BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang H, Chen K, Tan Q, Shao Q, Han S, Zhang C, Yi C, Chu X, Zhu Y, Xu Y, Zhao Q, Wu B. Structural basis for chemokine recognition and receptor activation of chemokine receptor CCR5. Nat Commun 2021;12:4151. [PMID: 34230484 DOI: 10.1038/s41467-021-24438-5] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 10.5] [Reference Citation Analysis]
Number Citing Articles
1 Shi Y, Chen Y, Deng L, Du K, Lu S, Chen T. Structural Understanding of Peptide-Bound G Protein-Coupled Receptors: Peptide-Target Interactions. J Med Chem 2023;66:1083-111. [PMID: 36625741 DOI: 10.1021/acs.jmedchem.2c01309] [Reference Citation Analysis]
2 Hillman T. A Predictive Model for Identifying the Most Effective Anti-CCR5 Monoclonal Antibody. Arch Pharm Pract 2023;14:40-49. [DOI: 10.51847/d9m2zufqr4] [Reference Citation Analysis]
3 Yao H, Cai H, Li D. Fluorescence-Detection Size-Exclusion Chromatography-Based Thermostability Assay for Membrane Proteins. Methods in Molecular Biology 2023. [DOI: 10.1007/978-1-0716-2667-2_16] [Reference Citation Analysis]
4 Zhao W, Zhang W, Wang M, Lu M, Chen S, Tang T, Schnapp G, Wagner H, Brennauer A, Yi C, Chu X, Han S, Wu B, Zhao Q. Ligand recognition and activation of neuromedin U receptor 2. Nat Commun 2022;13:7955. [PMID: 36575163 DOI: 10.1038/s41467-022-34814-4] [Reference Citation Analysis]
5 Aguas ED, Azizogli A, Kashyap J, Dodd‐o J, Siddiqui Z, Sy J, Kumar V. Rational Design of De Novo CCL2 Binding Peptides. Advcd Theory and Sims 2022. [DOI: 10.1002/adts.202200810] [Reference Citation Analysis]
6 Singh P, Kumar V, Lee G, Jung TS, Ha MW, Hong JC, Lee KW. Pharmacophore-Oriented Identification of Potential Leads as CCR5 Inhibitors to Block HIV Cellular Entry. Int J Mol Sci 2022;23. [PMID: 36555761 DOI: 10.3390/ijms232416122] [Reference Citation Analysis]
7 Secchi M, Vangelista L. Rational Engineering of a Sub-Picomolar HIV-1 Blocker. Viruses 2022;14. [PMID: 36366513 DOI: 10.3390/v14112415] [Reference Citation Analysis]
8 Goode-Romero G, Dominguez L. Computational study of the structural ensemble of CC chemokine receptor type 5 (CCR5) and its interactions with different ligands. PLoS One 2022;17:e0275269. [PMID: 36251708 DOI: 10.1371/journal.pone.0275269] [Reference Citation Analysis]
9 Qiao D, Zhao Y, Pei C, Zhao X, Jiang X, Zhu L, Zhang J, Li L, Kong X. Genome-wide identification, evolutionary analysis, and antimicrobial activity prediction of CC chemokines in allotetraploid common carp, Cyprinus carpio. Fish Shellfish Immunol 2022;130:114-31. [PMID: 36084887 DOI: 10.1016/j.fsi.2022.09.002] [Reference Citation Analysis]
10 Fan G, Jun-xing P, Jin-wen H. Screening of genes related to the interaction between Listeria monocytogenes and host cells.. [DOI: 10.1101/2022.08.28.505572] [Reference Citation Analysis]
11 Aryal P, Devkota SR, Jeevarajah D, Law R, Payne RJ, Bhusal RP, Stone MJ. Swapping N-terminal regions among tick evasins reveals cooperative interactions influencing chemokine binding and selectivity. J Biol Chem 2022;:102382. [PMID: 35973511 DOI: 10.1016/j.jbc.2022.102382] [Reference Citation Analysis]
12 Yen Y, Schafer CT, Gustavsson M, Eberle SA, Dominik PK, Deneka D, Zhang P, Schall TJ, Kossiakoff AA, Tesmer JJG, Handel TM. Structures of atypical chemokine receptor 3 reveal the basis for its promiscuity and signaling bias. Sci Adv 2022;8:eabn8063. [DOI: 10.1126/sciadv.abn8063] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
13 Lu M, Zhao W, Han S, Lin X, Xu T, Tan Q, Wang M, Yi C, Chu X, Yang W, Zhu Y, Wu B, Zhao Q. Activation of the human chemokine receptor CX3CR1 regulated by cholesterol. Sci Adv 2022;8:eabn8048. [PMID: 35767622 DOI: 10.1126/sciadv.abn8048] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Shao Z, Tan Y, Shen Q, Hou L, Yao B, Qin J, Xu P, Mao C, Chen L, Zhang H, Shen D, Zhang C, Li W, Du X, Li F, Chen Z, Jiang Y, Xu HE, Ying S, Ma H, Zhang Y, Shen H. Molecular insights into ligand recognition and activation of chemokine receptors CCR2 and CCR3. Cell Discov 2022;8. [DOI: 10.1038/s41421-022-00403-4] [Reference Citation Analysis]
15 Jasinska AJ, Pandrea I, Apetrei C. CCR5 as a Coreceptor for Human Immunodeficiency Virus and Simian Immunodeficiency Viruses: A Prototypic Love-Hate Affair. Front Immunol 2022;13:835994. [PMID: 35154162 DOI: 10.3389/fimmu.2022.835994] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Larsen O, van der Velden WJC, Mavri M, Schuermans S, Rummel PC, Karlshøj S, Gustavsson M, Proost P, Våbenø J, Rosenkilde MM. Identification of a conserved chemokine receptor motif that enables ligand discrimination. Sci Signal 2022;15:eabg7042. [PMID: 35258997 DOI: 10.1126/scisignal.abg7042] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Zhuang Y, Wang L, Guo J, Sun D, Wang Y, Liu W, Xu HE, Zhang C. Molecular recognition of formylpeptides and diverse agonists by the formylpeptide receptors FPR1 and FPR2. Nat Commun 2022;13:1054. [PMID: 35217703 DOI: 10.1038/s41467-022-28586-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
18 Mohamed H, Gurrola T, Berman R, Collins M, Sariyer IK, Nonnemacher MR, Wigdahl B. Targeting CCR5 as a Component of an HIV-1 Therapeutic Strategy. Front Immunol 2022;12:816515. [DOI: 10.3389/fimmu.2021.816515] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
19 Amerzhanova Y, Vangelista L. Filling the Gaps in Antagonist CCR5 Binding, a Retrospective and Perspective Analysis. Front Immunol 2022;13:826418. [DOI: 10.3389/fimmu.2022.826418] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Qin J, Cai Y, Xu Z, Ming Q, Ji SY, Wu C, Zhang H, Mao C, Shen DD, Hirata K, Ma Y, Yan W, Zhang Y, Shao Z. Molecular mechanism of agonism and inverse agonism in ghrelin receptor. Nat Commun 2022;13:300. [PMID: 35027551 DOI: 10.1038/s41467-022-27975-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
21 Isaikina P, Tsai C, Petrovic I, Rogowski M, Dürr AM, Grzesiek S. Preparation of a stable CCL5·CCR5·Gi signaling complex for Cryo-EM analysis. Biomolecular Interactions Part B 2022. [DOI: 10.1016/bs.mcb.2022.03.001] [Reference Citation Analysis]
22 Shao Z, Shen Q, Yao B, Mao C, Chen LN, Zhang H, Shen DD, Zhang C, Li W, Du X, Li F, Ma H, Chen ZH, Xu HE, Ying S, Zhang Y, Shen H. Identification and mechanism of G protein-biased ligands for chemokine receptor CCR1. Nat Chem Biol 2021. [PMID: 34949837 DOI: 10.1038/s41589-021-00918-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
23 Bauss J, Morris M, Shankar R, Olivero R, Buck LN, Stenger CL, Hinds D, Mills J, Eby A, Zagorski JW, Smith C, Cline S, Hartog NL, Chen B, Huss J, Carcillo JA, Rajasekaran S, Bupp CP, Prokop JW. CCR5 and Biological Complexity: The Need for Data Integration and Educational Materials to Address Genetic/Biological Reductionism at the Interface of Ethical, Legal, and Social Implications. Front Immunol 2021;12:790041. [PMID: 34925370 DOI: 10.3389/fimmu.2021.790041] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]