCL8 interactions with glycosaminoglycans and CXCR2. J Biol Chem 2019;294:12370-9. [PMID: 31235521 DOI: 10.1074/jbc.RA119.008902] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
10 Eaton JRO, Alenazi Y, Singh K, Davies G, Geis-Asteggiante L, Kessler B, Robinson CV, Kawamura A, Bhattacharya S. The N-terminal domain of a tick evasin is critical for chemokine binding and neutralization and confers specific binding activity to other evasins. J Biol Chem 2018;293:6134-46. [PMID: 29487134 DOI: 10.1074/jbc.RA117.000487] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
11 Miller MC, Mayo KH. Chemokines from a Structural Perspective. Int J Mol Sci 2017;18:E2088. [PMID: 28974038 DOI: 10.3390/ijms18102088] [Cited by in Crossref: 68] [Cited by in F6Publishing: 88] [Article Influence: 13.6] [Reference Citation Analysis]
12 Hayward J, Sanchez J, Perry A, Huang C, Rodriguez Valle M, Canals M, Payne RJ, Stone MJ. Ticks from diverse genera encode chemokine-inhibitory evasin proteins. J Biol Chem 2017;292:15670-80. [PMID: 28778927 DOI: 10.1074/jbc.M117.807255] [Cited by in Crossref: 29] [Cited by in F6Publishing: 35] [Article Influence: 5.8] [Reference Citation Analysis]
13 Škrlec K, Pucer Janež A, Rogelj B, Štrukelj B, Berlec A. Evasin-displaying lactic acid bacteria bind different chemokines and neutralize CXCL8 production in Caco-2 cells. Microb Biotechnol 2017;10:1732-43. [PMID: 28736998 DOI: 10.1111/1751-7915.12781] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
14 Singh K, Davies G, Alenazi Y, Eaton JRO, Kawamura A, Bhattacharya S. Yeast surface display identifies a family of evasins from ticks with novel polyvalent CC chemokine-binding activities. Sci Rep 2017;7:4267. [PMID: 28655871 DOI: 10.1038/s41598-017-04378-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
15 Bonvin P, Power CA, Proudfoot AE. Evasins: Therapeutic Potential of a New Family of Chemokine-Binding Proteins from Ticks. Front Immunol 2016;7:208. [PMID: 27375615 DOI: 10.3389/fimmu.2016.00208] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.8] [Reference Citation Analysis]