BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Miller CN, Proekt I, von Moltke J, Wells KL, Rajpurkar AR, Wang H, Rattay K, Khan IS, Metzger TC, Pollack JL, Fries AC, Lwin WW, Wigton EJ, Parent AV, Kyewski B, Erle DJ, Hogquist KA, Steinmetz LM, Locksley RM, Anderson MS. Thymic tuft cells promote an IL-4-enriched medulla and shape thymocyte development. Nature. 2018;559:627-631. [PMID: 30022164 DOI: 10.1038/s41586-018-0345-2] [Cited by in Crossref: 137] [Cited by in F6Publishing: 141] [Article Influence: 34.3] [Reference Citation Analysis]
Number Citing Articles
1 Morales-sanchez A, Shissler SC, Cowan JE, Bhandoola A. Revelations in Thymic Epithelial Cell Biology and Heterogeneity from Single-Cell RNA Sequencing and Lineage Tracing Methodologies. T-Cell Development 2023. [DOI: 10.1007/978-1-0716-2740-2_2] [Reference Citation Analysis]
2 Bosselut R. A Beginner’s Guide to T Cell Development. T-Cell Development 2023. [DOI: 10.1007/978-1-0716-2740-2_1] [Reference Citation Analysis]
3 Ohigashi I, Matsuda-lennikov M, Takahama Y. Large-Scale Isolation of Mouse Thymic Epithelial Cells. T-Cell Development 2023. [DOI: 10.1007/978-1-0716-2740-2_11] [Reference Citation Analysis]
4 Bosselut R. Genetic Strategies to Study T Cell Development. T-Cell Development 2023. [DOI: 10.1007/978-1-0716-2740-2_6] [Reference Citation Analysis]
5 Yamada Y, Belharazem-vitacolonnna D, Bohnenberger H, Weiß C, Matsui N, Kriegsmann M, Kriegsmann K, Sinn P, Simon-keller K, Hamilton G, Graeter T, Preissler G, Ott G, Schölch S, Nakajima N, Yoshizawa A, Haga H, Date H, Thomas RK, Petrini I, Giaccone G, Ströbel P, Marx A. Pulmonary cancers across different histotypes share hybrid tuft cell/ionocyte-like molecular features and potentially druggable vulnerabilities. Cell Death Dis 2022;13:979. [DOI: 10.1038/s41419-022-05428-x] [Reference Citation Analysis]
6 Xu L, Wei C, Chen Y, Wu Y, Shou X, Chen W, Lu D, Sun H, Li W, Yu B, Wang X, Zhang X, Yu Y, Lei Z, Tang R, Zhu J, Li Y, Lu L, Zhou H, Zhou S, Su C, Chen X. IL-33 induces thymic involution-associated naive T cell aging and impairs host control of severe infection. Nat Commun 2022;13:6881. [DOI: 10.1038/s41467-022-34660-4] [Reference Citation Analysis]
7 Nitta T. Mesenchymal stromal cells in the thymus. Inflamm Regen 2022;42:33. [PMID: 36320070 DOI: 10.1186/s41232-022-00219-5] [Reference Citation Analysis]
8 Giorgetti OB, Nusser A, Boehm T. Human thymoma-associated mutation of the GTF2I transcription factor impairs thymic epithelial progenitor differentiation in mice. Commun Biol 2022;5:1037. [PMID: 36175547 DOI: 10.1038/s42003-022-04002-7] [Reference Citation Analysis]
9 Alsharif A, Chidgey AP. Thymus Microenvironment: Maintenance, Ageing and Strategies for Thymus Regeneration Following Damage. eLS 2022. [DOI: 10.1002/9780470015902.a0029481] [Reference Citation Analysis]
10 Klein F, Veiga-villauriz C, Börsch A, Maio S, Palmer S, Zuklys S, Calvo-asensio I, Musette L, Deadman ME, Dhalla F, White A, Lucas B, Anderson G, Holländer GA. Combined multidimensional single-cell protein and RNA profiling dissects the cellular and functional heterogeneity of thymic epithelial cells.. [DOI: 10.1101/2022.09.14.507949] [Reference Citation Analysis]
11 Xin Z, Lin M, Hao Z, Chen D, Chen Y, Chen X, Xu X, Li J, Wu D, Chai Y, Wu P. The immune landscape of human thymic epithelial tumors. Nat Commun 2022;13. [DOI: 10.1038/s41467-022-33170-7] [Reference Citation Analysis]
12 Gao X. Systemic chemotherapy for unresectable or recurrent primary thymic adenocarcinoma of enteric type. Int Canc Conf J 2022. [DOI: 10.1007/s13691-022-00575-6] [Reference Citation Analysis]
13 Benlaribi R, Gou Q, Takaba H. Thymic self-antigen expression for immune tolerance and surveillance. Inflamm Regen 2022;42:28. [PMID: 36056452 DOI: 10.1186/s41232-022-00211-z] [Reference Citation Analysis]
14 Shinton SA, Brill-Dashoff J, Hayakawa K. Pla2g2a promotes innate Th2-type immunity lymphocytes to increase B1a cells. Sci Rep 2022;12:14899. [PMID: 36050343 DOI: 10.1038/s41598-022-18876-4] [Reference Citation Analysis]
15 Kadouri N, Givony T, Nevo S, Hey J, Ben Dor S, Damari G, Dassa B, Dobes J, Weichenhan D, Bähr M, Paulsen M, Haffner-Krausz R, Mall MA, Plass C, Goldfarb Y, Abramson J. Transcriptional regulation of the thymus master regulator Foxn1. Sci Immunol 2022;7:eabn8144. [PMID: 36026441 DOI: 10.1126/sciimmunol.abn8144] [Reference Citation Analysis]
16 Ki SY, Jeong YT. Taste Receptors beyond Taste Buds. IJMS 2022;23:9677. [DOI: 10.3390/ijms23179677] [Reference Citation Analysis]
17 Hohman LS, Osborne LC. A gut-centric view of aging: Do intestinal epithelial cells contribute to age-associated microbiota changes, inflammaging, and immunosenescence? Aging Cell 2022;:e13700. [PMID: 36000805 DOI: 10.1111/acel.13700] [Reference Citation Analysis]
18 Michelson DA, Mathis D. Thymic mimetic cells: tolerogenic masqueraders. Trends Immunol 2022:S1471-4906(22)00159-4. [PMID: 36008259 DOI: 10.1016/j.it.2022.07.010] [Reference Citation Analysis]
19 Tsai TL, Zhou TA, Hsieh YT, Wang JC, Cheng HK, Huang CH, Tsai PY, Fan HH, Feng HK, Huang YC, Lin CC, Lin CH, Lin CY, Dzhagalov IL, Hsu CL. Multiomics reveal the central role of pentose phosphate pathway in resident thymic macrophages to cope with efferocytosis-associated stress. Cell Rep 2022;40:111065. [PMID: 35830797 DOI: 10.1016/j.celrep.2022.111065] [Reference Citation Analysis]
20 Shichkin VP, Antica M. Key Factors for Thymic Function and Development. Front Immunol 2022;13:926516. [DOI: 10.3389/fimmu.2022.926516] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Bhalla P, Su DM, van Oers NSC. Thymus Functionality Needs More Than a Few TECs. Front Immunol 2022;13:864777. [PMID: 35757725 DOI: 10.3389/fimmu.2022.864777] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Březina J, Vobořil M, Filipp D. Mechanisms of Direct and Indirect Presentation of Self-Antigens in the Thymus. Front Immunol 2022;13:926625. [DOI: 10.3389/fimmu.2022.926625] [Reference Citation Analysis]
23 Zhang Q, Zhang J, Lei T, Liang Z, Dong X, Sun L, Zhao Y. Sirt6-mediated epigenetic modification of DNA accessibility is essential for Pou2f3-induced thymic tuft cell development. Commun Biol 2022;5. [DOI: 10.1038/s42003-022-03484-9] [Reference Citation Analysis]
24 Dong X, Zhang J, Zhang Q, Liang Z, Xu Y, Zhao Y, Zhang B. Cytosolic Nuclear Sensor Dhx9 Controls Medullary Thymic Epithelial Cell Differentiation by p53-Mediated Pathways. Front Immunol 2022;13:896472. [DOI: 10.3389/fimmu.2022.896472] [Reference Citation Analysis]
25 Michelson DA, Hase K, Kaisho T, Benoist C, Mathis D. Thymic epithelial cells co-opt lineage-defining transcription factors to eliminate autoreactive T cells. Cell 2022. [DOI: 10.1016/j.cell.2022.05.018] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
26 Baranek T, de Amat Herbozo C, Mallevaey T, Paget C. Deconstructing iNKT cell development at single-cell resolution. Trends Immunol 2022:S1471-4906(22)00098-9. [PMID: 35654639 DOI: 10.1016/j.it.2022.04.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
27 Breed ER, Vobořil M, Ashby KM, Martinez RJ, Qian L, Wang H, Salgado OC, O’connor CH, Hogquist KA. Type 2 cytokines in the thymus activate Sirpα+ dendritic cells to promote clonal deletion. Nat Immunol. [DOI: 10.1038/s41590-022-01218-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Nusser A, Sagar, Swann JB, Krauth B, Diekhoff D, Calderon L, Happe C, Grün D, Boehm T. Developmental dynamics of two bipotent thymic epithelial progenitor types. Nature 2022. [PMID: 35614226 DOI: 10.1038/s41586-022-04752-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
29 Gallo E, Ramieri MT, Marino M. Structural and Functional Thymic Biomarkers Are Involved in the Pathogenesis of Thymic Epithelial Tumors: An Overview. Immuno 2022;2:408-29. [DOI: 10.3390/immuno2020025] [Reference Citation Analysis]
30 MIyao T, Miyauchi M, Kelly ST, Terooatea TW, Ishikawa T, Oh E, Hirai S, Horie K, Takakura Y, Ohki H, Hayama M, Maruyama Y, Seki T, Ishii H, Yabukami H, Yoshida M, Inoue A, Sakaue-Sawano A, Miyawaki A, Muratani M, Minoda A, Akiyama N, Akiyama T. Integrative analysis of scRNA-seq and scATAC-seq revealed transit-amplifying thymic epithelial cells expressing autoimmune regulator. Elife 2022;11:e73998. [PMID: 35578835 DOI: 10.7554/eLife.73998] [Reference Citation Analysis]
31 Zapata AG. Lympho-Hematopoietic Microenvironments and Fish Immune System. Biology (Basel) 2022;11:747. [PMID: 35625475 DOI: 10.3390/biology11050747] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Gao H, Cao M, Deng K, Yang Y, Song J, Ni M, Xie C, Fan W, Ou C, Huang D, Lin L, Liu L, Li Y, Sun H, Cheng X, Wu J, Xia C, Deng X, Mou L, Chen P. The Lineage Differentiation and Dynamic Heterogeneity of Thymic Epithelial Cells During Thymus Organogenesis. Front Immunol 2022;13:805451. [PMID: 35273595 DOI: 10.3389/fimmu.2022.805451] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Roach SN, Fiege JK, Shepherd FK, Wiggen TD, Hunter RC, Langlois RA. Respiratory Influenza Virus Infection Causes Dynamic Tuft Cell and Innate Lymphoid Cell Changes in the Small Intestine. J Virol 2022;:e0035222. [PMID: 35446142 DOI: 10.1128/jvi.00352-22] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
34 Wang ZN, Yang XS, Sun J, Zhao JC, Zhong NS, Tang XX. Multi-omics evaluation of SARS-CoV-2 infected mouse lungs reveals dynamics of host responses. iScience 2022;25:103967. [PMID: 35224468 DOI: 10.1016/j.isci.2022.103967] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Xiong Z, Zhu X, Geng J, Xu Y, Wu R, Li C, Fan D, Qin X, Du Y, Tian Y, Fan Z. Intestinal Tuft-2 cells exert antimicrobial immunity via sensing bacterial metabolite N-undecanoylglycine. Immunity 2022:S1074-7613(22)00124-8. [PMID: 35320705 DOI: 10.1016/j.immuni.2022.03.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
36 Cosway EJ, White AJ, Parnell SM, Schweighoffer E, Jolin HE, Bacon A, Rodewald HR, Tybulewicz V, McKenzie ANJ, Jenkinson WE, Anderson G. Eosinophils are an essential element of a type 2 immune axis that controls thymus regeneration. Sci Immunol 2022;7:eabn3286. [PMID: 35275754 DOI: 10.1126/sciimmunol.abn3286] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
37 O'Leary CE, Sbierski-Kind J, Kotas ME, Wagner JC, Liang HE, Schroeder AW, de Tenorio JC, von Moltke J, Ricardo-Gonzalez RR, Eckalbar WL, Molofsky AB, Schneider C, Locksley RM. Bile acid-sensitive tuft cells regulate biliary neutrophil influx. Sci Immunol 2022;7:eabj1080. [PMID: 35245089 DOI: 10.1126/sciimmunol.abj1080] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
38 Strine MS, Wilen CB. Tuft cells are key mediators of interkingdom interactions at mucosal barrier surfaces. PLoS Pathog 2022;18:e1010318. [PMID: 35271673 DOI: 10.1371/journal.ppat.1010318] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
39 Lopes N, Boucherit N, Santamaria JC, Provin N, Charaix J, Ferrier P, Giraud M, Irla M. Thymocytes trigger self-antigen-controlling pathways in immature medullary thymic epithelial stages. Elife 2022;11:e69982. [PMID: 35188458 DOI: 10.7554/eLife.69982] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
40 O’keefe RN, Carli AL, Baloyan D, Afshar-sterle S, Eissmann MF, Poh AR, Seillet C, Locksley RM, Ernst M, Buchert M. Inhibition of the tuft cell/ILC2 axis reduces gastric tumor development in mice.. [DOI: 10.1101/2022.02.16.480779] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
41 Alawam AS, Cosway EJ, James KD, Lucas B, Bacon A, Parnell SM, White AJ, Jenkinson WE, Anderson G. Failures in thymus medulla regeneration during immune recovery cause tolerance loss and prime recipients for auto-GVHD. J Exp Med 2022;219:e20211239. [PMID: 34910105 DOI: 10.1084/jem.20211239] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
42 Vobořil M, Březina J, Brabec T, Dobeš J, Ballek O, Dobešová M, Manning J, Blumberg RS, Filipp D. A model of preferential pairing between epithelial and dendritic cells in thymic antigen transfer. Elife 2022;11:e71578. [PMID: 35099391 DOI: 10.7554/eLife.71578] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
43 Nishijima H, Matsumoto M, Morimoto J, Hosomichi K, Akiyama N, Akiyama T, Oya T, Tsuneyama K, Yoshida H, Matsumoto M. Aire Controls Heterogeneity of Medullary Thymic Epithelial Cells for the Expression of Self-Antigens. J I 2022;208:303-320. [DOI: 10.4049/jimmunol.2100692] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
44 Yamada Y, Sugimoto A, Hoki M, Yoshizawa A, Hamaji M, Date H, Haga H, Marx A. POU2F3 beyond thymic carcinomas: expression across the spectrum of thymomas hints to medullary differentiation in type A thymoma. Virchows Arch 2022. [PMID: 34988657 DOI: 10.1007/s00428-021-03229-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
45 Yoshida H, Matsumoto M, Matsumoto M. Transcriptomics to Dissect the Immune System. Transcriptomics in Health and Disease 2022. [DOI: 10.1007/978-3-030-87821-4_10] [Reference Citation Analysis]
46 Alberola-ila J. Development of αβ T Cells with Innate Functions. Advances in Experimental Medicine and Biology 2022. [DOI: 10.1007/978-981-16-8387-9_10] [Reference Citation Analysis]
47 Yuan X, Huang L, Luo W, Zhao Y, Nashan B, Yu F, Liu Y. Diagnostic and Prognostic Significances of SOX9 in Thymic Epithelial Tumor. Front Oncol 2021;11:708735. [PMID: 34778027 DOI: 10.3389/fonc.2021.708735] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
48 Bortoluzzi S, Dashtsoodol N, Engleitner T, Drees C, Helmrath S, Mir J, Toska A, Flossdorf M, Öllinger R, Solovey M, Colomé-Tatché M, Kalfaoglu B, Ono M, Buch T, Ammon T, Rad R, Schmidt-Supprian M. Brief homogeneous TCR signals instruct common iNKT progenitors whose effector diversification is characterized by subsequent cytokine signaling. Immunity 2021;54:2497-2513.e9. [PMID: 34562377 DOI: 10.1016/j.immuni.2021.09.003] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
49 Martinez-Ruíz GU, Morales-Sánchez A, Bhandoola A. Transcriptional and epigenetic regulation in thymic epithelial cells. Immunol Rev 2021. [PMID: 34750841 DOI: 10.1111/imr.13034] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
50 Mino N, Muro R, Ota A, Nitta S, Lefebvre V, Nitta T, Fujio K, Takayanagi H. The Transcription Factor Sox4 is Required for Thymic Tuft Cell Development. Int Immunol 2021:dxab098. [PMID: 34687536 DOI: 10.1093/intimm/dxab098] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
51 Kitadai R, Okuma Y. Future Perspective of Chemotherapy and Pharmacotherapy in Thymic Carcinoma. Cancers (Basel) 2021;13:5239. [PMID: 34680386 DOI: 10.3390/cancers13205239] [Reference Citation Analysis]
52 Miyao T, Miyauchi M, Kelly ST, Terooatea TW, Ishikawa T, Oh E, Hirai S, Horie K, Takakura Y, Ohki H, Hayama M, Maruyama Y, Seki T, Yabukami H, Yoshida M, Inoue A, Sakaue-sawano A, Miyawaki A, Muratani M, Minoda A, Akiyama N, Akiyama T. Integrative analysis of scRNAs-seq and scATAC-seq revealed transit-amplifying thymic epithelial cells expressing autoimmune regulator.. [DOI: 10.1101/2021.10.04.463004] [Reference Citation Analysis]
53 Kaiser C, Bradu A, Gamble N, Caldwell JA, Koh AS. AIRE in context: Leveraging chromatin plasticity to trigger ectopic gene expression. Immunol Rev 2021. [PMID: 34545959 DOI: 10.1111/imr.13026] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
54 Vobořil M, Březina J, Brabec T, Dobeš J, Ballek O, Dobešová M, Manning J, Blumberg RS, Filipp D. A model of preferential pairing between epithelial and dendritic cells in thymic antigen transfer.. [DOI: 10.1101/2021.09.13.460045] [Reference Citation Analysis]
55 Rajeev S, Sosnowski O, Li S, Allain T, Buret AG, McKay DM. Enteric Tuft Cells in Host-Parasite Interactions. Pathogens 2021;10:1163. [PMID: 34578195 DOI: 10.3390/pathogens10091163] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
56 Ramos SA, Morton JJ, Yadav P, Reed B, Alizadeh SI, Shilleh AH, Perrenoud L, Jaggers J, Kappler J, Jimeno A, Russ HA. Generation of functional human thymic cells from induced pluripotent stem cells. J Allergy Clin Immunol 2021:S0091-6749(21)01141-6. [PMID: 34331993 DOI: 10.1016/j.jaci.2021.07.021] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
57 Zhao M, Quintana A, Zhang C, Andreyev AY, Kiosses W, Kuwana T, Murphy A, Hogan PG, Kronenberg M. Calcium signals regulate the functional differentiation of thymic iNKT cells. EMBO J 2021;40:e107901. [PMID: 34169542 DOI: 10.15252/embj.2021107901] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
58 Pinheiro RGR, Alves NL. The Early Postnatal Life: A Dynamic Period in Thymic Epithelial Cell Differentiation. Front Immunol 2021;12:668528. [PMID: 34220815 DOI: 10.3389/fimmu.2021.668528] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Nitta T, Ota A, Iguchi T, Muro R, Takayanagi H. The fibroblast: An emerging key player in thymic T cell selection. Immunol Rev 2021;302:68-85. [PMID: 34096078 DOI: 10.1111/imr.12985] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
60 Sugimoto A, Yamada Y, Fujimoto M, Minamiguchi S, Sato T, Akamatsu S, Marx A, Haga H. A multilocular thymic cyst associated with mediastinal seminoma: evidence for its medullary epithelial origin highlighted by POU2F3-positive thymic tuft cells and concomitant myoid cell proliferation. Virchows Arch 2021;479:215-20. [PMID: 34028621 DOI: 10.1007/s00428-021-03125-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Asnaghi MA, Barthlott T, Gullotta F, Strusi V, Amovilli A, Hafen K, Srivastava G, Oertle P, Toni R, Wendt D, Holländer GA, Martin I. Thymus Extracellular Matrix-Derived Scaffolds Support Graft-Resident Thymopoiesis and Long-Term In Vitro Culture of Adult Thymic Epithelial Cells. Adv Funct Mater 2021;31:2010747. [PMID: 34539304 DOI: 10.1002/adfm.202010747] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
62 Han J, Zúñiga-Pflücker JC. A 2020 View of Thymus Stromal Cells in T Cell Development. J Immunol 2021;206:249-56. [PMID: 33397738 DOI: 10.4049/jimmunol.2000889] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
63 Wang H, Matsumoto I, Jiang P. Immune Regulatory Roles of Cells Expressing Taste Signaling Elements in Nongustatory Tissues. Handb Exp Pharmacol 2021. [PMID: 33945029 DOI: 10.1007/164_2021_468] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
64 Tikhonova AN, Lasry A, Austin R, Aifantis I. Cell-by-Cell Deconstruction of Stem Cell Niches. Cell Stem Cell 2020;27:19-34. [PMID: 32619515 DOI: 10.1016/j.stem.2020.06.013] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
65 Srinivasan J, Lancaster JN, Singarapu N, Hale LP, Ehrlich LIR, Richie ER. Age-Related Changes in Thymic Central Tolerance. Front Immunol 2021;12:676236. [PMID: 33968086 DOI: 10.3389/fimmu.2021.676236] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
66 Georgiev H, Peng C, Huggins MA, Jameson SC, Hogquist KA. Classical MHC expression by DP thymocytes impairs the selection of non-classical MHC restricted innate-like T cells. Nat Commun 2021;12:2308. [PMID: 33863906 DOI: 10.1038/s41467-021-22589-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
67 Laan M, Salumets A, Klein A, Reintamm K, Bichele R, Peterson H, Peterson P. Post-Aire Medullary Thymic Epithelial Cells and Hassall's Corpuscles as Inducers of Tonic Pro-Inflammatory Microenvironment. Front Immunol 2021;12:635569. [PMID: 33868260 DOI: 10.3389/fimmu.2021.635569] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
68 Zhang Q, Liang Z, Zhang J, Lei T, Dong X, Su H, Chen Y, Zhang Z, Tan L, Zhao Y. Sirt6 Regulates the Development of Medullary Thymic Epithelial Cells and Contributes to the Establishment of Central Immune Tolerance. Front Cell Dev Biol 2021;9:655552. [PMID: 33869219 DOI: 10.3389/fcell.2021.655552] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
69 Deng Z, Chong Z, Law CS, Mukai K, Ho FO, Martinu T, Backes BJ, Eckalbar WL, Taguchi T, Shum AK. A defect in COPI-mediated transport of STING causes immune dysregulation in COPA syndrome. J Exp Med 2020;217:e20201045. [PMID: 32725126 DOI: 10.1084/jem.20201045] [Cited by in Crossref: 55] [Cited by in F6Publishing: 57] [Article Influence: 55.0] [Reference Citation Analysis]
70 Li M, Pu XY, Dong LH, Chang PY. Metastatic thymic-enteric adenocarcinoma responding to chemoradiation plus anti-angiogenic therapy: A case report. World J Clin Cases 2021; 9(7): 1676-1681 [PMID: 33728312 DOI: 10.12998/wjcc.v9.i7.1676] [Cited by in CrossRef: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Tao H, Li L, Liao NS, Schluns KS, Luckhart S, Sleasman JW, Zhong XP. Thymic Epithelial Cell-Derived IL-15 and IL-15 Receptor α Chain Foster Local Environment for Type 1 Innate Like T Cell Development. Front Immunol 2021;12:623280. [PMID: 33732245 DOI: 10.3389/fimmu.2021.623280] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
72 Perniola R, Fierabracci A, Falorni A. Autoimmune Addison's Disease as Part of the Autoimmune Polyglandular Syndrome Type 1: Historical Overview and Current Evidence. Front Immunol 2021;12:606860. [PMID: 33717087 DOI: 10.3389/fimmu.2021.606860] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
73 Ishikawa T, Akiyama N, Akiyama T. In Pursuit of Adult Progenitors of Thymic Epithelial Cells. Front Immunol 2021;12:621824. [PMID: 33717123 DOI: 10.3389/fimmu.2021.621824] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
74 Morimoto R, Swann J, Nusser A, Trancoso I, Schorpp M, Boehm T. Evolution of thymopoietic microenvironments. Open Biol 2021;11:200383. [PMID: 33622100 DOI: 10.1098/rsob.200383] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
75 Davis JD, Wypych TP. Cellular and functional heterogeneity of the airway epithelium. Mucosal Immunol 2021;14:978-90. [PMID: 33608655 DOI: 10.1038/s41385-020-00370-7] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 31.0] [Reference Citation Analysis]
76 Yamada Y, Simon-Keller K, Belharazem-Vitacolonnna D, Bohnenberger H, Kriegsmann M, Kriegsmann K, Hamilton G, Graeter T, Preissler G, Ott G, Roessner ED, Dahmen I, Thomas RK, Ströbel P, Marx A. A Tuft Cell-Like Signature Is Highly Prevalent in Thymic Squamous Cell Carcinoma and Delineates New Molecular Subsets Among the Major Lung Cancer Histotypes. J Thorac Oncol 2021;16:1003-16. [PMID: 33609752 DOI: 10.1016/j.jtho.2021.02.008] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 17.0] [Reference Citation Analysis]
77 Bautista JL, Cramer NT, Miller CN, Chavez J, Berrios DI, Byrnes LE, Germino J, Ntranos V, Sneddon JB, Burt TD, Gardner JM, Ye CJ, Anderson MS, Parent AV. Single-cell transcriptional profiling of human thymic stroma uncovers novel cellular heterogeneity in the thymic medulla. Nat Commun 2021;12:1096. [PMID: 33597545 DOI: 10.1038/s41467-021-21346-6] [Cited by in Crossref: 46] [Cited by in F6Publishing: 47] [Article Influence: 46.0] [Reference Citation Analysis]
78 Marx A, Yamada Y, Simon-Keller K, Schalke B, Willcox N, Ströbel P, Weis CA. Thymus and autoimmunity. Semin Immunopathol 2021;43:45-64. [PMID: 33537838 DOI: 10.1007/s00281-021-00842-3] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 20.0] [Reference Citation Analysis]
79 Irla M. RANK Signaling in the Differentiation and Regeneration of Thymic Epithelial Cells. Front Immunol 2020;11:623265. [PMID: 33552088 DOI: 10.3389/fimmu.2020.623265] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
80 Borowczyk J, Shutova M, Brembilla NC, Boehncke WH. IL-25 (IL-17E) in epithelial immunology and pathophysiology. J Allergy Clin Immunol 2021;148:40-52. [PMID: 33485651 DOI: 10.1016/j.jaci.2020.12.628] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 34.0] [Reference Citation Analysis]
81 Nitta T, Takayanagi H. Non-Epithelial Thymic Stromal Cells: Unsung Heroes in Thymus Organogenesis and T Cell Development. Front Immunol 2020;11:620894. [PMID: 33519827 DOI: 10.3389/fimmu.2020.620894] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 10.0] [Reference Citation Analysis]
82 Cosway EJ, James KD, Lucas B, Anderson G, White AJ. The thymus medulla and its control of αβT cell development. Semin Immunopathol 2021;43:15-27. [PMID: 33306154 DOI: 10.1007/s00281-020-00830-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
83 Liang Z, Zhang Q, Dong X, Zhang Z, Wang H, Zhang J, Zhao Y. mTORC2 negatively controls the maturation process of medullary thymic epithelial cells by inhibiting the LTβR/RANK-NF-κB axis. J Cell Physiol 2021;236:4725-37. [PMID: 33269476 DOI: 10.1002/jcp.30192] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
84 Lopes N, Boucherit N, Charaix J, Ferrier P, Giraud M, Irla M. Thymocytes trigger self-antigen-controlling pathways in immature medullary thymic epithelial stages.. [DOI: 10.1101/2020.11.29.399923] [Reference Citation Analysis]
85 Wells KL, Miller CN, Gschwind AR, Wei W, Phipps JD, Anderson MS, Steinmetz LM. Combined transient ablation and single-cell RNA-sequencing reveals the development of medullary thymic epithelial cells. Elife 2020;9:e60188. [PMID: 33226342 DOI: 10.7554/eLife.60188] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 13.5] [Reference Citation Analysis]
86 Giuliani C, Franceschi C, Luiselli D, Garagnani P, Ulijaszek S. Ecological Sensing Through Taste and Chemosensation Mediates Inflammation: A Biological Anthropological Approach. Adv Nutr 2020;11:1671-85. [PMID: 32647890 DOI: 10.1093/advances/nmaa078] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
87 Ohigashi I, Tanaka Y, Kondo K, Fujimori S, Kondo H, Palin AC, Hoffmann V, Kozai M, Matsushita Y, Uda S, Motosugi R, Hamazaki J, Kubota H, Murata S, Tanaka K, Katagiri T, Kosako H, Takahama Y. Trans-omics Impact of Thymoproteasome in Cortical Thymic Epithelial Cells. Cell Rep 2019;29:2901-2916.e6. [PMID: 31775054 DOI: 10.1016/j.celrep.2019.10.079] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
88 García-Ceca J, Montero-Herradón S, Zapata AG. Intrathymic Selection and Defects in the Thymic Epithelial Cell Development. Cells 2020;9:E2226. [PMID: 33023072 DOI: 10.3390/cells9102226] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
89 Ferreirinha P, Ribeiro C, Morimoto J, Landry JJM, Matsumoto M, Meireles C, White AJ, Ohigashi I, Araújo L, Benes V, Takahama Y, Anderson G, Matsumoto M, Alves NL. A novel method to identify Post-Aire stages of medullary thymic epithelial cell differentiation. Eur J Immunol 2021;51:311-8. [PMID: 32845012 DOI: 10.1002/eji.202048764] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
90 Hoffman MT, Kemp SB, Salas-Escabillas DJ, Zhang Y, Steele NG, The S, Long D, Benitz S, Yan W, Margolskee RF, Bednar F, Pasca di Magliano M, Wen HJ, Crawford HC. The Gustatory Sensory G-Protein GNAT3 Suppresses Pancreatic Cancer Progression in Mice. Cell Mol Gastroenterol Hepatol 2021;11:349-69. [PMID: 32882403 DOI: 10.1016/j.jcmgh.2020.08.011] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
91 Jee MH, Mraz V, Geisler C, Bonefeld CM. γδ T cells and inflammatory skin diseases. Immunol Rev 2020;298:61-73. [DOI: 10.1111/imr.12913] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
92 Baran-Gale J, Morgan MD, Maio S, Dhalla F, Calvo-Asensio I, Deadman ME, Handel AE, Maynard A, Chen S, Green F, Sit RV, Neff NF, Darmanis S, Tan W, May AP, Marioni JC, Ponting CP, Holländer GA. Ageing compromises mouse thymus function and remodels epithelial cell differentiation. Elife 2020;9:e56221. [PMID: 32840480 DOI: 10.7554/eLife.56221] [Cited by in Crossref: 48] [Cited by in F6Publishing: 49] [Article Influence: 24.0] [Reference Citation Analysis]
93 Nitta T, Tsutsumi M, Nitta S, Muro R, Suzuki EC, Nakano K, Tomofuji Y, Sawa S, Okamura T, Penninger JM, Takayanagi H. Fibroblasts as a source of self-antigens for central immune tolerance. Nat Immunol 2020;21:1172-80. [PMID: 32839611 DOI: 10.1038/s41590-020-0756-8] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 18.0] [Reference Citation Analysis]
94 Hirata SI, Sawane K, Adachi J, Isoyama J, Sugiura Y, Matsunaga A, Hosomi K, Tomonaga T, Suematsu M, Nagatake T, Kunisawa J. Vitamin B1 Supports the Differentiation of T Cells through TGF-β Superfamily Production in Thymic Stromal Cells. iScience 2020;23:101426. [PMID: 32818907 DOI: 10.1016/j.isci.2020.101426] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
95 Lebel MÈ, Coutelier M, Galipeau M, Kleinman CL, Moon JJ, Melichar HJ. Differential expression of tissue-restricted antigens among mTEC is associated with distinct autoreactive T cell fates. Nat Commun 2020;11:3734. [PMID: 32709894 DOI: 10.1038/s41467-020-17544-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
96 DelGiorno KE, Chung CY, Vavinskaya V, Maurer HC, Novak SW, Lytle NK, Ma Z, Giraddi RR, Wang D, Fang L, Naeem RF, Andrade LR, Ali WH, Tseng H, Tsui C, Gubbala VB, Ridinger-Saison M, Ohmoto M, Erikson GA, O'Connor C, Shokhirev MN, Hah N, Urade Y, Matsumoto I, Kaech SM, Singh PK, Manor U, Olive KP, Wahl GM. Tuft Cells Inhibit Pancreatic Tumorigenesis in Mice by Producing Prostaglandin D2. Gastroenterology 2020;159:1866-1881.e8. [PMID: 32717220 DOI: 10.1053/j.gastro.2020.07.037] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 13.0] [Reference Citation Analysis]
97 Pan J, Zhang L, Shao X, Huang J. Acetylcholine From Tuft Cells: The Updated Insights Beyond Its Immune and Chemosensory Functions. Front Cell Dev Biol 2020;8:606. [PMID: 32733896 DOI: 10.3389/fcell.2020.00606] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
98 Pellicci DG, Koay H, Berzins SP. Thymic development of unconventional T cells: how NKT cells, MAIT cells and γδ T cells emerge. Nat Rev Immunol 2020;20:756-70. [DOI: 10.1038/s41577-020-0345-y] [Cited by in Crossref: 79] [Cited by in F6Publishing: 83] [Article Influence: 39.5] [Reference Citation Analysis]
99 Wells KL, Miller CN, Gschwind AR, Wei W, Phipps JD, Anderson MS, Steinmetz LM. Combined transient ablation and single cell RNA sequencing reveals the development of medullary thymic epithelial cells.. [DOI: 10.1101/2020.06.19.160424] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
100 Esmaeilniakooshkghazi A, George SP, Biswas R, Khurana S. Mouse intestinal tuft cells express advillin but not villin. Sci Rep 2020;10:8877. [PMID: 32483224 DOI: 10.1038/s41598-020-65469-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
101 Owen DL, Sjaastad LE, Farrar MA. Regulatory T Cell Development in the Thymus. J Immunol 2019;203:2031-41. [PMID: 31591259 DOI: 10.4049/jimmunol.1900662] [Cited by in Crossref: 34] [Cited by in F6Publishing: 38] [Article Influence: 17.0] [Reference Citation Analysis]
102 Deng Z, Chong Z, Law CS, Mukai K, Ho FO, Martinu T, Backes BJ, Eckalbar WL, Taguchi T, Shum AK. A defect in COPI-mediated transport of STING causes immune dysregulation in COPA syndrome.. [DOI: 10.1101/2020.05.20.106500] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
103 Vobořil M, Brabec T, Dobeš J, Šplíchalová I, Březina J, Čepková A, Dobešová M, Aidarova A, Kubovčiak J, Tsyklauri O, Štěpánek O, Beneš V, Sedláček R, Klein L, Kolář M, Filipp D. Toll-like receptor signaling in thymic epithelium controls monocyte-derived dendritic cell recruitment and Treg generation. Nat Commun 2020;11:2361. [PMID: 32398640 DOI: 10.1038/s41467-020-16081-3] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 15.0] [Reference Citation Analysis]
104 Cowan JE, Takahama Y, Bhandoola A, Ohigashi I. Postnatal Involution and Counter-Involution of the Thymus. Front Immunol 2020;11:897. [PMID: 32477366 DOI: 10.3389/fimmu.2020.00897] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
105 Alawam AS, Anderson G, Lucas B. Generation and Regeneration of Thymic Epithelial Cells. Front Immunol 2020;11:858. [PMID: 32457758 DOI: 10.3389/fimmu.2020.00858] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
106 Lucas B, White AJ, Cosway EJ, Parnell SM, James KD, Jones ND, Ohigashi I, Takahama Y, Jenkinson WE, Anderson G. Diversity in medullary thymic epithelial cells controls the activity and availability of iNKT cells. Nat Commun 2020;11:2198. [PMID: 32366944 DOI: 10.1038/s41467-020-16041-x] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 13.0] [Reference Citation Analysis]
107 Park JE, Botting RA, Domínguez Conde C, Popescu DM, Lavaert M, Kunz DJ, Goh I, Stephenson E, Ragazzini R, Tuck E, Wilbrey-Clark A, Roberts K, Kedlian VR, Ferdinand JR, He X, Webb S, Maunder D, Vandamme N, Mahbubani KT, Polanski K, Mamanova L, Bolt L, Crossland D, de Rita F, Fuller A, Filby A, Reynolds G, Dixon D, Saeb-Parsy K, Lisgo S, Henderson D, Vento-Tormo R, Bayraktar OA, Barker RA, Meyer KB, Saeys Y, Bonfanti P, Behjati S, Clatworthy MR, Taghon T, Haniffa M, Teichmann SA. A cell atlas of human thymic development defines T cell repertoire formation. Science 2020;367:eaay3224. [PMID: 32079746 DOI: 10.1126/science.aay3224] [Cited by in Crossref: 188] [Cited by in F6Publishing: 216] [Article Influence: 94.0] [Reference Citation Analysis]
108 Zemmour D, Kiner E, Benoist C. CD4+ teff cell heterogeneity: the perspective from single-cell transcriptomics. Curr Opin Immunol 2020;63:61-7. [PMID: 32259715 DOI: 10.1016/j.coi.2020.02.004] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
109 Deng Z, Law CS, Ho FO, Wang KM, Jones KD, Shin JS, Shum AK. A Defect in Thymic Tolerance Causes T Cell-Mediated Autoimmunity in a Murine Model of COPA Syndrome. J Immunol 2020;204:2360-73. [PMID: 32198142 DOI: 10.4049/jimmunol.2000028] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
110 Schneider C, O'Leary CE, Locksley RM. Regulation of immune responses by tuft cells. Nat Rev Immunol 2019;19:584-93. [PMID: 31114038 DOI: 10.1038/s41577-019-0176-x] [Cited by in Crossref: 95] [Cited by in F6Publishing: 98] [Article Influence: 47.5] [Reference Citation Analysis]
111 Baran-gale J, Morgan M, Maio S, Dhalla F, Calvo-asensio I, Deadman M, Handel A, Maynard A, Chen S, Green F, Sit R, Neff N, Darmanis S, Tan W, May A, Marioni J, Ponting C, Holländer G. Ageing compromises mouse thymus function and remodels epithelial cell differentiation.. [DOI: 10.1101/2020.03.02.973008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
112 Park J, Botting RA, Domínguez Conde C, Popescu D, Lavaert M, Kunz DJ, Goh I, Stephenson E, Ragazzini R, Tuck E, Wilbrey-clark A, Roberts K, Kedlian VR, Ferdinand JR, He X, Webb S, Maunder D, Vandamme N, Mahbubani KT, Polanski K, Mamanova L, Bolt L, Crossland D, de Rita F, Fuller A, Filby A, Reynolds G, Dixon D, Saeb-parsy K, Lisgo S, Henderson D, Vento-tormo R, Bayraktar OA, Barker RA, Meyer KB, Saeys Y, Bonfanti P, Behjati S, Clatworthy MR, Taghon T, Haniffa M, Teichmann SA. A cell atlas of human thymic development defines T cell repertoire formation. Science 2020;367:eaay3224. [DOI: 10.1126/science.aay3224] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
113 Hogquist K, Georgiev H. Recent advances in iNKT cell development. F1000Res 2020;9:F1000 Faculty Rev-127. [PMID: 32148771 DOI: 10.12688/f1000research.21378.1] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
114 DelGiorno KE, Naeem RF, Fang L, Chung CY, Ramos C, Luhtala N, O'Connor C, Hunter T, Manor U, Wahl GM. Tuft Cell Formation Reflects Epithelial Plasticity in Pancreatic Injury: Implications for Modeling Human Pancreatitis. Front Physiol 2020;11:88. [PMID: 32116793 DOI: 10.3389/fphys.2020.00088] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 13.0] [Reference Citation Analysis]
115 Kondo K, Ohigashi I, Takahama Y. Thymus machinery for T-cell selection. Int Immunol 2019;31:119-25. [PMID: 30476234 DOI: 10.1093/intimm/dxy081] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 16.5] [Reference Citation Analysis]
116 Wang HX, Pan W, Zheng L, Zhong XP, Tan L, Liang Z, He J, Feng P, Zhao Y, Qiu YR. Thymic Epithelial Cells Contribute to Thymopoiesis and T Cell Development. Front Immunol 2019;10:3099. [PMID: 32082299 DOI: 10.3389/fimmu.2019.03099] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 15.5] [Reference Citation Analysis]
117 Park J, Botting RA, Conde CD, Popescu D, Lavaert M, Kunz DJ, Stephenson E, Ragazzini R, Tuck E, Wilbrey-clark A, Ferdinand JR, Webb S, Maunder D, Vandamme N, Mahbubani K, Polanski K, Mamanova L, Fuller A, Filby A, Reynolds G, Dixon D, Saeb-parsy K, Lisgo S, Henderson D, Vento-tormo R, Meyer KB, Saeys Y, Bonfanti P, Behjati S, Clatworthy MR, Taghon T, Haniffa M, Teichmann SA. A cell atlas of human thymic development defines T cell repertoire formation.. [DOI: 10.1101/2020.01.28.911115] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 13.0] [Reference Citation Analysis]
118 Deng Z, Law CS, Ho FO, Wang KM, Jones KD, Shin J, Shum AK. A defect in thymic tolerance causes T cell-mediated autoimmunity in a murine model of COPA syndrome.. [DOI: 10.1101/2020.01.21.914440] [Reference Citation Analysis]
119 Dumont-Lagacé M, Daouda T, Depoërs L, Zumer J, Benslimane Y, Brochu S, Harrington L, Lemieux S, Perreault C. Qualitative Changes in Cortical Thymic Epithelial Cells Drive Postpartum Thymic Regeneration. Front Immunol 2019;10:3118. [PMID: 32010151 DOI: 10.3389/fimmu.2019.03118] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
120 Merrheim J, Villegas J, Van Wassenhove J, Khansa R, Berrih-Aknin S, le Panse R, Dragin N. Estrogen, estrogen-like molecules and autoimmune diseases. Autoimmun Rev 2020;19:102468. [PMID: 31927086 DOI: 10.1016/j.autrev.2020.102468] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 11.0] [Reference Citation Analysis]
121 Nowell CS, O’neill KE, Rouse P, Henderson T, Richie ER, Manley NR, Blackburn CC. Thymus and parathyroid organogenesis. Principles of Tissue Engineering 2020. [DOI: 10.1016/b978-0-12-818422-6.00038-1] [Reference Citation Analysis]
122 Krasteva-christ G, Lin W, Tizzano M. Extraoral Taste Receptors. The Senses: A Comprehensive Reference 2020. [DOI: 10.1016/b978-0-12-809324-5.23827-3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
123 Delgiorno KE, Chung C, Mauer HC, Novak SW, Giraddi RR, Wang D, Naeem RF, Fang L, Andrade LR, Lytle NK, Ali WH, Tsui C, Gubbala VB, Ridinger-saison M, Ohmoto M, O’connor C, Erikson GA, Shokhirev MN, Urade Y, Matsumoto I, Vavinskaya V, Singh PK, Manor U, Olive KP, Wahl GM. Tuft cells restrain pancreatic tumorigenesis through paracrine eicosanoid signaling.. [DOI: 10.1101/2019.12.19.882985] [Reference Citation Analysis]
124 Kadouri N, Nevo S, Goldfarb Y, Abramson J. Thymic epithelial cell heterogeneity: TEC by TEC. Nat Rev Immunol 2020;20:239-53. [PMID: 31804611 DOI: 10.1038/s41577-019-0238-0] [Cited by in Crossref: 70] [Cited by in F6Publishing: 72] [Article Influence: 23.3] [Reference Citation Analysis]
125 Constantine GM, Lionakis MS. Lessons from primary immunodeficiencies: Autoimmune regulator and autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. Immunol Rev 2019;287:103-20. [PMID: 30565240 DOI: 10.1111/imr.12714] [Cited by in Crossref: 80] [Cited by in F6Publishing: 82] [Article Influence: 26.7] [Reference Citation Analysis]
126 Wang G, Yu Y, Cai X, Zhou EM, Zimmerman JJ. Effects of PRRSV Infection on the Porcine Thymus. Trends Microbiol 2020;28:212-23. [PMID: 31744664 DOI: 10.1016/j.tim.2019.10.009] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
127 Ting HA, von Moltke J. The Immune Function of Tuft Cells at Gut Mucosal Surfaces and Beyond. J Immunol 2019;202:1321-9. [PMID: 30782851 DOI: 10.4049/jimmunol.1801069] [Cited by in Crossref: 57] [Cited by in F6Publishing: 62] [Article Influence: 19.0] [Reference Citation Analysis]
128 Dhalla F, Baran-Gale J, Maio S, Chappell L, Holländer GA, Ponting CP. Biologically indeterminate yet ordered promiscuous gene expression in single medullary thymic epithelial cells. EMBO J 2020;39:e101828. [PMID: 31657037 DOI: 10.15252/embj.2019101828] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 12.7] [Reference Citation Analysis]
129 Wang H, Breed ER, Lee YJ, Qian LJ, Jameson SC, Hogquist KA. Myeloid cells activate iNKT cells to produce IL-4 in the thymic medulla. Proc Natl Acad Sci U S A 2019;116:22262-8. [PMID: 31611396 DOI: 10.1073/pnas.1910412116] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
130 Zhang Z, Legoux FP, Vaughan SW, Moon JJ. Opposing peripheral fates of tissue-restricted self antigen-specific conventional and regulatory CD4+ T cells. Eur J Immunol 2020;50:63-72. [PMID: 31580477 DOI: 10.1002/eji.201948180] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
131 McGeachy MJ, Cua DJ, Gaffen SL. The IL-17 Family of Cytokines in Health and Disease. Immunity 2019;50:892-906. [PMID: 30995505 DOI: 10.1016/j.immuni.2019.03.021] [Cited by in Crossref: 455] [Cited by in F6Publishing: 488] [Article Influence: 151.7] [Reference Citation Analysis]
132 Albano F, Vecchio E, Renna M, Iaccino E, Mimmi S, Caiazza C, Arcucci A, Avagliano A, Pagliara V, Donato G, Palmieri C, Mallardo M, Quinto I, Fiume G. Insights into Thymus Development and Viral Thymic Infections. Viruses 2019;11:E836. [PMID: 31505755 DOI: 10.3390/v11090836] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
133 Almeida FF, Jacquelot N, Belz GT. Deconstructing deployment of the innate immune lymphocyte army for barrier homeostasis and protection. Immunol Rev 2018;286:6-22. [PMID: 30294966 DOI: 10.1111/imr.12709] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
134 Luan R, Liang Z, Zhang Q, Sun L, Zhao Y. Molecular regulatory networks of thymic epithelial cell differentiation. Differentiation 2019;107:42-9. [PMID: 31238242 DOI: 10.1016/j.diff.2019.06.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
135 Nevo S, Kadouri N, Abramson J. Tuft cells: From the mucosa to the thymus. Immunol Lett 2019;210:1-9. [PMID: 30904566 DOI: 10.1016/j.imlet.2019.02.003] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 8.7] [Reference Citation Analysis]
136 Nadjsombati MS, McGinty JW, Lyons-Cohen MR, Jaffe JB, DiPeso L, Schneider C, Miller CN, Pollack JL, Nagana Gowda GA, Fontana MF, Erle DJ, Anderson MS, Locksley RM, Raftery D, von Moltke J. Detection of Succinate by Intestinal Tuft Cells Triggers a Type 2 Innate Immune Circuit. Immunity. 2018;49:33-41.e7. [PMID: 30021144 DOI: 10.1016/j.immuni.2018.06.016] [Cited by in Crossref: 241] [Cited by in F6Publishing: 251] [Article Influence: 80.3] [Reference Citation Analysis]
137 Ribeiro C, Alves NL, Ferreirinha P. Medullary thymic epithelial cells: Deciphering the functional diversity beyond promiscuous gene expression. Immunol Lett 2019;215:24-7. [PMID: 30853502 DOI: 10.1016/j.imlet.2019.01.012] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
138 Inglesfield S, Cosway EJ, Jenkinson WE, Anderson G. Rethinking Thymic Tolerance: Lessons from Mice. Trends Immunol 2019;40:279-91. [PMID: 30803714 DOI: 10.1016/j.it.2019.01.011] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
139 Dhalla F, Baran-gale J, Maio S, Chappell L, Holländer G, Ponting C. Biologically indeterminate yet ordered promiscuous gene expression in single medullary thymic epithelial cells.. [DOI: 10.1101/554899] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
140 Matsumoto M, Nishijima H, Morimoto J, Tsuneyama K, Matsumoto M. AIRE – The Autoimmune Regulator. eLS 2019. [DOI: 10.1002/9780470015902.a0027281] [Reference Citation Analysis]
141 Owen DL, Mahmud SA, Sjaastad LE, Williams JB, Spanier JA, Simeonov DR, Ruscher R, Huang W, Proekt I, Miller CN, Hekim C, Jeschke JC, Aggarwal P, Broeckel U, LaRue RS, Henzler CM, Alegre ML, Anderson MS, August A, Marson A, Zheng Y, Williams CB, Farrar MA. Thymic regulatory T cells arise via two distinct developmental programs. Nat Immunol 2019;20:195-205. [PMID: 30643267 DOI: 10.1038/s41590-018-0289-6] [Cited by in Crossref: 113] [Cited by in F6Publishing: 116] [Article Influence: 37.7] [Reference Citation Analysis]
142 Morimoto J, Nishikawa Y, Kakimoto T, Furutani K, Kihara N, Matsumoto M, Tsuneyama K, Kozono Y, Kozono H, Hozumi K, Hosomichi K, Nishijima H, Matsumoto M. Aire Controls in Trans the Production of Medullary Thymic Epithelial Cells Expressing Ly-6C/Ly-6G. J Immunol 2018;201:3244-57. [PMID: 30389776 DOI: 10.4049/jimmunol.1800950] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
143 O'Leary CE, Schneider C, Locksley RM. Tuft Cells-Systemically Dispersed Sensory Epithelia Integrating Immune and Neural Circuitry. Annu Rev Immunol 2019;37:47-72. [PMID: 30379593 DOI: 10.1146/annurev-immunol-042718-041505] [Cited by in Crossref: 68] [Cited by in F6Publishing: 70] [Article Influence: 17.0] [Reference Citation Analysis]
144 Zhu C, Kwok RTK, Lam JWY, Tang BZ. Aggregation-Induced Emission: A Trailblazing Journey to the Field of Biomedicine. ACS Appl Bio Mater 2018;1:1768-86. [DOI: 10.1021/acsabm.8b00600] [Cited by in Crossref: 163] [Cited by in F6Publishing: 167] [Article Influence: 40.8] [Reference Citation Analysis]
145 Minton K. Introducing … thymic tuft cells. Nat Rev Immunol 2018;18:542. [PMID: 30050053 DOI: 10.1038/s41577-018-0047-x] [Reference Citation Analysis]