BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sekiya S, Suzuki A. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature. 2011;475:390-393. [PMID: 21716291 DOI: 10.1038/nature10263] [Cited by in Crossref: 590] [Cited by in F6Publishing: 533] [Article Influence: 53.6] [Reference Citation Analysis]
Number Citing Articles
1 Yi L, Yang L. Stem-like T cells and niches: Implications in human health and disease. Front Immunol 2022;13:907172. [DOI: 10.3389/fimmu.2022.907172] [Reference Citation Analysis]
2 Behl T, Kaur I, Sehgal A, Singh S, Sharma N, Chigurupati S, Felemban SG, Alsubayiel AM, Iqbal MS, Bhatia S, Al-Harrasi A, Bungau S, Mostafavi E. "Cutting the Mustard" with Induced Pluripotent Stem Cells: An Overview and Applications in Healthcare Paradigm. Stem Cell Rev Rep 2022. [PMID: 35793037 DOI: 10.1007/s12015-022-10390-4] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Kuang J, Huang T, Pei D. The Art of Reprogramming for Regenerative Medicine. Front Cell Dev Biol 2022;10:927555. [DOI: 10.3389/fcell.2022.927555] [Reference Citation Analysis]
4 Jahnavi S, Garg V, Vasandan AB, SundarRaj S, Kumar A, Prasanna S J. Lineage reprogramming of human adipose mesenchymal stem cells to immune modulatory i-Heps. Int J Biochem Cell Biol 2022;149:106256. [PMID: 35772664 DOI: 10.1016/j.biocel.2022.106256] [Reference Citation Analysis]
5 Saiding Q, Chen X, Cui W. Programmable multicellular and spatially patterned organoids: A one-pot strategy. Matter 2022;5:1633-5. [DOI: 10.1016/j.matt.2022.04.026] [Reference Citation Analysis]
6 Tang XY, Wu S, Wang D, Chu C, Hong Y, Tao M, Hu H, Xu M, Guo X, Liu Y. Human organoids in basic research and clinical applications. Signal Transduct Target Ther 2022;7:168. [PMID: 35610212 DOI: 10.1038/s41392-022-01024-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Nishimura W, Iwasa H, Tumurkhuu M. Role of the Transcription Factor MAFA in the Maintenance of Pancreatic β-Cells. Int J Mol Sci 2022;23:4478. [PMID: 35562869 DOI: 10.3390/ijms23094478] [Reference Citation Analysis]
8 Kim I, Ghosh A, Bundschuh N, Hinte L, Petrosyan E, von Meyenn F, Bar-Nur O. Integrative molecular roadmap for direct conversion of fibroblasts into myocytes and myogenic progenitor cells. Sci Adv 2022;8:eabj4928. [PMID: 35385316 DOI: 10.1126/sciadv.abj4928] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Kitano H, Kawabe Y, Kamihira M. HepG2-Based Designer Cells with Heat-Inducible Enhanced Liver Functions. Cells 2022;11:1194. [DOI: 10.3390/cells11071194] [Reference Citation Analysis]
10 Skylar-Scott MA, Huang JY, Lu A, Ng AHM, Duenki T, Liu S, Nam LL, Damaraju S, Church GM, Lewis JA. Orthogonally induced differentiation of stem cells for the programmatic patterning of vascularized organoids and bioprinted tissues. Nat Biomed Eng 2022. [PMID: 35332307 DOI: 10.1038/s41551-022-00856-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
11 Kong W, Fu YC, Holloway EM, Garipler G, Yang X, Mazzoni EO, Morris SA. Capybara: A computational tool to measure cell identity and fate transitions. Cell Stem Cell 2022:S1934-5909(22)00099-6. [PMID: 35354062 DOI: 10.1016/j.stem.2022.03.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Miyoshi T, Hidaka M, Miyamoto D, Sakai Y, Murakami S, Huang Y, Hara T, Soyama A, Kanetaka K, Ochiya T, Eguchi S. Successful induction of human chemically induced liver progenitors with small molecules from damaged liver. J Gastroenterol 2022. [PMID: 35294680 DOI: 10.1007/s00535-022-01869-5] [Reference Citation Analysis]
13 Balsalobre A, Drouin J. Pioneer factors as master regulators of the epigenome and cell fate. Nat Rev Mol Cell Biol 2022. [PMID: 35264768 DOI: 10.1038/s41580-022-00464-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
14 Lange M, Bergen V, Klein M, Setty M, Reuter B, Bakhti M, Lickert H, Ansari M, Schniering J, Schiller HB, Pe'er D, Theis FJ. CellRank for directed single-cell fate mapping. Nat Methods 2022. [PMID: 35027767 DOI: 10.1038/s41592-021-01346-6] [Cited by in Crossref: 39] [Cited by in F6Publishing: 17] [Article Influence: 39.0] [Reference Citation Analysis]
15 Cacho-Navas C, Reglero-Real N, Colás-Algora N, Barroso S, de Rivas G, Stamatakis K, Feito J, Andrés G, Fresno M, Kremer L, Correas I, Alonso MA, Millán J. Plasmolipin regulates basolateral-to-apical transcytosis of ICAM-1 and leukocyte adhesion in polarized hepatic epithelial cells. Cell Mol Life Sci 2022;79:61. [PMID: 34999972 DOI: 10.1007/s00018-021-04095-z] [Reference Citation Analysis]
16 Liu C, Wang L, Xu M, Sun Y, Xing Z, Zhang J, Wang C, Dong L. Reprogramming the spleen into a functioning 'liver' in vivo. Gut 2022:gutjnl-2021-325018. [PMID: 34996824 DOI: 10.1136/gutjnl-2021-325018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Hansen JL, Loell KJ, Cohen BA. A test of the pioneer factor hypothesis using ectopic liver gene activation. Elife 2022;11:e73358. [PMID: 34984978 DOI: 10.7554/eLife.73358] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
18 Katada R, Tanaka J, Takamatsu K, Hata K, Yasuhara R, Ohnuma S, Takakura I, Nishimura R, Shirota T, Mishima K. Induction of salivary gland-like cells from epithelial tissues transdifferentiated from mouse embryonic fibroblasts. Biochem Biophys Res Commun 2022;586:55-62. [PMID: 34826701 DOI: 10.1016/j.bbrc.2021.11.064] [Reference Citation Analysis]
19 Jung C, Oh JE, Lee S, Yoon Y. Generation and Application of Directly Reprogrammed Endothelial Cells. Korean Circ J 2022;52:e87. [DOI: 10.4070/kcj.2022.0190] [Reference Citation Analysis]
20 Segovia-Zafra A, Di Zeo-Sánchez DE, López-Gómez C, Pérez-Valdés Z, García-Fuentes E, Andrade RJ, Lucena MI, Villanueva-Paz M. Preclinical models of idiosyncratic drug-induced liver injury (iDILI): Moving towards prediction. Acta Pharm Sin B 2021;11:3685-726. [PMID: 35024301 DOI: 10.1016/j.apsb.2021.11.013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
21 Li B, Hon GC. Single-Cell Genomics: Catalyst for Cell Fate Engineering. Front Bioeng Biotechnol 2021;9:748942. [PMID: 34733831 DOI: 10.3389/fbioe.2021.748942] [Reference Citation Analysis]
22 Qu M, Qu H, Jia Z, Kay SA. HNF4A defines tissue-specific circadian rhythms by beaconing BMAL1::CLOCK chromatin binding and shaping the rhythmic chromatin landscape. Nat Commun 2021;12:6350. [PMID: 34732735 DOI: 10.1038/s41467-021-26567-3] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
23 Tocan V, Hayase J, Kamakura S, Kohda A, Ohga S, Kohjima M, Sumimoto H. Hepatocyte polarity establishment and apical lumen formation are organized by Par3, Cdc42, and aPKC in conjunction with Lgl. J Biol Chem 2021;297:101354. [PMID: 34717957 DOI: 10.1016/j.jbc.2021.101354] [Reference Citation Analysis]
24 Zhang L, Ma XJ, Fei YY, Han HT, Xu J, Cheng L, Li X. Stem cell therapy in liver regeneration: Focus on mesenchymal stem cells and induced pluripotent stem cells. Pharmacol Ther 2021;:108004. [PMID: 34597754 DOI: 10.1016/j.pharmthera.2021.108004] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
25 Anzai K, Tsuruya K, Ida K, Kagawa T, Inagaki Y, Kamiya A. Kruppel-like factor 15 induces the development of mature hepatocyte-like cells from hepatoblasts. Sci Rep 2021;11:18551. [PMID: 34535735 DOI: 10.1038/s41598-021-97937-6] [Reference Citation Analysis]
26 Campbell SA, Stephan TL, Lotto J, Cullum R, Drissler S, Hoodless PA. Signalling pathways and transcriptional regulators orchestrating liver development and cancer. Development 2021;148:dev199814. [PMID: 34478514 DOI: 10.1242/dev.199814] [Reference Citation Analysis]
27 Sun L, Hui L. Progress in human liver organoids. J Mol Cell Biol 2020;12:607-17. [PMID: 32236564 DOI: 10.1093/jmcb/mjaa013] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
28 Liu KC, Villasenor A, Bertuzzi M, Schmitner N, Radros N, Rautio L, Mattonet K, Matsuoka RL, Reischauer S, Stainier DY, Andersson O. Insulin-producing β-cells regenerate ectopically from a mesodermal origin under the perturbation of hemato-endothelial specification. Elife 2021;10:e65758. [PMID: 34403334 DOI: 10.7554/eLife.65758] [Reference Citation Analysis]
29 Qin J, Hu Y, Yao JC, Leung RWT, Zhou Y, Qin Y, Wang J. Cell fate conversion prediction by group sparse optimization method utilizing single-cell and bulk OMICs data. Brief Bioinform 2021:bbab311. [PMID: 34374760 DOI: 10.1093/bib/bbab311] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
30 Tachmatzidi EC, Galanopoulou O, Talianidis I. Transcription Control of Liver Development. Cells 2021;10:2026. [PMID: 34440795 DOI: 10.3390/cells10082026] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Sahu B, Pihlajamaa P, Zhang K, Palin K, Ahonen S, Cervera A, Ristimäki A, Aaltonen LA, Hautaniemi S, Taipale J. Human cell transformation by combined lineage conversion and oncogene expression. Oncogene 2021. [PMID: 34302118 DOI: 10.1038/s41388-021-01940-0] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
32 Zimmermannova O, Caiado I, Ferreira AG, Pereira CF. Cell Fate Reprogramming in the Era of Cancer Immunotherapy. Front Immunol 2021;12:714822. [PMID: 34367185 DOI: 10.3389/fimmu.2021.714822] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
33 Sadahiro T, Ieda M. In vivo reprogramming as a new approach to cardiac regenerative therapy. Semin Cell Dev Biol 2021:S1084-9521(21)00170-1. [PMID: 34210577 DOI: 10.1016/j.semcdb.2021.06.019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
34 Armstrong JPK, Keane TJ, Roques AC, Patrick PS, Mooney CM, Kuan WL, Pisupati V, Oreffo ROC, Stuckey DJ, Watt FM, Forbes SJ, Barker RA, Stevens MM. A blueprint for translational regenerative medicine. Sci Transl Med 2020;12:eaaz2253. [PMID: 33268507 DOI: 10.1126/scitranslmed.aaz2253] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
35 Yang Q, Shi H, Quan Y, Chen Q, Li W, Wang L, Wang Y, Ji Z, Yin SK, Shi HB, Xu H, Gao WQ. Stepwise Induction of Inner Ear Hair Cells From Mouse Embryonic Fibroblasts via Mesenchymal- to-Epithelial Transition and Formation of Otic Epithelial Cells. Front Cell Dev Biol 2021;9:672406. [PMID: 34222247 DOI: 10.3389/fcell.2021.672406] [Reference Citation Analysis]
36 Ochiai M, Nguyen HT, Kurihara N, Hirano M, Tajima Y, Yamada TK, Iwata H. Directly Reprogrammed Neurons as a Tool to Assess Neurotoxicity of the Contaminant 4-Hydroxy-2',3,5,5'-tetrachlorobiphenyl (4'OH-CB72) in Melon-Headed Whales. Environ Sci Technol 2021;55:8159-68. [PMID: 34061511 DOI: 10.1021/acs.est.1c01074] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
37 Kim Y, Kim YW, Lee SB, Kang K, Yoon S, Choi D, Park SH, Jeong J. Hepatic patch by stacking patient-specific liver progenitor cell sheets formed on multiscale electrospun fibers promotes regenerative therapy for liver injury. Biomaterials 2021;274:120899. [PMID: 34034028 DOI: 10.1016/j.biomaterials.2021.120899] [Cited by in Crossref: 1] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
38 Levings DC, Lacher SE, Palacios-Moreno J, Slattery M. Transcriptional reprogramming by oxidative stress occurs within a predefined chromatin accessibility landscape. Free Radic Biol Med 2021;171:319-31. [PMID: 33992677 DOI: 10.1016/j.freeradbiomed.2021.05.016] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
39 Rombaut M, Boeckmans J, Rodrigues RM, van Grunsven LA, Vanhaecke T, De Kock J. Direct reprogramming of somatic cells into induced hepatocytes: Cracking the Enigma code. J Hepatol 2021;75:690-705. [PMID: 33989701 DOI: 10.1016/j.jhep.2021.04.048] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
40 Kim Y, Hong SA, Yu J, Eom J, Jang K, Yoon S, Hong DH, Seo D, Lee SN, Woo JS, Jeong J, Bae S, Choi D. Adenine base editing and prime editing of chemically derived hepatic progenitors rescue genetic liver disease. Cell Stem Cell 2021;28:1614-1624.e5. [PMID: 33951479 DOI: 10.1016/j.stem.2021.04.010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 18] [Article Influence: 1.0] [Reference Citation Analysis]
41 Fráguas-Eggenschwiler M, Eggenschwiler R, Söllner JH, Cortnumme L, Vondran FWR, Cantz T, Ott M, Niemann H. Direct conversion of porcine primary fibroblasts into hepatocyte-like cells. Sci Rep 2021;11:9334. [PMID: 33927320 DOI: 10.1038/s41598-021-88727-1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
42 Napolitano F, Rapakoulia T, Annunziata P, Hasegawa A, Cardon M, Napolitano S, Vaccaro L, Iuliano A, Wanderlingh LG, Kasukawa T, Medina DL, Cacchiarelli D, Gao X, di Bernardo D, Arner E. Automatic identification of small molecules that promote cell conversion and reprogramming. Stem Cell Reports 2021;16:1381-90. [PMID: 33891873 DOI: 10.1016/j.stemcr.2021.03.028] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
43 Zubareva EV, Nadezhdin SV, Nadezhdina NA, Belyaeva VS, Burda YE, Avtina TV, Gudyrev OS, Kolesnik IM, Kulikova SY, Mishenin MO. 3D organotypic cell structures for drug development and Microorganism-Host interaction research. RRP 2021;7:47-64. [DOI: 10.3897/rrpharmacology.7.62118] [Reference Citation Analysis]
44 Khan S, Khan RS, Newsome PN. Cell Therapy for Liver Disease: From Promise to Reality. Semin Liver Dis 2020;40:411-26. [PMID: 33764490 DOI: 10.1055/s-0040-1717096] [Reference Citation Analysis]
45 Han JK, Shin Y, Sohn MH, Choi SB, Shin D, You Y, Shin JY, Seo JS, Kim HS. Direct conversion of adult human fibroblasts into functional endothelial cells using defined factors. Biomaterials 2021;272:120781. [PMID: 33848809 DOI: 10.1016/j.biomaterials.2021.120781] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
46 Wei W, Li QG, Long X, Hu GH, He HJ, Huang YB, Yi XL. Sarcomatoid carcinoma of the prostate with bladder invasion shortly after androgen deprivation: Two case reports. World J Clin Cases 2021; 9(7): 1668-1675 [PMID: 33728311 DOI: 10.12998/wjcc.v9.i7.1668] [Reference Citation Analysis]
47 Wang H, Yang Y, Liu J, Qian L. Direct cell reprogramming: approaches, mechanisms and progress. Nat Rev Mol Cell Biol 2021;22:410-24. [PMID: 33619373 DOI: 10.1038/s41580-021-00335-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 40] [Article Influence: 13.0] [Reference Citation Analysis]
48 Thompson WL, Takebe T. Human liver model systems in a dish. Dev Growth Differ 2021;63:47-58. [PMID: 33423319 DOI: 10.1111/dgd.12708] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
49 Balakrishnan A, Belfiore L, Chu TH, Fleming T, Midha R, Biernaskie J, Schuurmans C. Insights Into the Role and Potential of Schwann Cells for Peripheral Nerve Repair From Studies of Development and Injury. Front Mol Neurosci 2020;13:608442. [PMID: 33568974 DOI: 10.3389/fnmol.2020.608442] [Cited by in Crossref: 2] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
50 Ullah I, Shin Y, Kim Y, Oh KB, Hwang S, Kim YI, Lee JW, Hur TY, Lee S, Ock SA. Effect of sex-specific differences on function of induced hepatocyte-like cells generated from male and female mouse embryonic fibroblasts. Stem Cell Res Ther 2021;12:79. [PMID: 33494802 DOI: 10.1186/s13287-020-02100-z] [Reference Citation Analysis]
51 Lu Z, Priya Rajan SA, Song Q, Zhao Y, Wan M, Aleman J, Skardal A, Bishop C, Atala A, Lu B. 3D scaffold-free microlivers with drug metabolic function generated by lineage-reprogrammed hepatocytes from human fibroblasts. Biomaterials 2021;269:120668. [PMID: 33461059 DOI: 10.1016/j.biomaterials.2021.120668] [Reference Citation Analysis]
52 Lu Y, Dai W, Huang J, Chen X, Yao Y. A Biomimetic Glue Protein Modulates Hepatic Gene Expression. Macromol Biosci 2021;21:e2000303. [PMID: 33393184 DOI: 10.1002/mabi.202000303] [Reference Citation Analysis]
53 Zhan X, Zhao A. Transcription factor FOXA3 promotes the development of Hepatoblastoma via regulating HNF1A, AFP, and ZFHX3 expression. J Clin Lab Anal 2021;35:e23686. [PMID: 33368532 DOI: 10.1002/jcla.23686] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
54 Horisawa K, Suzuki A. Direct cell-fate conversion of somatic cells: Toward regenerative medicine and industries. Proc Jpn Acad Ser B Phys Biol Sci 2020;96:131-58. [PMID: 32281550 DOI: 10.2183/pjab.96.012] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
55 Toyosaki M, Homma K, Suzuki S, Muraoka N, Hashimoto H, Goshima N, Ieda M, Sasaki J. Dermal fibroblast-like cells reprogrammed directly from adipocytes in mouse. Sci Rep 2020;10:21467. [PMID: 33293623 DOI: 10.1038/s41598-020-78523-8] [Reference Citation Analysis]
56 El-Khoury F, Bignon J, Martin JR. jouvence, a new human snoRNA involved in the control of cell proliferation. BMC Genomics 2020;21:817. [PMID: 33225905 DOI: 10.1186/s12864-020-07197-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Śmiech M, Leszczyński P, Kono H, Wardell C, Taniguchi H. Emerging BRAF Mutations in Cancer Progression and Their Possible Effects on Transcriptional Networks. Genes (Basel) 2020;11:E1342. [PMID: 33198372 DOI: 10.3390/genes11111342] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
58 Motohashi T, Kawamura N, Watanabe N, Kitagawa D, Goshima N, Kunisada T. Sox10 Functions as an Inducer of the Direct Conversion of Keratinocytes Into Neural Crest Cells. Stem Cells Dev 2020;29:1510-9. [PMID: 33040687 DOI: 10.1089/scd.2020.0106] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
59 Im GI, Kim TK. Overcoming Current Dilemma in Cartilage Regeneration: Will Direct Conversion Provide a Breakthrough? Tissue Eng Regen Med 2020;17:829-34. [PMID: 33098546 DOI: 10.1007/s13770-020-00303-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
60 Inada H, Udono M, Matsuda-Ito K, Horisawa K, Ohkawa Y, Miura S, Goya T, Yamamoto J, Nagasaki M, Ueno K, Saitou D, Suyama M, Maehara Y, Kumamaru W, Ogawa Y, Sekiya S, Suzuki A. Direct reprogramming of human umbilical vein- and peripheral blood-derived endothelial cells into hepatic progenitor cells. Nat Commun 2020;11:5292. [PMID: 33087715 DOI: 10.1038/s41467-020-19041-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
61 Hagiwara R, Oki Y, Matsumaru T, Ibayashi S, Kano K. Generation of metabolically functional hepatocyte-like cells from dedifferentiated fat cells by Foxa2, Hnf4a and Sall1 transduction. Genes Cells 2020;25:811-24. [PMID: 33064855 DOI: 10.1111/gtc.12814] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
62 Nishiwaki M, Toyoda M, Oishi Y, Ishida S, Horiuchi SI, Makino-Itou H, Kimura T, Ohno SI, Ohkura T, Enosawa S, Akutsu H, Nakazawa A, Kasahara M, Kiyono T, Umezawa A. Immortalization of human hepatocytes from biliary atresia with CDK4R24C, cyclin D1, and TERT for cytochrome P450 induction testing. Sci Rep 2020;10:17503. [PMID: 33060611 DOI: 10.1038/s41598-020-73992-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
63 Dwyer BJ, Macmillan MT, Brennan PN, Forbes SJ. Cell therapy for advanced liver diseases: Repair or rebuild. J Hepatol 2021;74:185-99. [PMID: 32976865 DOI: 10.1016/j.jhep.2020.09.014] [Cited by in Crossref: 10] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
64 Lee S, Park BW, Lee YJ, Ban K, Park HJ. In vivo combinatory gene therapy synergistically promotes cardiac function and vascular regeneration following myocardial infarction. J Tissue Eng 2020;11:2041731420953413. [PMID: 35003614 DOI: 10.1177/2041731420953413] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
65 Wang M, Yu J, Cai L, Yang X. Direct reprogramming of mouse fibroblasts into hepatocyte-like cells by polyethyleneimine-modified nanoparticles through epigenetic activation of hepatic transcription factors. Materials Today Chemistry 2020;17:100281. [DOI: 10.1016/j.mtchem.2020.100281] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
66 Camolotto SA, Belova VK, Torre-Healy L, Vahrenkamp JM, Berrett KC, Conway H, Shea J, Stubben C, Moffitt R, Gertz J, Snyder EL. Reciprocal regulation of pancreatic ductal adenocarcinoma growth and molecular subtype by HNF4α and SIX1/4. Gut 2021;70:900-14. [PMID: 32826305 DOI: 10.1136/gutjnl-2020-321316] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
67 Sallam A, Mousa SA. Neurodegenerative Diseases and Cell Reprogramming. Mol Neurobiol 2020;57:4767-77. [PMID: 32785825 DOI: 10.1007/s12035-020-02039-5] [Reference Citation Analysis]
68 Horisawa K, Udono M, Ueno K, Ohkawa Y, Nagasaki M, Sekiya S, Suzuki A. The Dynamics of Transcriptional Activation by Hepatic Reprogramming Factors. Mol Cell 2020;79:660-676.e8. [PMID: 32755593 DOI: 10.1016/j.molcel.2020.07.012] [Cited by in Crossref: 9] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
69 Duan J, Li B, Bhakta M, Xie S, Zhou P, Munshi NV, Hon GC. Rational Reprogramming of Cellular States by Combinatorial Perturbation. Cell Rep 2019;27:3486-3499.e6. [PMID: 31216470 DOI: 10.1016/j.celrep.2019.05.079] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
70 Ruzittu S, Willnow D, Spagnoli FM. Direct Lineage Reprogramming: Harnessing Cell Plasticity between Liver and Pancreas. Cold Spring Harb Perspect Biol 2020;12:a035626. [PMID: 31767653 DOI: 10.1101/cshperspect.a035626] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Luk ST, Ng KY, Zhou L, Tong M, Wong TL, Yu H, Lo CM, Man K, Guan XY, Lee TK, Ma S. Deficiency in Embryonic Stem Cell Marker Reduced Expression 1 Activates Mitogen-Activated Protein Kinase Kinase 6-Dependent p38 Mitogen-Activated Protein Kinase Signaling to Drive Hepatocarcinogenesis. Hepatology 2020;72:183-97. [PMID: 31680287 DOI: 10.1002/hep.31020] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
72 Hong S, Oh SJ, Choi D, Hwang Y, Kim SH. Self-Organized Liver Microtissue on a Bio-Functional Surface: The Role of Human Adipose-Derived Stromal Cells in Hepatic Function. Int J Mol Sci 2020;21:E4605. [PMID: 32610471 DOI: 10.3390/ijms21134605] [Reference Citation Analysis]
73 Lerner J, Gomez-Garcia PA, McCarthy RL, Liu Z, Lakadamyali M, Zaret KS. Two-Parameter Mobility Assessments Discriminate Diverse Regulatory Factor Behaviors in Chromatin. Mol Cell 2020;79:677-688.e6. [PMID: 32574554 DOI: 10.1016/j.molcel.2020.05.036] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 14.5] [Reference Citation Analysis]
74 Hwang M, Lee EJ, Chung MJ, Park S, Jeong KS. Five transcriptional factors reprogram fibroblast into myogenic lineage cells via paraxial mesoderm stage. Cell Cycle 2020;19:1804-16. [PMID: 32579865 DOI: 10.1080/15384101.2020.1780384] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
75 Yu B, Li H, Chen J, He Z, Sun H, Yang G, Shang C, Wang X, Li C, Chen Y, Hu Y. Extensively expanded murine-induced hepatic stem cells maintain high-efficient hepatic differentiation potential for repopulation of injured livers. Liver Int 2020;40:2293-304. [PMID: 32394491 DOI: 10.1111/liv.14509] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
76 Choi JS, Han S, Ryu HA, Kim SW. Directly induced hepatogenic cells derived from human fibroblast ameliorate liver fibrosis. J Tissue Eng Regen Med 2020;14:1028-36. [PMID: 32476287 DOI: 10.1002/term.3073] [Reference Citation Analysis]
77 Wu H, Du C, Yang F, Zheng X, Qiu D, Zhang Q, Chen W, Xu Y. Generation of hepatocyte-like cells from human urinary epithelial cells and the role of autophagy during direct reprogramming. Biochemical and Biophysical Research Communications 2020;527:723-9. [DOI: 10.1016/j.bbrc.2020.03.119] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
78 Gao B, Xie W, Wu X, Wang L, Guo J. Functionally analyzing the important roles of hepatocyte nuclear factor 3 (FoxA) in tumorigenesis. Biochim Biophys Acta Rev Cancer 2020;1873:188365. [PMID: 32325165 DOI: 10.1016/j.bbcan.2020.188365] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
79 Orge ID, Gadd VL, Barouh JL, Rossi EA, Carvalho RH, Smith I, Allahdadi KJ, Paredes BD, Silva DN, Damasceno PKF, Sampaio GL, Forbes SJ, Soares MBP, Souza BSF. Phenotype instability of hepatocyte-like cells produced by direct reprogramming of mesenchymal stromal cells. Stem Cell Res Ther 2020;11:154. [PMID: 32276654 DOI: 10.1186/s13287-020-01665-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
80 Miura S, Suzuki A. Induction of Steatohepatitis and Liver Tumorigenesis by Enforced Snail Expression in Hepatocytes. Am J Pathol 2020;190:1271-83. [PMID: 32188584 DOI: 10.1016/j.ajpath.2020.02.005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
81 Fang J, Hsueh YY, Soto J, Sun W, Wang J, Gu Z, Khademhosseini A, Li S. Engineering Biomaterials with Micro/Nanotechnologies for Cell Reprogramming. ACS Nano 2020;14:1296-318. [PMID: 32011856 DOI: 10.1021/acsnano.9b04837] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 9.0] [Reference Citation Analysis]
82 Nitta S, Kusakari Y, Yamada Y, Kubo T, Neo S, Igarashi H, Hisasue M. Conversion of mesenchymal stem cells into a canine hepatocyte-like cells by Foxa1 and Hnf4a. Regen Ther 2020;14:165-76. [PMID: 32123700 DOI: 10.1016/j.reth.2020.01.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
83 Lodrini AM, Barile L, Rocchetti M, Altomare C. Human Induced Pluripotent Stem Cells Derived from a Cardiac Somatic Source: Insights for an In-Vitro Cardiomyocyte Platform. Int J Mol Sci 2020;21:E507. [PMID: 31941149 DOI: 10.3390/ijms21020507] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
84 Armstrong JPK, Stevens MM. Emerging Technologies for Tissue Engineering: From Gene Editing to Personalized Medicine. Tissue Eng Part A 2019;25:688-92. [PMID: 30794069 DOI: 10.1089/ten.TEA.2019.0026] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
85 Kitazawa K, Hikichi T, Nakamura T, Nakamura M, Sotozono C, Masui S, Kinoshita S. Direct Reprogramming Into Corneal Epithelial Cells Using a Transcriptional Network Comprising PAX6, OVOL2, and KLF4. Cornea 2019;38 Suppl 1:S34-41. [PMID: 31403532 DOI: 10.1097/ICO.0000000000002074] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
86 Lee Y, Lee M, Lee SW, Choi NY, Ham S, Lee HJ, Ko K, Ko K. Reprogramming of spermatogonial stem cells into pluripotent stem cells in the spheroidal state. Anim Cells Syst (Seoul) 2019;23:392-8. [PMID: 31853376 DOI: 10.1080/19768354.2019.1672578] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
87 Prior N, Inacio P, Huch M. Liver organoids: from basic research to therapeutic applications. Gut 2019;68:2228-37. [PMID: 31300517 DOI: 10.1136/gutjnl-2019-319256] [Cited by in Crossref: 123] [Cited by in F6Publishing: 117] [Article Influence: 41.0] [Reference Citation Analysis]
88 Swamynathan SK, Wells A. Conjunctival goblet cells: Ocular surface functions, disorders that affect them, and the potential for their regeneration. Ocul Surf 2020;18:19-26. [PMID: 31734511 DOI: 10.1016/j.jtos.2019.11.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
89 Noce V, Battistelli C, Cozzolino AM, Consalvi V, Cicchini C, Strippoli R, Tripodi M, Marchetti A, Amicone L. YAP integrates the regulatory Snail/HNF4α circuitry controlling epithelial/hepatocyte differentiation. Cell Death Dis 2019;10:768. [PMID: 31601778 DOI: 10.1038/s41419-019-2000-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
90 Gam R, Sung M, Prasad Pandurangan A. Experimental and Computational Approaches to Direct Cell Reprogramming: Recent Advancement and Future Challenges. Cells 2019;8:E1189. [PMID: 31581647 DOI: 10.3390/cells8101189] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
91 Thakur A, Wong JCH, Wang EY, Lotto J, Kim D, Cheng JC, Mingay M, Cullum R, Moudgil V, Ahmed N, Tsai SH, Wei W, Walsh CP, Stephan T, Bilenky M, Fuglerud BM, Karimi MM, Gonzalez FJ, Hirst M, Hoodless PA. Hepatocyte Nuclear Factor 4-Alpha Is Essential for the Active Epigenetic State at Enhancers in Mouse Liver. Hepatology 2019;70:1360-76. [PMID: 30933372 DOI: 10.1002/hep.30631] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 9.0] [Reference Citation Analysis]
92 Furuya K, Zheng YW, Sako D, Iwasaki K, Zheng DX, Ge JY, Liu LP, Furuta T, Akimoto K, Yagi H, Hamada H, Isoda H, Oda T, Ohkohchi N. Enhanced hepatic differentiation in the subpopulation of human amniotic stem cells under 3D multicellular microenvironment. World J Stem Cells 2019; 11(9): 705-721 [PMID: 31616545 DOI: 10.4252/wjsc.v11.i9.705] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
93 Yavarpour‐bali H, Nakhaei‐nejad M, Yazdi A, Ghasemi‐kasman M. Direct conversion of somatic cells towards oligodendroglial lineage cells: A novel strategy for enhancement of myelin repair. J Cell Physiol 2020;235:2023-36. [DOI: 10.1002/jcp.29195] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
94 Terada M, Kawamata M, Kimura R, Sekiya S, Nagamatsu G, Hayashi K, Horisawa K, Suzuki A. Generation of Nanog reporter mice that distinguish pluripotent stem cells from unipotent primordial germ cells. genesis 2019;57. [DOI: 10.1002/dvg.23334] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
95 Peñalosa-ruiz G, Bright AR, Mulder KW, Veenstra GJC. The interplay of chromatin and transcription factors during cell fate transitions in development and reprogramming. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 2019;1862:194407. [DOI: 10.1016/j.bbagrm.2019.194407] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
96 Park MR, Wong MS, Araúzo-Bravo MJ, Lee H, Nam D, Park SY, Seo HD, Lee SM, Zeilhofer HF, Zaehres H, Schöler HR, Kim JB. Oct4 and Hnf4α-induced hepatic stem cells ameliorate chronic liver injury in liver fibrosis model. PLoS One 2019;14:e0221085. [PMID: 31404112 DOI: 10.1371/journal.pone.0221085] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
97 Fernandez Garcia M, Moore CD, Schulz KN, Alberto O, Donague G, Harrison MM, Zhu H, Zaret KS. Structural Features of Transcription Factors Associating with Nucleosome Binding. Mol Cell 2019;75:921-932.e6. [PMID: 31303471 DOI: 10.1016/j.molcel.2019.06.009] [Cited by in Crossref: 60] [Cited by in F6Publishing: 62] [Article Influence: 20.0] [Reference Citation Analysis]
98 Horiguchi M, Yoshida M, Hirata K, Furuyama K, Masui T, Uemoto S, Kawaguchi Y. Senescence caused by inactivation of the homeodomain transcription factor Pdx1 in adult pancreatic acinar cells in mice. FEBS Lett 2019;593:2226-34. [PMID: 31240701 DOI: 10.1002/1873-3468.13504] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
99 Pereira M, Birtele M, Rylander Ottosson D. Direct reprogramming into interneurons: potential for brain repair. Cell Mol Life Sci 2019;76:3953-67. [PMID: 31250034 DOI: 10.1007/s00018-019-03193-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
100 Beyret E, Martinez Redondo P, Platero Luengo A, Izpisua Belmonte JC. Elixir of Life: Thwarting Aging With Regenerative Reprogramming. Circ Res 2018;122:128-41. [PMID: 29301845 DOI: 10.1161/CIRCRESAHA.117.311866] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
101 Nakauka-Ddamba A, Lengner CJ. Gut with the Program: Direct Reprogramming toward Intestinal Epithelium Realized. Cell Stem Cell 2017;21:417-8. [PMID: 28985520 DOI: 10.1016/j.stem.2017.09.011] [Reference Citation Analysis]
102 Xie PY, Hu XJ, Guo RM, Meng XC, Pang PF, Zhou ZY, Li D, Shan H. Generation of functional hepatocyte-like cells from human bone marrow mesenchymal stem cells by overexpression of transcription factor HNF4α and FOXA2. Hepatobiliary Pancreat Dis Int 2019;18:546-56. [PMID: 31230960 DOI: 10.1016/j.hbpd.2019.03.013] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
103 Ang LT, Tan AKY, Autio MI, Goh SH, Choo SH, Lee KL, Tan J, Pan B, Lee JJH, Lum JJ, Lim CYY, Yeo IKX, Wong CJY, Liu M, Oh JLL, Chia CPL, Loh CH, Chen A, Chen Q, Weissman IL, Loh KM, Lim B. A Roadmap for Human Liver Differentiation from Pluripotent Stem Cells. Cell Rep 2018;22:2190-205. [PMID: 29466743 DOI: 10.1016/j.celrep.2018.01.087] [Cited by in Crossref: 71] [Cited by in F6Publishing: 57] [Article Influence: 23.7] [Reference Citation Analysis]
104 Boyd A, Newsome P, Lu W. The role of stem cells in liver injury and repair. Expert Review of Gastroenterology & Hepatology 2019;13:623-31. [DOI: 10.1080/17474124.2019.1618186] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
105 Hwang SI, Kwak TH, Kang JH, Kim J, Lee H, Kim KP, Ko K, Schöler HR, Han DW. Metastable Reprogramming State of Single Transcription Factor-Derived Induced Hepatocyte-Like Cells. Stem Cells Int 2019;2019:6937257. [PMID: 31089332 DOI: 10.1155/2019/6937257] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
106 Guo C, Kong W, Kamimoto K, Rivera-Gonzalez GC, Yang X, Kirita Y, Morris SA. CellTag Indexing: genetic barcode-based sample multiplexing for single-cell genomics. Genome Biol 2019;20:90. [PMID: 31072405 DOI: 10.1186/s13059-019-1699-y] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 7.7] [Reference Citation Analysis]
107 Lee JS, Roh YH, Choi YS, Jin Y, Jeon EJ, Bong KW, Cho S. Tissue Beads: Tissue‐Specific Extracellular Matrix Microbeads to Potentiate Reprogrammed Cell‐Based Therapy. Adv Funct Mater 2019;29:1807803. [DOI: 10.1002/adfm.201807803] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
108 Tang W, Guo R, Shen SJ, Zheng Y, Lu YT, Jiang MM, Cui X, Jiang CZ, Xie X. Chemical cocktails enable hepatic reprogramming of human urine-derived cells with a single transcription factor. Acta Pharmacol Sin 2019;40:620-9. [PMID: 30315254 DOI: 10.1038/s41401-018-0170-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
109 Abu-Dawud R, Graffmann N, Ferber S, Wruck W, Adjaye J. Pluripotent stem cells: induction and self-renewal. Philos Trans R Soc Lond B Biol Sci 2018;373:20170213. [PMID: 29786549 DOI: 10.1098/rstb.2017.0213] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
110 Watanabe K, Liu Y, Noguchi S, Murray M, Chang JC, Kishima M, Nishimura H, Hashimoto K, Minoda A, Suzuki H. OVOL2 induces mesenchymal-to-epithelial transition in fibroblasts and enhances cell-state reprogramming towards epithelial lineages. Sci Rep 2019;9:6490. [PMID: 31019211 DOI: 10.1038/s41598-019-43021-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
111 Lee GS, Kim MG, Kwon HJ. Electrical stimulation induces direct reprogramming of human dermal fibroblasts into hyaline chondrogenic cells. Biochem Biophys Res Commun 2019;513:990-6. [PMID: 31005261 DOI: 10.1016/j.bbrc.2019.04.027] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
112 Mansoori-Moghadam Z, Totonchi M, Hesaraki M, Aghdami N, Baharvand H, Moghadasali R. Programming of ES cells and reprogramming of fibroblasts into renal lineage-like cells. Exp Cell Res 2019;379:225-34. [PMID: 30981668 DOI: 10.1016/j.yexcr.2019.04.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
113 Ahmed MF, El-Sayed AK, Chen H, Zhao R, Yusuf MS, Zuo Q, Zhang Y, Li B. Comparison between curcumin and all-trans retinoic acid in the osteogenic differentiation of mouse bone marrow mesenchymal stem cells. Exp Ther Med 2019;17:4154-66. [PMID: 30988793 DOI: 10.3892/etm.2019.7414] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
114 Tsuchiya A, Lu WY. Liver stem cells: Plasticity of the liver epithelium. World J Gastroenterol 2019; 25(9): 1037-1049 [PMID: 30862993 DOI: 10.3748/wjg.v25.i9.1037] [Cited by in CrossRef: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
115 Shi X, Xiao Z, Zonta F, Wang W, Wan Y, Li Y, Wang N, Kuang Y, Du M, Dong J, Wang J, Yang G. Somatic MIWI2 Hinders Direct Lineage Reprogramming From Fibroblast to Hepatocyte. Stem Cells 2019;37:803-12. [PMID: 30805989 DOI: 10.1002/stem.2994] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
116 Chen W, Huang Q, Ma S, Li M. Progress in Dopaminergic Cell Replacement and Regenerative Strategies for Parkinson's Disease. ACS Chem Neurosci 2019;10:839-51. [PMID: 30346716 DOI: 10.1021/acschemneuro.8b00389] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
117 Grath A, Dai G. Direct cell reprogramming for tissue engineering and regenerative medicine. J Biol Eng 2019;13:14. [PMID: 30805026 DOI: 10.1186/s13036-019-0144-9] [Cited by in Crossref: 25] [Cited by in F6Publishing: 30] [Article Influence: 8.3] [Reference Citation Analysis]
118 Grindheim JM, Nicetto D, Donahue G, Zaret KS. Polycomb Repressive Complex 2 Proteins EZH1 and EZH2 Regulate Timing of Postnatal Hepatocyte Maturation and Fibrosis by Repressing Genes With Euchromatic Promoters in Mice. Gastroenterology 2019;156:1834-48. [PMID: 30689973 DOI: 10.1053/j.gastro.2019.01.041] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
119 Park S, In Hwang S, Kim J, Hwang S, Kang S, Yang S, Kim J, Kang W, Kim KH, Han DW, Paik YH. The therapeutic potential of induced hepatocyte-like cells generated by direct reprogramming on hepatic fibrosis. Stem Cell Res Ther 2019;10:21. [PMID: 30635054 DOI: 10.1186/s13287-018-1127-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
120 Sun W, Lee J, Zhang S, Benyshek C, Dokmeci MR, Khademhosseini A. Engineering Precision Medicine. Adv Sci (Weinh) 2019;6:1801039. [PMID: 30643715 DOI: 10.1002/advs.201801039] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 12.0] [Reference Citation Analysis]
121 Pei D, Shu X, Gassama-diagne A, Thiery JP. Mesenchymal–epithelial transition in development and reprogramming. Nat Cell Biol 2019;21:44-53. [DOI: 10.1038/s41556-018-0195-z] [Cited by in Crossref: 79] [Cited by in F6Publishing: 96] [Article Influence: 26.3] [Reference Citation Analysis]
122 Chen R, Xie W, Cai B, Qin Y, Wu C, Zhou W, Zhou C, Yu S, Kuang J, Yang B, Zhao M, Zhu P. Establishment and Identification of a CiPSC Lineage Reprogrammed from FSP-tdTomato Mouse Embryonic Fibroblasts (MEFs). Stem Cells Int 2018;2018:5965727. [PMID: 30675169 DOI: 10.1155/2018/5965727] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
123 Cheng Z, He Z, Cai Y, Zhang C, Fu G, Li H, Sun W, Liu C, Cui X, Ning B, Xiang D, Zhou T, Li X, Xie W, Wang H, Ding J. Conversion of hepatoma cells to hepatocyte-like cells by defined hepatocyte nuclear factors. Cell Res 2019;29:124-35. [PMID: 30560924 DOI: 10.1038/s41422-018-0111-x] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 6.5] [Reference Citation Analysis]
124 Biddy BA, Kong W, Kamimoto K, Guo C, Waye SE, Sun T, Morris SA. Single-cell mapping of lineage and identity in direct reprogramming. Nature 2018;564:219-24. [PMID: 30518857 DOI: 10.1038/s41586-018-0744-4] [Cited by in Crossref: 106] [Cited by in F6Publishing: 109] [Article Influence: 26.5] [Reference Citation Analysis]
125 Kim SW, Ryu HA, Lee YS, Jeong IS, Kim S. Generation of directly reprogrammed human endothelial cells derived from fibroblast using ultrasound. J Mol Cell Cardiol 2019;126:118-28. [PMID: 30500375 DOI: 10.1016/j.yjmcc.2018.11.016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
126 Yang Y, Li X, Liu W, Chen J, Liu C, Cai Y, Song Y, Tang Q, Zhang C, He Z. Generation of Hepatocyte-Like Cells by Different Strategies for Liver Regeneration. Nano LIFE 2018;08:1841004. [DOI: 10.1142/s1793984418410040] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
127 Saad MA, Rastanawi AA, El-yamany MF. Alogliptin abates memory injuries of hepatic encephalopathy induced by acute paracetamol intoxication via switching-off autophagy-related apoptosis. Life Sciences 2018;215:11-21. [DOI: 10.1016/j.lfs.2018.10.069] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
128 Barahman M, Asp P, Roy-Chowdhury N, Kinkhabwala M, Roy-Chowdhury J, Kabarriti R, Guha C. Hepatocyte Transplantation: Quo Vadis? Int J Radiat Oncol Biol Phys 2019;103:922-34. [PMID: 30503786 DOI: 10.1016/j.ijrobp.2018.11.016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
129 Sasaki S, Urabe M, Maeda T, Suzuki J, Irie R, Suzuki M, Tomaru Y, Sakaguchi M, Gonzalez FJ, Inoue Y. Induction of Hepatic Metabolic Functions by a Novel Variant of Hepatocyte Nuclear Factor 4γ. Mol Cell Biol 2018;38:e00213-18. [PMID: 30224520 DOI: 10.1128/MCB.00213-18] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
130 Oki S, Ohta T, Shioi G, Hatanaka H, Ogasawara O, Okuda Y, Kawaji H, Nakaki R, Sese J, Meno C. ChIP-Atlas: a data-mining suite powered by full integration of public ChIP-seq data. EMBO Rep 2018;19:e46255. [PMID: 30413482 DOI: 10.15252/embr.201846255] [Cited by in Crossref: 182] [Cited by in F6Publishing: 218] [Article Influence: 45.5] [Reference Citation Analysis]
131 Hu H, Gehart H, Artegiani B, Löpez-iglesias C, Dekkers F, Basak O, van Es J, Chuva de Sousa Lopes SM, Begthel H, Korving J, van den Born M, Zou C, Quirk C, Chiriboga L, Rice CM, Ma S, Rios A, Peters PJ, de Jong YP, Clevers H. Long-Term Expansion of Functional Mouse and Human Hepatocytes as 3D Organoids. Cell 2018;175:1591-1606.e19. [DOI: 10.1016/j.cell.2018.11.013] [Cited by in Crossref: 188] [Cited by in F6Publishing: 260] [Article Influence: 47.0] [Reference Citation Analysis]
132 Sakikubo M, Furuyama K, Horiguchi M, Hosokawa S, Aoyama Y, Tsuboi K, Goto T, Hirata K, Masui T, Dor Y, Fujiyama T, Hoshino M, Uemoto S, Kawaguchi Y. Ptf1a inactivation in adult pancreatic acinar cells causes apoptosis through activation of the endoplasmic reticulum stress pathway. Sci Rep. 2018;8:15812. [PMID: 30361559 DOI: 10.1038/s41598-018-34093-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
133 Lee EJ, Kim M, Kim YD, Chung MJ, Elfadl A, Ulah HMA, Park D, Lee S, Park HS, Kim TH, Hwang D, Jeong KS. Establishment of stably expandable induced myogenic stem cells by four transcription factors. Cell Death Dis 2018;9:1092. [PMID: 30361642 DOI: 10.1038/s41419-018-1114-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
134 Yoon S, Kang K, Cho YD, Kim Y, Buisson EM, Yim JH, Lee SB, Ryu KY, Jeong J, Choi D. Nonintegrating Direct Conversion Using mRNA into Hepatocyte-Like Cells. Biomed Res Int 2018;2018:8240567. [PMID: 30327781 DOI: 10.1155/2018/8240567] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
135 Takashima Y, Horisawa K, Udono M, Ohkawa Y, Suzuki A. Prolonged inhibition of hepatocellular carcinoma cell proliferation by combinatorial expression of defined transcription factors. Cancer Sci 2018;109:3543-53. [PMID: 30220099 DOI: 10.1111/cas.13798] [Cited by in Crossref: 14] [Cited by in F6Publishing: 25] [Article Influence: 3.5] [Reference Citation Analysis]
136 Zare L, Baharvand H, Javan M. In vivo conversion of astrocytes to oligodendrocyte lineage cells using chemicals: targeting gliosis for myelin repair. Regen Med 2018;13:803-19. [PMID: 30284949 DOI: 10.2217/rme-2017-0155] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
137 Yamamoto J, Udono M, Miura S, Sekiya S, Suzuki A. Cell Aggregation Culture Induces Functional Differentiation of Induced Hepatocyte-like Cells through Activation of Hippo Signaling. Cell Reports 2018;25:183-98. [DOI: 10.1016/j.celrep.2018.09.010] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
138 Yamada Y, Yamada Y. The causal relationship between epigenetic abnormality and cancer development: in vivo reprogramming and its future application. Proc Jpn Acad Ser B Phys Biol Sci 2018;94:235-47. [PMID: 29887568 DOI: 10.2183/pjab.94.016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
139 Chen C, Pla-Palacín I, Baptista PM, Shang P, Oosterhoff LA, van Wolferen ME, Penning LC, Geijsen N, Spee B. Hepatocyte-like cells generated by direct reprogramming from murine somatic cells can repopulate decellularized livers. Biotechnol Bioeng 2018;115:2807-16. [PMID: 29959867 DOI: 10.1002/bit.26784] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
140 Battistelli C, Sabarese G, Santangelo L, Montaldo C, Gonzalez FJ, Tripodi M, Cicchini C. The lncRNA HOTAIR transcription is controlled by HNF4α-induced chromatin topology modulation. Cell Death Differ 2019;26:890-901. [PMID: 30154449 DOI: 10.1038/s41418-018-0170-z] [Cited by in Crossref: 42] [Cited by in F6Publishing: 49] [Article Influence: 10.5] [Reference Citation Analysis]
141 Mollinari C, Zhao J, Lupacchini L, Garaci E, Merlo D, Pei G. Transdifferentiation: a new promise for neurodegenerative diseases. Cell Death Dis 2018;9:830. [PMID: 30082779 DOI: 10.1038/s41419-018-0891-4] [Cited by in Crossref: 17] [Cited by in F6Publishing: 25] [Article Influence: 4.3] [Reference Citation Analysis]
142 Lai X, Verhage L, Hugouvieux V, Zubieta C. Pioneer Factors in Animals and Plants-Colonizing Chromatin for Gene Regulation. Molecules 2018;23:E1914. [PMID: 30065231 DOI: 10.3390/molecules23081914] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
143 Miura S, Suzuki A. Brief summary of the current protocols for generating intestinal organoids. Dev Growth Differ 2018;60:387-92. [PMID: 30039581 DOI: 10.1111/dgd.12559] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
144 Zhang C, Xie B, Zou Y, Zhu D, Lei L, Zhao D, Nie H. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional biomaterials for cell fate regulation. Adv Drug Deliv Rev 2018;132:33-56. [PMID: 29964080 DOI: 10.1016/j.addr.2018.06.020] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 9.0] [Reference Citation Analysis]
145 Jin Y, Kim J, Lee JS, Min S, Kim S, Ahn D, Kim Y, Cho S. Vascularized Liver Organoids Generated Using Induced Hepatic Tissue and Dynamic Liver-Specific Microenvironment as a Drug Testing Platform. Adv Funct Mater 2018;28:1801954. [DOI: 10.1002/adfm.201801954] [Cited by in Crossref: 55] [Cited by in F6Publishing: 34] [Article Influence: 13.8] [Reference Citation Analysis]
146 Wapinski OL, Lee QY, Chen AC, Li R, Corces MR, Ang CE, Treutlein B, Xiang C, Baubet V, Suchy FP, Sankar V, Sim S, Quake SR, Dahmane N, Wernig M, Chang HY. Rapid Chromatin Switch in the Direct Reprogramming of Fibroblasts to Neurons. Cell Rep 2017;20:3236-47. [PMID: 28954238 DOI: 10.1016/j.celrep.2017.09.011] [Cited by in Crossref: 72] [Cited by in F6Publishing: 67] [Article Influence: 18.0] [Reference Citation Analysis]
147 Adepu S, Oosterwerff EFJ, Christoffels VM, Boink GJJ. Direct Reprograming to Regenerate Myocardium and Repair Its Pacemaker and Conduction System. Medicines (Basel) 2018;5:E48. [PMID: 29867004 DOI: 10.3390/medicines5020048] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
148 Raju R, Chau D, Notelaers T, Myers CL, Verfaillie CM, Hu WS. In Vitro Pluripotent Stem Cell Differentiation to Hepatocyte Ceases Further Maturation at an Equivalent Stage of E15 in Mouse Embryonic Liver Development. Stem Cells Dev 2018;27:910-21. [PMID: 29851366 DOI: 10.1089/scd.2017.0270] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
149 Sambathkumar R, Akkerman R, Dastidar S, Roelandt P, Kumar M, Bajaj M, Mestre Rosa AR, Helsen N, Vanslembrouck V, Kalo E, Khurana S, Laureys J, Gysemans C, Faas MM, de Vos P, Verfaillie CM. Generation of hepatocyte- and endocrine pancreatic-like cells from human induced endodermal progenitor cells. PLoS One 2018;13:e0197046. [PMID: 29750821 DOI: 10.1371/journal.pone.0197046] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
150 Lim KT, Kim J, Hwang SI, Zhang L, Han H, Bae D, Kim KP, Hu YP, Schöler HR, Lee I, Hui L, Han DW. Direct Conversion of Mouse Fibroblasts into Cholangiocyte Progenitor Cells. Stem Cell Reports 2018;10:1522-36. [PMID: 29606616 DOI: 10.1016/j.stemcr.2018.03.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
151 Takeda Y, Harada Y, Yoshikawa T, Dai P. Chemical compound-based direct reprogramming for future clinical applications. Biosci Rep. 2018;38. [PMID: 29739872 DOI: 10.1042/bsr20171650] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 4.3] [Reference Citation Analysis]
152 Cao Z, Ye T, Sun Y, Ji G, Shido K, Chen Y, Luo L, Na F, Li X, Huang Z, Ko JL, Mittal V, Qiao L, Chen C, Martinez FJ, Rafii S, Ding BS. Targeting the vascular and perivascular niches as a regenerative therapy for lung and liver fibrosis. Sci Transl Med 2017;9:eaai8710. [PMID: 28855398 DOI: 10.1126/scitranslmed.aai8710] [Cited by in Crossref: 46] [Cited by in F6Publishing: 56] [Article Influence: 11.5] [Reference Citation Analysis]
153 Park HS, Kwon H, Yu J, Bae Y, Park JY, Choi KA, Choi Y, Hong S. Precise nanoinjection delivery of plasmid DNA into a single fibroblast for direct conversion of astrocyte. Artif Cells Nanomed Biotechnol 2018;46:1114-22. [PMID: 29506416 DOI: 10.1080/21691401.2018.1446019] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
154 Mayran A, Drouin J. Pioneer transcription factors shape the epigenetic landscape. J Biol Chem 2018;293:13795-804. [PMID: 29507097 DOI: 10.1074/jbc.R117.001232] [Cited by in Crossref: 99] [Cited by in F6Publishing: 100] [Article Influence: 24.8] [Reference Citation Analysis]
155 Lagies S, Pichler R, Kaminski MM, Schlimpert M, Walz G, Lienkamp SS, Kammerer B. Metabolic characterization of directly reprogrammed renal tubular epithelial cells (iRECs). Sci Rep 2018;8:3878. [PMID: 29497074 DOI: 10.1038/s41598-018-22073-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
156 Lizier M, Castelli A, Montagna C, Lucchini F, Vezzoni P, Faggioli F. Cell fusion in the liver, revisited. World J Hepatol 2018; 10(2): 213-221 [PMID: 29527257 DOI: 10.4254/wjh.v10.i2.213] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
157 Zhang RR, Zheng YW, Li B, Nie YZ, Ueno Y, Tsuchida T, Taniguchi H. Hepatic stem cells with self-renewal and liver repopulation potential are harbored in CDCP1-positive subpopulations of human fetal liver cells. Stem Cell Res Ther 2018;9:29. [PMID: 29402311 DOI: 10.1186/s13287-017-0747-3] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
158 Kang K, Kim Y, Jeon H, Lee SB, Kim JS, Park SA, Kim WD, Yang HM, Kim SJ, Jeong J, Choi D. Three-Dimensional Bioprinting of Hepatic Structures with Directly Converted Hepatocyte-Like Cells. Tissue Eng Part A 2018;24:576-83. [PMID: 28726547 DOI: 10.1089/ten.TEA.2017.0161] [Cited by in Crossref: 27] [Cited by in F6Publishing: 33] [Article Influence: 6.8] [Reference Citation Analysis]
159 Nakamori D, Akamine H, Takayama K, Sakurai F, Mizuguchi H. Direct conversion of human fibroblasts into hepatocyte-like cells by ATF5, PROX1, FOXA2, FOXA3, and HNF4A transduction. Sci Rep 2017;7:16675. [PMID: 29192290 DOI: 10.1038/s41598-017-16856-7] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 6.8] [Reference Citation Analysis]
160 Alwahsh SM, Rashidi H, Hay DC. Liver cell therapy: is this the end of the beginning? Cell Mol Life Sci. 2018;75:1307-1324. [PMID: 29181772 DOI: 10.1007/s00018-017-2713-8] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 5.8] [Reference Citation Analysis]
161 Ogoke O, Oluwole J, Parashurama N. Bioengineering considerations in liver regenerative medicine. J Biol Eng 2017;11:46. [PMID: 29204185 DOI: 10.1186/s13036-017-0081-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]
162 Ran L, Chen Y, Sher J, Wong EWP, Murphy D, Zhang JQ, Li D, Deniz K, Sirota I, Cao Z, Wang S, Guan Y, Shukla S, Li KY, Chramiec A, Xie Y, Zheng D, Koche RP, Antonescu CR, Chen Y, Chi P. FOXF1 Defines the Core-Regulatory Circuitry in Gastrointestinal Stromal Tumor. Cancer Discov 2018;8:234-51. [PMID: 29162563 DOI: 10.1158/2159-8290.CD-17-0468] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 4.2] [Reference Citation Analysis]
163 Shukla S, Cyrta J, Murphy DA, Walczak EG, Ran L, Agrawal P, Xie Y, Chen Y, Wang S, Zhan Y, Li D, Wong EWP, Sboner A, Beltran H, Mosquera JM, Sher J, Cao Z, Wongvipat J, Koche RP, Gopalan A, Zheng D, Rubin MA, Scher HI, Chi P, Chen Y. Aberrant Activation of a Gastrointestinal Transcriptional Circuit in Prostate Cancer Mediates Castration Resistance. Cancer Cell 2017;32:792-806.e7. [PMID: 29153843 DOI: 10.1016/j.ccell.2017.10.008] [Cited by in Crossref: 30] [Cited by in F6Publishing: 40] [Article Influence: 6.0] [Reference Citation Analysis]
164 Ulasov AV, Rosenkranz AA, Sobolev AS. Transcription factors: Time to deliver. J Control Release. 2018;269:24-35. [PMID: 29113792 DOI: 10.1016/j.jconrel.2017.11.004] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
165 Lassar AB. Finding MyoD and lessons learned along the way. Semin Cell Dev Biol 2017;72:3-9. [PMID: 29097153 DOI: 10.1016/j.semcdb.2017.10.021] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
166 Langlet F, Haeusler RA, Lindén D, Ericson E, Norris T, Johansson A, Cook JR, Aizawa K, Wang L, Buettner C, Accili D. Selective Inhibition of FOXO1 Activator/Repressor Balance Modulates Hepatic Glucose Handling. Cell 2017;171:824-835.e18. [PMID: 29056338 DOI: 10.1016/j.cell.2017.09.045] [Cited by in Crossref: 73] [Cited by in F6Publishing: 85] [Article Influence: 14.6] [Reference Citation Analysis]
167 Haq S, Suresh B, Ramakrishna S. Deubiquitylating enzymes as cancer stem cell therapeutics. Biochim Biophys Acta Rev Cancer 2018;1869:1-10. [PMID: 29054474 DOI: 10.1016/j.bbcan.2017.10.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
168 Catauro M, Tranquillo E, Illiano M, Sapio L, Spina A, Naviglio S. The Influence of the Polymer Amount on the Biological Properties of PCL/ZrO₂ Hybrid Materials Synthesized via Sol-Gel Technique. Materials (Basel) 2017;10:E1186. [PMID: 29039803 DOI: 10.3390/ma10101186] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
169 Irudayaswamy A, Muthiah M, Zhou L, Hung H, Jumat NHB, Haque J, Teoh N, Farrell G, Riehle KJ, Lin JS, Su LL, Chan JK, Choolani M, Wong PC, Wee A, Lim SG, Campbell J, Fausto N, Dan YY. Long-Term Fate of Human Fetal Liver Progenitor Cells Transplanted in Injured Mouse Livers. Stem Cells 2018;36:103-13. [PMID: 28960647 DOI: 10.1002/stem.2710] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
170 Chaterji S, Ahn EH, Kim DH. CRISPR Genome Engineering for Human Pluripotent Stem Cell Research. Theranostics 2017;7:4445-69. [PMID: 29158838 DOI: 10.7150/thno.18456] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
171 Cao S, Yu S, Chen Y, Wang X, Zhou C, Liu Y, Kuang J, Liu H, Li D, Ye J, Qin Y, Chu S, Wu L, Guo L, Li Y, Shu X, Chen J, Liu J, Pei D. Chemical reprogramming of mouse embryonic and adult fibroblast into endoderm lineage. J Biol Chem. 2017;292:19122-19132. [PMID: 28935668 DOI: 10.1074/jbc.m117.812537] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
172 Miura S, Suzuki A. Generation of Mouse and Human Organoid-Forming Intestinal Progenitor Cells by Direct Lineage Reprogramming. Cell Stem Cell. 2017;21:456-471.e5. [PMID: 28943029 DOI: 10.1016/j.stem.2017.08.020] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 7.0] [Reference Citation Analysis]
173 Tan AKY, Loh KM, Ang LT. Evaluating the regenerative potential and functionality of human liver cells in mice. Differentiation 2017;98:25-34. [PMID: 29078082 DOI: 10.1016/j.diff.2017.09.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
174 Yokoyama T, Yanagihara T, Suzuki K, Hamada N, Tsubouchi K, Ogata-Suetsugu S, Mikumo H, Ikeda-Harada C, Maeyama T, Kuwano K, Nakanishi Y. Depletion of club cells attenuates bleomycin-induced lung injury and fibrosis in mice. J Inflamm (Lond) 2017;14:20. [PMID: 28936122 DOI: 10.1186/s12950-017-0168-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
175 Kanki Y, Nakaki R, Shimamura T, Matsunaga T, Yamamizu K, Katayama S, Suehiro JI, Osawa T, Aburatani H, Kodama T, Wada Y, Yamashita JK, Minami T. Dynamically and epigenetically coordinated GATA/ETS/SOX transcription factor expression is indispensable for endothelial cell differentiation. Nucleic Acids Res 2017;45:4344-58. [PMID: 28334937 DOI: 10.1093/nar/gkx159] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 5.6] [Reference Citation Analysis]
176 Morris SA. Direct lineage reprogramming via pioneer factors; a detour through developmental gene regulatory networks. Development 2016;143:2696-705. [PMID: 27486230 DOI: 10.1242/dev.138263] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 9.4] [Reference Citation Analysis]
177 Li CY, Lee S, Cade S, Kuo LJ, Schultz IR, Bhatt DK, Prasad B, Bammler TK, Cui JY. Novel Interactions between Gut Microbiome and Host Drug-Processing Genes Modify the Hepatic Metabolism of the Environmental Chemicals Polybrominated Diphenyl Ethers. Drug Metab Dispos 2017;45:1197-214. [PMID: 28864748 DOI: 10.1124/dmd.117.077024] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 5.2] [Reference Citation Analysis]
178 Iwafuchi-Doi M, Zaret KS. Cell fate control by pioneer transcription factors. Development 2016;143:1833-7. [PMID: 27246709 DOI: 10.1242/dev.133900] [Cited by in Crossref: 153] [Cited by in F6Publishing: 134] [Article Influence: 30.6] [Reference Citation Analysis]
179 Yamamoto H, Tonello JM, Sambuichi T, Kawabe Y, Ito A, Kamihira M. Characterization of genetically engineered mouse hepatoma cells with inducible liver functions by overexpression of liver-enriched transcription factors. J Biosci Bioeng 2018;125:131-9. [PMID: 28847578 DOI: 10.1016/j.jbiosc.2017.07.011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
180 Yao J, Guihard PJ, Wu X, Blazquez-Medela AM, Spencer MJ, Jumabay M, Tontonoz P, Fogelman AM, Boström KI, Yao Y. Vascular endothelium plays a key role in directing pulmonary epithelial cell differentiation. J Cell Biol 2017;216:3369-85. [PMID: 28838957 DOI: 10.1083/jcb.201612122] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
181 Guan Y, Xu D, Peltz G. Treating Liver Fibrosis: (Re)Programmed to Succeed. Cell Stem Cell 2016;18:683-4. [PMID: 27257752 DOI: 10.1016/j.stem.2016.05.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
182 Jeon H, Kang K, Park SA, Kim WD, Paik SS, Lee SH, Jeong J, Choi D. Generation of Multilayered 3D Structures of HepG2 Cells Using a Bio-printing Technique. Gut Liver 2017;11:121-8. [PMID: 27559001 DOI: 10.5009/gnl16010] [Cited by in Crossref: 59] [Cited by in F6Publishing: 52] [Article Influence: 11.8] [Reference Citation Analysis]
183 Siller R, Greenhough S, Mathapati S, Si-tayeb K, Sullivan GJ. Future Challenges in the Generation of Hepatocyte-Like Cells From Human Pluripotent Stem Cells. Curr Pathobiol Rep 2017;5:301-14. [DOI: 10.1007/s40139-017-0150-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
184 Enane FO, Shuen WH, Gu X, Quteba E, Przychodzen B, Makishima H, Bodo J, Ng J, Chee CL, Ba R, Seng Koh L, Lim J, Cheong R, Teo M, Hu Z, Ng KP, Maciejewski J, Radivoyevitch T, Chung A, Ooi LL, Tan YM, Cheow PC, Chow P, Chan CY, Lim KH, Yerian L, Hsi E, Toh HC, Saunthararajah Y. GATA4 loss of function in liver cancer impedes precursor to hepatocyte transition. J Clin Invest 2017;127:3527-42. [PMID: 28758902 DOI: 10.1172/JCI93488] [Cited by in Crossref: 17] [Cited by in F6Publishing: 23] [Article Influence: 3.4] [Reference Citation Analysis]
185 Neves J, Sousa-Victor P, Jasper H. Rejuvenating Strategies for Stem Cell-Based Therapies in Aging. Cell Stem Cell 2017;20:161-75. [PMID: 28157498 DOI: 10.1016/j.stem.2017.01.008] [Cited by in Crossref: 78] [Cited by in F6Publishing: 80] [Article Influence: 15.6] [Reference Citation Analysis]
186 Guo R, Tang W, Yuan Q, Hui L, Wang X, Xie X. Chemical Cocktails Enable Hepatic Reprogramming of Mouse Fibroblasts with a Single Transcription Factor. Stem Cell Reports. 2017;9:499-512. [PMID: 28757167 DOI: 10.1016/j.stemcr.2017.06.013] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
187 Roe JS, Hwang CI, Somerville TDD, Milazzo JP, Lee EJ, Da Silva B, Maiorino L, Tiriac H, Young CM, Miyabayashi K, Filippini D, Creighton B, Burkhart RA, Buscaglia JM, Kim EJ, Grem JL, Lazenby AJ, Grunkemeyer JA, Hollingsworth MA, Grandgenett PM, Egeblad M, Park Y, Tuveson DA, Vakoc CR. Enhancer Reprogramming Promotes Pancreatic Cancer Metastasis. Cell 2017;170:875-888.e20. [PMID: 28757253 DOI: 10.1016/j.cell.2017.07.007] [Cited by in Crossref: 182] [Cited by in F6Publishing: 198] [Article Influence: 36.4] [Reference Citation Analysis]
188 Zhang T, Huang Y, Liu W, Meng W, Zhao H, Yang Q, Gu SJ, Xiao CC, Jia CC, Zhang B, Zou Y, Li HP, Fu BS. Overexpression of zinc finger protein 687 enhances tumorigenic capability and promotes recurrence of hepatocellular carcinoma. Oncogenesis 2017;6:e363. [PMID: 28737756 DOI: 10.1038/oncsis.2017.63] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
189 Moon H, Ju HL, Chung SI, Cho KJ, Eun JW, Nam SW, Han KH, Calvisi DF, Ro SW. Transforming Growth Factor-β Promotes Liver Tumorigenesis in Mice via Up-regulation of Snail. Gastroenterology 2017;153:1378-1391.e6. [PMID: 28734833 DOI: 10.1053/j.gastro.2017.07.014] [Cited by in Crossref: 35] [Cited by in F6Publishing: 49] [Article Influence: 7.0] [Reference Citation Analysis]
190 Rezvani M, Español-Suñer R, Malato Y, Dumont L, Grimm AA, Kienle E, Bindman JG, Wiedtke E, Hsu BY, Naqvi SJ, Schwabe RF, Corvera CU, Grimm D, Willenbring H. In Vivo Hepatic Reprogramming of Myofibroblasts with AAV Vectors as a Therapeutic Strategy for Liver Fibrosis. Cell Stem Cell 2016;18:809-16. [PMID: 27257763 DOI: 10.1016/j.stem.2016.05.005] [Cited by in Crossref: 65] [Cited by in F6Publishing: 65] [Article Influence: 13.0] [Reference Citation Analysis]
191 Hara H, Takeda N, Komuro I. Pathophysiology and therapeutic potential of cardiac fibrosis. Inflamm Regen 2017;37:13. [PMID: 29259712 DOI: 10.1186/s41232-017-0046-5] [Cited by in Crossref: 25] [Cited by in F6Publishing: 33] [Article Influence: 5.0] [Reference Citation Analysis]
192 Zhang L, Guan Z, Ye JS, Yin YF, Stoltz JF, de Isla N. Research progress in liver tissue engineering. Biomed Mater Eng 2017;28:S113-9. [PMID: 28372286 DOI: 10.3233/BME-171632] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
193 Lee EH, Park CH. Comparison of Reprogramming Methods for Generation of Induced-Oligodendrocyte Precursor Cells. Biomol Ther (Seoul) 2017;25:362-6. [PMID: 28605832 DOI: 10.4062/biomolther.2017.066] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
194 Guo C, Morris SA. Engineering cell identity: establishing new gene regulatory and chromatin landscapes. Curr Opin Genet Dev 2017;46:50-7. [PMID: 28667865 DOI: 10.1016/j.gde.2017.06.011] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 4.4] [Reference Citation Analysis]
195 Cho YD, Yoon S, Kang K, Kim Y, Lee SB, Seo D, Ryu K, Jeong J, Choi D. Simple Maturation of Direct-Converted Hepatocytes Derived from Fibroblasts. Tissue Eng Regen Med 2017;14:579-86. [PMID: 30603511 DOI: 10.1007/s13770-017-0064-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
196 Kaminski MM, Tosic J, Pichler R, Arnold SJ, Lienkamp SS. Engineering kidney cells: reprogramming and directed differentiation to renal tissues. Cell Tissue Res 2017;369:185-97. [PMID: 28560692 DOI: 10.1007/s00441-017-2629-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
197 Li Q, Hutchins AP, Chen Y, Li S, Shan Y, Liao B, Zheng D, Shi X, Li Y, Chan WY, Pan G, Wei S, Shu X, Pei D. A sequential EMT-MET mechanism drives the differentiation of human embryonic stem cells towards hepatocytes. Nat Commun 2017;8:15166. [PMID: 28466868 DOI: 10.1038/ncomms15166] [Cited by in Crossref: 56] [Cited by in F6Publishing: 71] [Article Influence: 11.2] [Reference Citation Analysis]
198 Cieślar-Pobuda A, Knoflach V, Ringh MV, Stark J, Likus W, Siemianowicz K, Ghavami S, Hudecki A, Green JL, Łos MJ. Transdifferentiation and reprogramming: Overview of the processes, their similarities and differences. Biochim Biophys Acta Mol Cell Res 2017;1864:1359-69. [PMID: 28460880 DOI: 10.1016/j.bbamcr.2017.04.017] [Cited by in Crossref: 42] [Cited by in F6Publishing: 46] [Article Influence: 8.4] [Reference Citation Analysis]
199 Zhou Q, Liu M, Xia X, Gong T, Feng J, Liu W, Liu Y, Zhen B, Wang Y, Ding C, Qin J. A mouse tissue transcription factor atlas. Nat Commun 2017;8:15089. [PMID: 28429721 DOI: 10.1038/ncomms15089] [Cited by in Crossref: 43] [Cited by in F6Publishing: 45] [Article Influence: 8.6] [Reference Citation Analysis]
200 Lalit PA, Rodriguez AM, Downs KM, Kamp TJ. Generation of multipotent induced cardiac progenitor cells from mouse fibroblasts and potency testing in ex vivo mouse embryos. Nat Protoc 2017;12:1029-54. [PMID: 28426026 DOI: 10.1038/nprot.2017.021] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
201 Kawamata M, Suzuki A. Cell fate modification toward the hepatic lineage by extrinsic factors. The Journal of Biochemistry 2017;162:11-6. [DOI: 10.1093/jb/mvx028] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
202 Zeineddine HA, Frush TJ, Saleh ZM, El-Othmani MM, Saleh KJ. Applications of Tissue Engineering in Joint Arthroplasty: Current Concepts Update. Orthop Clin North Am 2017;48:275-88. [PMID: 28577777 DOI: 10.1016/j.ocl.2017.03.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
203 Huang M, Chen C, Geng J, Han D, Wang T, Xie T, Wang L, Wang Y, Wang C, Lei Z, Chu X. Targeting KDM1A attenuates Wnt/β-catenin signaling pathway to eliminate sorafenib-resistant stem-like cells in hepatocellular carcinoma. Cancer Lett 2017;398:12-21. [PMID: 28377178 DOI: 10.1016/j.canlet.2017.03.038] [Cited by in Crossref: 47] [Cited by in F6Publishing: 55] [Article Influence: 9.4] [Reference Citation Analysis]
204 Kurihara C, Nakade K, Pan J, Huang J, Wasylyk B, Obata Y. An easy method for preparation of Cre-loxP regulated fluorescent adenoviral expression vectors and its application for direct reprogramming into hepatocytes. Biotechnol Rep (Amst) 2016;12:26-32. [PMID: 28352551 DOI: 10.1016/j.btre.2016.10.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
205 Kochat V, Equbal Z, Baligar P, Kumar V, Srivastava M, Mukhopadhyay A. JMJD3 aids in reprogramming of bone marrow progenitor cells to hepatic phenotype through epigenetic activation of hepatic transcription factors. PLoS One 2017;12:e0173977. [PMID: 28328977 DOI: 10.1371/journal.pone.0173977] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
206 Katayama H, Yasuchika K, Miyauchi Y, Kojima H, Yamaoka R, Kawai T, Yukie Yoshitoshi E, Ogiso S, Kita S, Yasuda K, Sasaki N, Fukumitsu K, Komori J, Ishii T, Uemoto S. Generation of non-viral, transgene-free hepatocyte like cells with piggyBac transposon. Sci Rep 2017;7:44498. [PMID: 28295042 DOI: 10.1038/srep44498] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
207 Ii M. Novel direct reprogramming technique for the generation of culture-expandable cardiac progenitor cells from fibroblasts. Stem Cell Investig 2017;4:15. [PMID: 28275645 DOI: 10.21037/sci.2017.02.04] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
208 Cochrane A, Kelaini S, Tsifaki M, Bojdo J, Vilà-González M, Drehmer D, Caines R, Magee C, Eleftheriadou M, Hu Y, Grieve D, Stitt AW, Zeng L, Xu Q, Margariti A. Quaking Is a Key Regulator of Endothelial Cell Differentiation, Neovascularization, and Angiogenesis. Stem Cells 2017;35:952-66. [PMID: 28207177 DOI: 10.1002/stem.2594] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 6.4] [Reference Citation Analysis]
209 Zakikhan K, Pournasr B, Vosough M, Nassiri-Asl M. In Vitro Generated Hepatocyte-Like Cells: A Novel Tool in Regenerative Medicine and Drug Discovery. Cell J 2017;19:204-17. [PMID: 28670513 DOI: 10.22074/cellj.2016.4362] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
210 Ma X, Kong L, Zhu S. Reprogramming cell fates by small molecules. Protein Cell. 2017;8:328-348. [PMID: 28213718 DOI: 10.1007/s13238-016-0362-6] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 10.0] [Reference Citation Analysis]
211 Tanimizu N, Mitaka T. Which is better source for functional hepatocytes? Stem Cell Investig 2017;4:12. [PMID: 28275642 DOI: 10.21037/sci.2017.02.08] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
212 Kojima H, Ieda M. Discovery and progress of direct cardiac reprogramming. Cell Mol Life Sci 2017;74:2203-15. [PMID: 28197667 DOI: 10.1007/s00018-017-2466-4] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
213 McDaniel K, Meng F, Wu N, Sato K, Venter J, Bernuzzi F, Invernizzi P, Zhou T, Kyritsi K, Wan Y, Huang Q, Onori P, Francis H, Gaudio E, Glaser S, Alpini G. Forkhead box A2 regulates biliary heterogeneity and senescence during cholestatic liver injury in mice‡. Hepatology 2017;65:544-59. [PMID: 27639079 DOI: 10.1002/hep.28831] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 5.8] [Reference Citation Analysis]
214 Hirayama M, Ko SBH, Kawakita T, Akiyama T, Goparaju SK, Soma A, Nakatake Y, Sakota M, Chikazawa-Nohtomi N, Shimmura S, Tsubota K, Ko MSH. Identification of transcription factors that promote the differentiation of human pluripotent stem cells into lacrimal gland epithelium-like cells. NPJ Aging Mech Dis 2017;3:1. [PMID: 28649419 DOI: 10.1038/s41514-016-0001-8] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
215 Leach DA, Panagopoulos V, Nash C, Bevan C, Thomson AA, Selth LA, Buchanan G. Cell-lineage specificity and role of AP-1 in the prostate fibroblast androgen receptor cistrome. Molecular and Cellular Endocrinology 2017;439:261-72. [DOI: 10.1016/j.mce.2016.09.010] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
216 Lee S, Park C, Han JW, Kim JY, Cho K, Kim EJ, Kim S, Lee SJ, Oh SY, Tanaka Y, Park IH, An HJ, Shin CM, Sharma S, Yoon YS. Direct Reprogramming of Human Dermal Fibroblasts Into Endothelial Cells Using ER71/ETV2. Circ Res 2017;120:848-61. [PMID: 28003219 DOI: 10.1161/CIRCRESAHA.116.309833] [Cited by in Crossref: 46] [Cited by in F6Publishing: 55] [Article Influence: 7.7] [Reference Citation Analysis]
217 Gérard C, Tys J, Lemaigre FP. Gene regulatory networks in differentiation and direct reprogramming of hepatic cells. Semin Cell Dev Biol 2017;66:43-50. [PMID: 27979774 DOI: 10.1016/j.semcdb.2016.12.003] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 3.7] [Reference Citation Analysis]
218 Goya T, Suzuki A. Novel methods for the treatment of liver fibrosis using in vivo direct reprogramming technology. Stem Cell Investig 2016;3:92. [PMID: 28078272 DOI: 10.21037/sci.2016.11.10] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
219 Kim E, Tae G. Direct reprogramming and biomaterials for controlling cell fate. Biomater Res 2016;20:39. [PMID: 27980804 DOI: 10.1186/s40824-016-0086-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
220 Eguchi A, Wleklinski MJ, Spurgat MC, Heiderscheit EA, Kropornicka AS, Vu CK, Bhimsaria D, Swanson SA, Stewart R, Ramanathan P, Kamp TJ, Slukvin I, Thomson JA, Dutton JR, Ansari AZ. Reprogramming cell fate with a genome-scale library of artificial transcription factors. Proc Natl Acad Sci U S A 2016;113:E8257-66. [PMID: 27930301 DOI: 10.1073/pnas.1611142114] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
221 Rastegar-Pouyani S, Khazaei N, Wee P, Mohammadnia A, Yaqubi M. Role of Hepatic-Specific Transcription Factors and Polycomb Repressive Complex 2 during Induction of Fibroblasts to Hepatic Fate. PLoS One 2016;11:e0167081. [PMID: 27902735 DOI: 10.1371/journal.pone.0167081] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
222 Nakamura T, Watanabe M. Intestinal stem cell transplantation. J Gastroenterol 2017;52:151-7. [PMID: 27888356 DOI: 10.1007/s00535-016-1288-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
223 Cheng H, Ang HY, A El Farran C, Li P, Fang HT, Liu TM, Kong SL, Chin ML, Ling WY, Lim EK, Li H, Huber T, Loh KM, Loh YH, Lim B. Reprogramming mouse fibroblasts into engraftable myeloerythroid and lymphoid progenitors. Nat Commun 2016;7:13396. [PMID: 27869129 DOI: 10.1038/ncomms13396] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
224 Katsuda T, Kawamata M, Hagiwara K, Takahashi RU, Yamamoto Y, Camargo FD, Ochiya T. Conversion of Terminally Committed Hepatocytes to Culturable Bipotent Progenitor Cells with Regenerative Capacity. Cell Stem Cell. 2017;20:41-55. [PMID: 27840021 DOI: 10.1016/j.stem.2016.10.007] [Cited by in Crossref: 103] [Cited by in F6Publishing: 118] [Article Influence: 17.2] [Reference Citation Analysis]
225 Ancey PB, Testoni B, Gruffaz M, Cros MP, Durand G, Le Calvez-Kelm F, Durantel D, Herceg Z, Hernandez-Vargas H. Genomic responses to hepatitis B virus (HBV) infection in primary human hepatocytes. Oncotarget 2015;6:44877-91. [PMID: 26565721 DOI: 10.18632/oncotarget.6270] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
226 Kaminski MM, Tosic J, Kresbach C, Engel H, Klockenbusch J, Müller AL, Pichler R, Grahammer F, Kretz O, Huber TB, Walz G, Arnold SJ, Lienkamp SS. Direct reprogramming of fibroblasts into renal tubular epithelial cells by defined transcription factors. Nat Cell Biol 2016;18:1269-80. [PMID: 27820600 DOI: 10.1038/ncb3437] [Cited by in Crossref: 76] [Cited by in F6Publishing: 68] [Article Influence: 12.7] [Reference Citation Analysis]
227 Baek S, Oh J, Song J, Choi H, Yoo J, Park GY, Han J, Chang Y, Park H, Kim H, Cho SG, Kim BS, Kim J. Generation of Integration-Free Induced Neurons Using Graphene Oxide-Polyethylenimine. Small 2017;13. [PMID: 28145631 DOI: 10.1002/smll.201601993] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
228 Vasconcellos R, Alvarenga ÉC, Parreira RC, Lima SS, Resende RR. Exploring the cell signalling in hepatocyte differentiation. Cellular Signalling 2016;28:1773-88. [DOI: 10.1016/j.cellsig.2016.08.011] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
229 Kareem A, Radhakrishnan D, Sondhi Y, Aiyaz M, Roy MV, Sugimoto K, Prasad K. De novo assembly of plant body plan: a step ahead of Deadpool. Regeneration (Oxf) 2016;3:182-97. [PMID: 27800169 DOI: 10.1002/reg2.68] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 5.0] [Reference Citation Analysis]
230 Novo E, Cannito S, Parola M. In vivo reprogramming of hepatic myofibroblasts into hepatocytes attenuates liver fibrosis: back to the future? Stem Cell Investig 2016;3:53. [PMID: 27777942 DOI: 10.21037/sci.2016.09.08] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
231 Yamakawa H. Heart regeneration for clinical application update 2016: from induced pluripotent stem cells to direct cardiac reprogramming. Inflamm Regen 2016;36:23. [PMID: 29259696 DOI: 10.1186/s41232-016-0028-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
232 Kamaraj US, Gough J, Polo JM, Petretto E, Rackham OJ. Computational methods for direct cell conversion. Cell Cycle 2016;15:3343-54. [PMID: 27736295 DOI: 10.1080/15384101.2016.1238119] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
233 Ebrahimi B. Engineering cell fate: Spotlight on cell-activation and signaling-directed lineage conversion. Tissue and Cell 2016;48:475-87. [DOI: 10.1016/j.tice.2016.07.005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
234 Mendoza-Parra MA, Malysheva V, Mohamed Saleem MA, Lieb M, Godel A, Gronemeyer H. Reconstructed cell fate-regulatory programs in stem cells reveal hierarchies and key factors of neurogenesis. Genome Res 2016;26:1505-19. [PMID: 27650846 DOI: 10.1101/gr.208926.116] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
235 Sekinaka T, Hayashi Y, Noce T, Niwa H, Matsui Y. Selective de-repression of germ cell-specific genes in mouse embryonic fibroblasts in a permissive epigenetic environment. Sci Rep 2016;6:32932. [PMID: 27608931 DOI: 10.1038/srep32932] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
236 Lu H. Crosstalk of HNF4α with extracellular and intracellular signaling pathways in the regulation of hepatic metabolism of drugs and lipids. Acta Pharm Sin B 2016;6:393-408. [PMID: 27709008 DOI: 10.1016/j.apsb.2016.07.003] [Cited by in Crossref: 48] [Cited by in F6Publishing: 46] [Article Influence: 8.0] [Reference Citation Analysis]
237 Hu X, Xie P, Li W, Li Z, Shan H. Direct induction of hepatocyte-like cells from immortalized human bone marrow mesenchymal stem cells by overexpression of HNF4α. Biochemical and Biophysical Research Communications 2016;478:791-7. [DOI: 10.1016/j.bbrc.2016.08.026] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
238 Zhao Z, Xu M, Wu M, Ma K, Sun M, Tian X, Zhang C, Fu X. Direct reprogramming of human fibroblasts into sweat gland-like cells. Cell Cycle 2015;14:3498-505. [PMID: 26566868 DOI: 10.1080/15384101.2015.1093707] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
239 Liu K, Yu C, Xie M, Li K, Ding S. Chemical Modulation of Cell Fate in Stem Cell Therapeutics and Regenerative Medicine. Cell Chem Biol 2016;23:893-916. [PMID: 27524294 DOI: 10.1016/j.chembiol.2016.07.007] [Cited by in Crossref: 28] [Cited by in F6Publishing: 32] [Article Influence: 4.7] [Reference Citation Analysis]
240 Tan Z, Chen K, Shao Y, Gao L, Wang Y, Xu J, Jin Y, Hu X, Wang Y. Lineage tracing reveals conversion of liver sinusoidal endothelial cells into hepatocytes. Dev Growth Differ. 2016;58:620-631. [PMID: 27506985 DOI: 10.1111/dgd.12307] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
241 Wang Y, Yang H, Yang Q, Yang J, Wang H, Xu H, Gao WQ. Chemical conversion of mouse fibroblasts into functional dopaminergic neurons. Exp Cell Res 2016;347:283-92. [PMID: 27485858 DOI: 10.1016/j.yexcr.2016.07.026] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
242 Serrano F, García-Bravo M, Blazquez M, Torres J, Castell JV, Segovia JC, Bort R. Silencing of hepatic fate-conversion factors induce tumorigenesis in reprogrammed hepatic progenitor-like cells. Stem Cell Res Ther 2016;7:96. [PMID: 27460218 DOI: 10.1186/s13287-016-0349-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
243 Tanimizu N, Ichinohe N, Ishii M, Kino J, Mizuguchi T, Hirata K, Mitaka T. Liver Progenitors Isolated from Adult Healthy Mouse Liver Efficiently Differentiate to Functional Hepatocytes In Vitro and Repopulate Liver Tissue. Stem Cells 2016;34:2889-901. [PMID: 27375002 DOI: 10.1002/stem.2457] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
244 Daley GQ. Stem cells and the evolving notion of cellular identity. Philos Trans R Soc Lond B Biol Sci 2015;370:20140376. [PMID: 26416685 DOI: 10.1098/rstb.2014.0376] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 5.2] [Reference Citation Analysis]
245 Lee PH, Tu CT, Hsiao CC, Tsai MS, Ho CM, Cheng NC, Hung TM, Shih DT. Antifibrotic Activity of Human Placental Amnion Membrane-Derived CD34+ Mesenchymal Stem/Progenitor Cell Transplantation in Mice With Thioacetamide-Induced Liver Injury. Stem Cells Transl Med 2016;5:1473-84. [PMID: 27405780 DOI: 10.5966/sctm.2015-0343] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 3.8] [Reference Citation Analysis]
246 Tanabe K, Haag D, Wernig M. Direct somatic lineage conversion. Philos Trans R Soc Lond B Biol Sci. 2015;370:20140368. [PMID: 26416679 DOI: 10.1098/rstb.2014.0368] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
247 Batta K, Menegatti S, Garcia-Alegria E, Florkowska M, Lacaud G, Kouskoff V. Concise Review: Recent Advances in the In Vitro Derivation of Blood Cell Populations. Stem Cells Transl Med 2016;5:1330-7. [PMID: 27388244 DOI: 10.5966/sctm.2016-0039] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
248 Aoi T. 10th anniversary of iPS cells: the challenges that lie ahead. J Biochem. 2016;160:121-129. [PMID: 27387749 DOI: 10.1093/jb/mvw044] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 3.7] [Reference Citation Analysis]
249 Desai SS, Tung JC, Zhou VX, Grenert JP, Malato Y, Rezvani M, Español-Suñer R, Willenbring H, Weaver VM, Chang TT. Physiological ranges of matrix rigidity modulate primary mouse hepatocyte function in part through hepatocyte nuclear factor 4 alpha. Hepatology 2016;64:261-75. [PMID: 26755329 DOI: 10.1002/hep.28450] [Cited by in Crossref: 93] [Cited by in F6Publishing: 82] [Article Influence: 15.5] [Reference Citation Analysis]
250 Steinle H, Behring A, Schlensak C, Wendel HP, Avci-adali M. Concise Review: Application of In Vitro Transcribed Messenger RNA for Cellular Engineering and Reprogramming: Progress and Challenges: mRNA-based Cellular Engineering and Reprogramming. Stem Cells 2017;35:68-79. [DOI: 10.1002/stem.2402] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 5.8] [Reference Citation Analysis]
251 Shiota G, Itaba N. Progress in stem cell-based therapy for liver disease. Hepatol Res. 2017;47:127-141. [PMID: 27188253 DOI: 10.1111/hepr.12747] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 3.7] [Reference Citation Analysis]
252 Komuta Y, Ishii T, Kaneda M, Ueda Y, Miyamoto K, Toyoda M, Umezawa A, Seko Y. In vitro transdifferentiation of human peripheral blood mononuclear cells to photoreceptor-like cells. Biol Open. 2016;5:709-719. [PMID: 27170256 DOI: 10.1242/bio.016477] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
253 Mazurier C, Douay L. [In vitro generation of blood red cells from stem cells: a sketch of the future]. Biol Aujourdhui 2016;210:9-17. [PMID: 27286576 DOI: 10.1051/jbio/2016008] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
254 Suresh B, Lee J, Kim H, Ramakrishna S. Regulation of pluripotency and differentiation by deubiquitinating enzymes. Cell Death Differ 2016;23:1257-64. [PMID: 27285106 DOI: 10.1038/cdd.2016.53] [Cited by in Crossref: 27] [Cited by in F6Publishing: 33] [Article Influence: 4.5] [Reference Citation Analysis]
255 Capellera-Garcia S, Pulecio J, Dhulipala K, Siva K, Rayon-Estrada V, Singbrant S, Sommarin MN, Walkley CR, Soneji S, Karlsson G, Raya Á, Sankaran VG, Flygare J. Defining the Minimal Factors Required for Erythropoiesis through Direct Lineage Conversion. Cell Rep 2016;15:2550-62. [PMID: 27264182 DOI: 10.1016/j.celrep.2016.05.027] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 5.5] [Reference Citation Analysis]
256 Koblas T, Leontovyc I, Loukotova S, Kosinova L, Saudek F. Reprogramming of Pancreatic Exocrine Cells AR42J Into Insulin-producing Cells Using mRNAs for Pdx1, Ngn3, and MafA Transcription Factors. Mol Ther Nucleic Acids. 2016;5:e320. [PMID: 27187823 DOI: 10.1038/mtna.2016.33] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
257 Lucendo-Villarin B, Rashidi H, Cameron K, Hay DC. Pluripotent stem cell derived hepatocytes: using materials to define cellular differentiation and tissue engineering. J Mater Chem B 2016;4:3433-42. [PMID: 27746914 DOI: 10.1039/c6tb00331a] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
258 Kim SM, Kim JW, Kwak TH, Park SW, Kim KP, Park H, Lim KT, Kang K, Kim J, Yang JH, Han H, Lee I, Hyun JK, Bae YM, Schöler HR, Lee HT, Han DW. Generation of Integration-free Induced Neural Stem Cells from Mouse Fibroblasts. J Biol Chem 2016;291:14199-212. [PMID: 27189941 DOI: 10.1074/jbc.M115.713578] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 3.2] [Reference Citation Analysis]
259 Xu A, Cheng L. Chemical transdifferentiation: closer to regenerative medicine. Front Med. 2016;10:152-165. [PMID: 27142989 DOI: 10.1007/s11684-016-0445-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
260 Yahoo N, Pournasr B, Rostamzadeh J, Hakhamaneshi MS, Ebadifar A, Fathi F, Baharvand H. Forced expression of Hnf1b/Foxa3 promotes hepatic fate of embryonic stem cells. Biochemical and Biophysical Research Communications 2016;474:199-205. [DOI: 10.1016/j.bbrc.2016.04.102] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
261 Szkolnicka D, Hay DC. Concise Review: Advances in Generating Hepatocytes from Pluripotent Stem Cells for Translational Medicine. Stem Cells 2016;34:1421-6. [PMID: 27015786 DOI: 10.1002/stem.2368] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 4.5] [Reference Citation Analysis]
262 Zakikhan K, Pournasr B, Nassiri-Asl M, Baharvand H. Enhanced direct conversion of fibroblasts into hepatocyte-like cells by Kdm2b. Biochem Biophys Res Commun 2016;474:97-103. [PMID: 27103435 DOI: 10.1016/j.bbrc.2016.04.076] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
263 Lim KT, Lee SC, Gao Y, Kim KP, Song G, An SY, Adachi K, Jang YJ, Kim J, Oh KJ, Kwak TH, Hwang SI, You JS, Ko K, Koo SH, Sharma AD, Kim JH, Hui L, Cantz T, Schöler HR, Han DW. Small Molecules Facilitate Single Factor-Mediated Hepatic Reprogramming. Cell Rep 2016;15:814-29. [PMID: 27149847 DOI: 10.1016/j.celrep.2016.03.071] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 7.2] [Reference Citation Analysis]
264 Gleich A, Kaiser B, Schumann J, Fuhrmann H. Establishment and characterisation of a novel bovine SV40 large T-antigen-transduced foetal hepatocyte-derived cell line. In Vitro Cell Dev Biol -Animal 2016;52:662-72. [DOI: 10.1007/s11626-016-0018-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
265 Martovetsky G, Bush KT, Nigam SK. Kidney versus Liver Specification of SLC and ABC Drug Transporters, Tight Junction Molecules, and Biomarkers. Drug Metab Dispos 2016;44:1050-60. [PMID: 27044799 DOI: 10.1124/dmd.115.068254] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
266 Chandrakanthan V, Yeola A, Kwan JC, Oliver RA, Qiao Q, Kang YC, Zarzour P, Beck D, Boelen L, Unnikrishnan A, Villanueva JE, Nunez AC, Knezevic K, Palu C, Nasrallah R, Carnell M, Macmillan A, Whan R, Yu Y, Hardy P, Grey ST, Gladbach A, Delerue F, Ittner L, Mobbs R, Walkley CR, Purton LE, Ward RL, Wong JW, Hesson LB, Walsh W, Pimanda JE. PDGF-AB and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells. Proc Natl Acad Sci U S A 2016;113:E2306-15. [PMID: 27044077 DOI: 10.1073/pnas.1518244113] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 4.0] [Reference Citation Analysis]
267 Ebrahimi B. Biological computational approaches: new hopes to improve (re)programming robustness, regenerative medicine and cancer therapeutics. Differentiation 2016;92:35-40. [PMID: 27056282 DOI: 10.1016/j.diff.2016.03.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
268 Tanimizu N, Mitaka T. Morphogenesis of liver epithelial cells. Hepatol Res 2016;46:964-76. [PMID: 26785307 DOI: 10.1111/hepr.12654] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
269 Song G, Pacher M, Balakrishnan A, Yuan Q, Tsay HC, Yang D, Reetz J, Brandes S, Dai Z, Pützer BM, Araúzo-Bravo MJ, Steinemann D, Luedde T, Schwabe RF, Manns MP, Schöler HR, Schambach A, Cantz T, Ott M, Sharma AD. Direct Reprogramming of Hepatic Myofibroblasts into Hepatocytes In Vivo Attenuates Liver Fibrosis. Cell Stem Cell 2016;18:797-808. [PMID: 26923201 DOI: 10.1016/j.stem.2016.01.010] [Cited by in Crossref: 122] [Cited by in F6Publishing: 118] [Article Influence: 20.3] [Reference Citation Analysis]
270 Li P, Sun X, Ma Z, Liu Y, Jin Y, Ge R, Hao L, Ma Y, Han S, Sun H, Zhang M, Li R, Li T, Shen L. Transcriptional Reactivation of OTX2, RX1 and SIX3 during Reprogramming Contributes to the Generation of RPE Cells from Human iPSCs. Int J Biol Sci 2016;12:505-17. [PMID: 27019633 DOI: 10.7150/ijbs.14212] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
271 Motohashi T, Watanabe N, Nishioka M, Nakatake Y, Yulan P, Mochizuki H, Kawamura Y, Ko MS, Goshima N, Kunisada T. Gene array analysis of neural crest cells identifies transcription factors necessary for direct conversion of embryonic fibroblasts into neural crest cells. Biol Open 2016;5:311-22. [PMID: 26873953 DOI: 10.1242/bio.015735] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
272 Lalit PA, Salick MR, Nelson DO, Squirrell JM, Shafer CM, Patel NG, Saeed I, Schmuck EG, Markandeya YS, Wong R, Lea MR, Eliceiri KW, Hacker TA, Crone WC, Kyba M, Garry DJ, Stewart R, Thomson JA, Downs KM, Lyons GE, Kamp TJ. Lineage Reprogramming of Fibroblasts into Proliferative Induced Cardiac Progenitor Cells by Defined Factors. Cell Stem Cell. 2016;18:354-367. [PMID: 26877223 DOI: 10.1016/j.stem.2015.12.001] [Cited by in Crossref: 122] [Cited by in F6Publishing: 117] [Article Influence: 20.3] [Reference Citation Analysis]
273 Yang X, Malik V, Jauch R. Reprogramming cells with synthetic proteins. Asian J Androl 2015;17:394-402. [PMID: 25652623 DOI: 10.4103/1008-682X.145433] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
274 Kim SM, Lim KT, Kwak TH, Lee SC, Im JH, Hali S, In Hwang S, Kim D, Hwang J, Kim KP, Chung HJ, Kim JB, Ko K, Chung HM, Lee HT, Schöler HR, Han DW. Induced neural stem cells from distinct genetic backgrounds exhibit different reprogramming status. Stem Cell Res 2016;16:460-8. [PMID: 26930613 DOI: 10.1016/j.scr.2016.02.025] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
275 Forbes SJ, Gupta S, Dhawan A. Cell therapy for liver disease: From liver transplantation to cell factory. J Hepatol. 2015;62:S157-S169. [PMID: 25920085 DOI: 10.1016/j.jhep.2015.02.040] [Cited by in Crossref: 160] [Cited by in F6Publishing: 171] [Article Influence: 26.7] [Reference Citation Analysis]
276 Wang X, Jung YS, Jun S, Lee S, Wang W, Schneider A, Sun Oh Y, Lin SH, Park BJ, Chen J, Keyomarsi K, Park JI. PAF-Wnt signaling-induced cell plasticity is required for maintenance of breast cancer cell stemness. Nat Commun 2016;7:10633. [PMID: 26843124 DOI: 10.1038/ncomms10633] [Cited by in Crossref: 40] [Cited by in F6Publishing: 46] [Article Influence: 6.7] [Reference Citation Analysis]
277 Takahashi K, Yamanaka S. A developmental framework for induced pluripotency. Development 2015;142:3274-85. [PMID: 26443632 DOI: 10.1242/dev.114249] [Cited by in Crossref: 82] [Cited by in F6Publishing: 67] [Article Influence: 13.7] [Reference Citation Analysis]
278 Tryndyak VP, Marrone AK, Latendresse JR, Muskhelishvili L, Beland FA, Pogribny IP. MicroRNA changes, activation of progenitor cells and severity of liver injury in mice induced by choline and folate deficiency. The Journal of Nutritional Biochemistry 2016;28:83-90. [DOI: 10.1016/j.jnutbio.2015.10.001] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
279 Bredenkamp N, Jin X, Liu D, O'Neill KE, Manley NR, Blackburn CC. Construction of a functional thymic microenvironment from pluripotent stem cells for the induction of central tolerance. Regen Med 2015;10:317-29. [PMID: 25933240 DOI: 10.2217/rme.15.8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
280 Fishman VS, Shnayder TA, Orishchenko KE, Bader M, Alenina N, Serov OL. Cell divisions are not essential for the direct conversion of fibroblasts into neuronal cells. Cell Cycle 2015;14:1188-96. [PMID: 25695848 DOI: 10.1080/15384101.2015.1012875] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
281 Ding Y, Chang C, Niu Z, Dai K, Geng X, Li D, Guo J, Xu C. Overexpression of transcription factor Foxa2 and Hnf1α induced rat bone mesenchymal stem cells into hepatocytes. Cytotechnology 2016;68:2037-47. [PMID: 26797779 DOI: 10.1007/s10616-016-9944-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
282 Kouwaki T, Okamoto T, Ito A, Sugiyama Y, Yamashita K, Suzuki T, Kusakabe S, Hirano J, Fukuhara T, Yamashita A, Saito K, Okuzaki D, Watashi K, Sugiyama M, Yoshio S, Standley DM, Kanto T, Mizokami M, Moriishi K, Matsuura Y. Hepatocyte Factor JMJD5 Regulates Hepatitis B Virus Replication through Interaction with HBx. J Virol 2016;90:3530-42. [PMID: 26792738 DOI: 10.1128/JVI.02776-15] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
283 Wei S, Zou Q, Lai S, Zhang Q, Li L, Yan Q, Zhou X, Zhong H, Lai L. Conversion of embryonic stem cells into extraembryonic lineages by CRISPR-mediated activators. Sci Rep 2016;6:19648. [PMID: 26782778 DOI: 10.1038/srep19648] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 3.7] [Reference Citation Analysis]
284 Rackham OJ, Firas J, Fang H, Oates ME, Holmes ML, Knaupp AS; FANTOM Consortium, Suzuki H, Nefzger CM, Daub CO, Shin JW, Petretto E, Forrest AR, Hayashizaki Y, Polo JM, Gough J. A predictive computational framework for direct reprogramming between human cell types. Nat Genet. 2016;48:331-335. [PMID: 26780608 DOI: 10.1038/ng.3487] [Cited by in Crossref: 181] [Cited by in F6Publishing: 147] [Article Influence: 30.2] [Reference Citation Analysis]
285 Cantz T, Sharma AD, Ott M. Concise review: cell therapies for hereditary metabolic liver diseases-concepts, clinical results, and future developments. Stem Cells. 2015;33:1055-1062. [PMID: 25524146 DOI: 10.1002/stem.1920] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 5.2] [Reference Citation Analysis]
286 Daniel MG, Lemischka IR, Moore K. Converting cell fates: generating hematopoietic stem cells de novo via transcription factor reprogramming. Ann N Y Acad Sci 2016;1370:24-35. [PMID: 26748878 DOI: 10.1111/nyas.12989] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
287 Aguilo F, Li S, Balasubramaniyan N, Sancho A, Benko S, Zhang F, Vashisht A, Rengasamy M, Andino B, Chen CH, Zhou F, Qian C, Zhou MM, Wohlschlegel JA, Zhang W, Suchy FJ, Walsh MJ. Deposition of 5-Methylcytosine on Enhancer RNAs Enables the Coactivator Function of PGC-1α. Cell Rep 2016;14:479-92. [PMID: 26774474 DOI: 10.1016/j.celrep.2015.12.043] [Cited by in Crossref: 56] [Cited by in F6Publishing: 65] [Article Influence: 9.3] [Reference Citation Analysis]
288 Ji P, Manupipatpong S, Xie N, Li Y. Induced Pluripotent Stem Cells: Generation Strategy and Epigenetic Mystery behind Reprogramming. Stem Cells Int 2016;2016:8415010. [PMID: 26880993 DOI: 10.1155/2016/8415010] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
289 Lee ES, Kim SH, Lee H, Hwang NS. Non-viral approaches for direct conversion into mesenchymal cell types: Potential application in tissue engineering. J Biomed Mater Res B Appl Biomater 2016;104:686-97. [PMID: 26729213 DOI: 10.1002/jbm.b.33601] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
290 Bala N, Saha S, Maiti M, Sarkar M, Das S, Nandi P, Basu R. Riboflavin conjugated temperature variant ZnO nanoparticles with potential medicinal application in jaundice. RSC Adv 2016;6:71188-98. [DOI: 10.1039/c6ra15182e] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
291 Siew S, Kaneko M, Mie M, Kobatake E. Construction of a tissue-specific transcription factor-tethered extracellular matrix protein via coiled-coil helix formation. J Mater Chem B 2016;4:2512-8. [DOI: 10.1039/c5tb01579k] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
292 Oh SY, Kim JY, Park C. The ETS Factor, ETV2: a Master Regulator for Vascular Endothelial Cell Development. Mol Cells 2015;38:1029-36. [PMID: 26694034 DOI: 10.14348/molcells.2015.0331] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 4.1] [Reference Citation Analysis]
293 Xu J, Du Y, Deng H. Direct lineage reprogramming: strategies, mechanisms, and applications. Cell Stem Cell. 2015;16:119-134. [PMID: 25658369 DOI: 10.1016/j.stem.2015.01.013] [Cited by in Crossref: 252] [Cited by in F6Publishing: 243] [Article Influence: 36.0] [Reference Citation Analysis]
294 Nakamori D, Takayama K, Nagamoto Y, Mitani S, Sakurai F, Tachibana M, Mizuguchi H. Hepatic maturation of human iPS cell-derived hepatocyte-like cells by ATF5, c/EBPα, and PROX1 transduction. Biochem Biophys Res Commun 2016;469:424-9. [PMID: 26679606 DOI: 10.1016/j.bbrc.2015.12.007] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 3.4] [Reference Citation Analysis]
295 Jiang H, Xu Z, Zhong P, Ren Y, Liang G, Schilling HA, Hu Z, Zhang Y, Wang X, Chen S, Yan Z, Feng J. Cell cycle and p53 gate the direct conversion of human fibroblasts to dopaminergic neurons. Nat Commun 2015;6:10100. [PMID: 26639555 DOI: 10.1038/ncomms10100] [Cited by in Crossref: 75] [Cited by in F6Publishing: 78] [Article Influence: 10.7] [Reference Citation Analysis]
296 Zhou C, Gu H, Fan R, Wang B, Lou J. MicroRNA 302/367 Cluster Effectively Facilitates Direct Reprogramming from Human Fibroblasts into Functional Neurons. Stem Cells and Development 2015;24:2746-55. [DOI: 10.1089/scd.2015.0123] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
297 Zeltner N, Studer L. Pluripotent stem cell-based disease modeling: current hurdles and future promise. Curr Opin Cell Biol 2015;37:102-10. [PMID: 26629748 DOI: 10.1016/j.ceb.2015.10.008] [Cited by in Crossref: 50] [Cited by in F6Publishing: 40] [Article Influence: 7.1] [Reference Citation Analysis]
298 Tso D, McKinnon RD. Cell replacement therapy for central nervous system diseases. Neural Regen Res 2015;10:1356-8. [PMID: 26604878 DOI: 10.4103/1673-5374.165209] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
299 Palazzolo G, Quattrocelli M, Toelen J, Dominici R, Anastasia L, Tettamenti G, Barthelemy I, Blot S, Gijsbers R, Cassano M, Sampaolesi M. Cardiac Niche Influences the Direct Reprogramming of Canine Fibroblasts into Cardiomyocyte-Like Cells. Stem Cells Int 2016;2016:4969430. [PMID: 26681949 DOI: 10.1155/2016/4969430] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
300 Kuzmich AI, Tyulkina DV, Vinogradova TV, Sverdlov ED. Pioneer transcription factors in normal development and carcinogenesis. Russ J Bioorg Chem 2015;41:570-7. [DOI: 10.1134/s1068162015060084] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
301 Bung R, Wörsdörfer P, Thier MC, Lemke K, Gebhardt M, Edenhofer F. Partial Dedifferentiation of Murine Radial Glia-Type Neural Stem Cells by Brn2 and c-Myc Yields Early Neuroepithelial Progenitors. J Mol Biol 2016;428:1476-83. [PMID: 26555748 DOI: 10.1016/j.jmb.2015.10.028] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
302 Kaitsuka T, Tomizawa K. Cell-Penetrating Peptide as a Means of Directing the Differentiation of Induced-Pluripotent Stem Cells. Int J Mol Sci 2015;16:26667-76. [PMID: 26561805 DOI: 10.3390/ijms161125986] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.6] [Reference Citation Analysis]
303 Daniel MG, Pereira CF, Lemischka IR, Moore KA. Making a Hematopoietic Stem Cell. Trends Cell Biol. 2016;26:202-214. [PMID: 26526106 DOI: 10.1016/j.tcb.2015.10.002] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 4.9] [Reference Citation Analysis]
304 Marchetti A, Bisceglia F, Cozzolino AM, Tripodi M. New Tools for Molecular Therapy of Hepatocellular Carcinoma. Diseases 2015;3:325-40. [PMID: 28943628 DOI: 10.3390/diseases3040325] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
305 Kim J, Kim KP, Lim KT, Lee SC, Yoon J, Song G, Hwang SI, Schöler HR, Cantz T, Han DW. Generation of integration-free induced hepatocyte-like cells from mouse fibroblasts. Sci Rep 2015;5:15706. [PMID: 26503743 DOI: 10.1038/srep15706] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
306 Pournasr B, Asghari-Vostikolaee MH, Baharvand H. Transcription factor-mediated reprograming of fibroblasts to hepatocyte-like cells. Eur J Cell Biol 2015;94:603-10. [PMID: 26561000 DOI: 10.1016/j.ejcb.2015.10.003] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
307 Kim JB, Lee H, Araúzo-Bravo MJ, Hwang K, Nam D, Park MR, Zaehres H, Park KI, Lee SJ. Oct4-induced oligodendrocyte progenitor cells enhance functional recovery in spinal cord injury model. EMBO J 2015;34:2971-83. [PMID: 26497893 DOI: 10.15252/embj.201592652] [Cited by in Crossref: 23] [Cited by in F6Publishing: 32] [Article Influence: 3.3] [Reference Citation Analysis]
308 Mizoshiri N, Kishida T, Yamamoto K, Shirai T, Terauchi R, Tsuchida S, Mori Y, Ejima A, Sato Y, Arai Y, Fujiwara H, Yamamoto T, Kanamura N, Mazda O, Kubo T. Transduction of Oct6 or Oct9 gene concomitant with Myc family gene induced osteoblast-like phenotypic conversion in normal human fibroblasts. Biochem Biophys Res Commun 2015;467:1110-6. [PMID: 26499074 DOI: 10.1016/j.bbrc.2015.10.098] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
309 Gopalakrishnan S, Hor P, Ichida JK. New approaches for direct conversion of patient fibroblasts into neural cells. Brain Res 2017;1656:2-13. [PMID: 26475975 DOI: 10.1016/j.brainres.2015.10.012] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
310 Chikada H, Ito K, Yanagida A, Nakauchi H, Kamiya A. The basic helix-loop-helix transcription factor, Mist1, induces maturation of mouse fetal hepatoblasts. Sci Rep 2015;5:14989. [PMID: 26456005 DOI: 10.1038/srep14989] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
311 Ginocchio VM, Brunetti-Pierri N. Progress toward improved therapies for inborn errors of metabolism. Hum Mol Genet 2016;25:R27-35. [PMID: 26443595 DOI: 10.1093/hmg/ddv418] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
312 Sebban S, Buganim Y. Nuclear Reprogramming by Defined Factors: Quantity Versus Quality. Trends Cell Biol 2016;26:65-75. [PMID: 26437595 DOI: 10.1016/j.tcb.2015.08.006] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
313 Zhu X, Pan X, Yao L, Li W, Cui J, Wang G, Mrsny RJ, Hoffman AR, Hu J. Converting Skin Fibroblasts into Hepatic-like Cells by Transient Programming: H EPATIC -L IKE C ELLSBY T RANSIENT R EPROGRAMMING. J Cell Biochem 2016;117:589-98. [DOI: 10.1002/jcb.25355] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
314 Kishida T, Ejima A, Yamamoto K, Tanaka S, Yamamoto T, Mazda O. Reprogrammed Functional Brown Adipocytes Ameliorate Insulin Resistance and Dyslipidemia in Diet-Induced Obesity and Type 2 Diabetes. Stem Cell Reports 2015;5:569-81. [PMID: 26365511 DOI: 10.1016/j.stemcr.2015.08.007] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 5.0] [Reference Citation Analysis]
315 Yao H, Gao M, Ma J, Zhang M, Li S, Wu B, Nie X, Jiao J, Zhao H, Wang S, Yang Y, Zhang Y, Sun Y, Wicha MS, Chang AE, Gao S, Li Q, Xu R. Transdifferentiation-Induced Neural Stem Cells Promote Recovery of Middle Cerebral Artery Stroke Rats. PLoS One 2015;10:e0137211. [PMID: 26352672 DOI: 10.1371/journal.pone.0137211] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
316 Hu C, Li L. Two Effective Routes for Removing Lineage Restriction Roadblocks: From Somatic Cells to Hepatocytes. Int J Mol Sci 2015;16:20873-95. [PMID: 26340624 DOI: 10.3390/ijms160920873] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
317 Zhu P, Wang Y, He L, Huang G, Du Y, Zhang G, Yan X, Xia P, Ye B, Wang S, Hao L, Wu J, Fan Z. ZIC2-dependent OCT4 activation drives self-renewal of human liver cancer stem cells. J Clin Invest 2015;125:3795-808. [PMID: 26426078 DOI: 10.1172/JCI81979] [Cited by in Crossref: 84] [Cited by in F6Publishing: 94] [Article Influence: 12.0] [Reference Citation Analysis]
318 Pulecio J, Nivet E, Sancho-Martinez I, Vitaloni M, Guenechea G, Xia Y, Kurian L, Dubova I, Bueren J, Laricchia-Robbio L, Belmonte JCI. Conversion of human fibroblasts into monocyte-like progenitor cells. Stem Cells 2014;32:2923-38. [PMID: 25175072 DOI: 10.1002/stem.1800] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 4.9] [Reference Citation Analysis]
319 Doppler SA, Deutsch MA, Lange R, Krane M. Direct Reprogramming-The Future of Cardiac Regeneration? Int J Mol Sci 2015;16:17368-93. [PMID: 26230692 DOI: 10.3390/ijms160817368] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
320 Wangensteen KJ, Zhang S, Greenbaum LE, Kaestner KH. A genetic screen reveals Foxa3 and TNFR1 as key regulators of liver repopulation. Genes Dev 2015;29:904-9. [PMID: 25934503 DOI: 10.1101/gad.258855.115] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
321 Sampaziotis F, Segeritz CP, Vallier L. Potential of human induced pluripotent stem cells in studies of liver disease. Hepatology 2015;62:303-11. [PMID: 25502113 DOI: 10.1002/hep.27651] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 4.4] [Reference Citation Analysis]
322 Kabadi AM, Thakore PI, Vockley CM, Ousterout DG, Gibson TM, Guilak F, Reddy TE, Gersbach CA. Enhanced MyoD-induced transdifferentiation to a myogenic lineage by fusion to a potent transactivation domain. ACS Synth Biol 2015;4:689-99. [PMID: 25494287 DOI: 10.1021/sb500322u] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
323 Berasain C, Avila MA. Regulation of hepatocyte identity and quiescence. Cell Mol Life Sci 2015;72:3831-51. [DOI: 10.1007/s00018-015-1970-7] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 4.0] [Reference Citation Analysis]
324 Ma'ayan A, Duan Q. A blueprint of cell identity. Nat Biotechnol 2014;32:1007-8. [PMID: 25299921 DOI: 10.1038/nbt.3035] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
325 Zhao Z, Xu M, Wu M, Tian X, Zhang C, Fu X. Transdifferentiation of Fibroblasts by Defined Factors. Cell Reprogram 2015;17:151-9. [PMID: 26053515 DOI: 10.1089/cell.2014.0089] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
326 Sanal MG. Cell therapy from bench to bedside: Hepatocytes from fibroblasts - the truth and myth of transdifferentiation. World J Gastroenterol 2015; 21(21): 6427-6433 [PMID: 26074681 DOI: 10.3748/wjg.v21.i21.6427] [Cited by in CrossRef: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
327 Smith DK, Zhang CL. Regeneration through reprogramming adult cell identity in vivo. Am J Pathol 2015;185:2619-28. [PMID: 26056931 DOI: 10.1016/j.ajpath.2015.02.025] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
328 Zhu S, Wang H, Ding S. Reprogramming fibroblasts toward cardiomyocytes, neural stem cells and hepatocytes by cell activation and signaling-directed lineage conversion. Nat Protoc. 2015;10:959-973. [PMID: 26042385 DOI: 10.1038/nprot.2015.059] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 5.7] [Reference Citation Analysis]
329 Lee SY, Kim HJ, Choi D. Cell sources, liver support systems and liver tissue engineering: alternatives to liver transplantation. Int J Stem Cells. 2015;8:36-47. [PMID: 26019753 DOI: 10.15283/ijsc.2015.8.1.36] [Cited by in Crossref: 47] [Cited by in F6Publishing: 49] [Article Influence: 6.7] [Reference Citation Analysis]
330 Cicchini C, de Nonno V, Battistelli C, Cozzolino AM, De Santis Puzzonia M, Ciafrè SA, Brocker C, Gonzalez FJ, Amicone L, Tripodi M. Epigenetic control of EMT/MET dynamics: HNF4α impacts DNMT3s through miRs-29. Biochim Biophys Acta. 2015;1849:919-929. [PMID: 26003733 DOI: 10.1016/j.bbagrm.2015.05.005] [Cited by in Crossref: 38] [Cited by in F6Publishing: 45] [Article Influence: 5.4] [Reference Citation Analysis]
331 Yamamoto K, Kishida T, Sato Y, Nishioka K, Ejima A, Fujiwara H, Kubo T, Yamamoto T, Kanamura N, Mazda O. Direct conversion of human fibroblasts into functional osteoblasts by defined factors. Proc Natl Acad Sci U S A 2015;112:6152-7. [PMID: 25918395 DOI: 10.1073/pnas.1420713112] [Cited by in Crossref: 72] [Cited by in F6Publishing: 65] [Article Influence: 10.3] [Reference Citation Analysis]
332 Park G, Yoon BS, Kim YS, Choi SC, Moon JH, Kwon S, Hwang J, Yun W, Kim JH, Park CY, Lim DS, Kim YI, Oh CH, You S. Conversion of mouse fibroblasts into cardiomyocyte-like cells using small molecule treatments. Biomaterials. 2015;54:201-212. [PMID: 25907053 DOI: 10.1016/j.biomaterials.2015.02.029] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 3.1] [Reference Citation Analysis]
333 Sadahiro T, Yamanaka S, Ieda M. Direct Cardiac Reprogramming: Progress and Challenges in Basic Biology and Clinical Applications. Circ Res 2015;116:1378-91. [DOI: 10.1161/circresaha.116.305374] [Cited by in Crossref: 91] [Cited by in F6Publishing: 76] [Article Influence: 13.0] [Reference Citation Analysis]
334 Bhatia SN, Underhill GH, Zaret KS, Fox IJ. Cell and tissue engineering for liver disease. Sci Transl Med. 2014;6:245sr2. [PMID: 25031271 DOI: 10.1126/scitranslmed.3005975] [Cited by in Crossref: 178] [Cited by in F6Publishing: 180] [Article Influence: 25.4] [Reference Citation Analysis]
335 Ebina W, Rossi DJ. Transcription factor-mediated reprogramming toward hematopoietic stem cells. EMBO J 2015;34:694-709. [PMID: 25712209 DOI: 10.15252/embj.201490804] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 4.1] [Reference Citation Analysis]
336 Sahara M, Santoro F, Chien KR. Programming and reprogramming a human heart cell. EMBO J. 2015;34:710-738. [PMID: 25712211 DOI: 10.15252/embj.201490563] [Cited by in Crossref: 61] [Cited by in F6Publishing: 58] [Article Influence: 8.7] [Reference Citation Analysis]
337 Iwafuchi-Doi M, Zaret KS. Pioneer transcription factors in cell reprogramming. Genes Dev 2014;28:2679-92. [PMID: 25512556 DOI: 10.1101/gad.253443.114] [Cited by in Crossref: 372] [Cited by in F6Publishing: 331] [Article Influence: 53.1] [Reference Citation Analysis]
338 Shu J, Zhang K, Zhang M, Yao A, Shao S, Du F, Yang C, Chen W, Wu C, Yang W, Sun Y, Deng H. GATA family members as inducers for cellular reprogramming to pluripotency. Cell Res 2015;25:169-80. [PMID: 25591928 DOI: 10.1038/cr.2015.6] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 4.9] [Reference Citation Analysis]
339 Yamamizu K, Schlessinger D, Ko MS. SOX9 accelerates ESC differentiation to three germ layer lineages by repressing SOX2 expression through P21 (WAF1/CIP1). Development 2014;141:4254-66. [PMID: 25371362 DOI: 10.1242/dev.115436] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
340 Merkle FT, Eggan K. Modeling human disease with pluripotent stem cells: from genome association to function. Cell Stem Cell. 2013;12:656-668. [PMID: 23746975 DOI: 10.1016/j.stem.2013.05.016] [Cited by in Crossref: 138] [Cited by in F6Publishing: 127] [Article Influence: 17.3] [Reference Citation Analysis]
341 Yang R, Zheng Y, Li L, Liu S, Burrows M, Wei Z, Nace A, Herlyn M, Cui R, Guo W, Cotsarelis G, Xu X. Direct conversion of mouse and human fibroblasts to functional melanocytes by defined factors. Nat Commun 2014;5:5807. [PMID: 25510211 DOI: 10.1038/ncomms6807] [Cited by in Crossref: 48] [Cited by in F6Publishing: 37] [Article Influence: 6.0] [Reference Citation Analysis]
342 Cahan P, Li H, Morris SA, Lummertz da Rocha E, Daley GQ, Collins JJ. CellNet: network biology applied to stem cell engineering. Cell 2014;158:903-15. [PMID: 25126793 DOI: 10.1016/j.cell.2014.07.020] [Cited by in Crossref: 347] [Cited by in F6Publishing: 312] [Article Influence: 43.4] [Reference Citation Analysis]
343 Morris SA, Cahan P, Li H, Zhao AM, San Roman AK, Shivdasani RA, Collins JJ, Daley GQ. Dissecting engineered cell types and enhancing cell fate conversion via CellNet. Cell. 2014;158:889-902. [PMID: 25126792 DOI: 10.1016/j.cell.2014.07.021] [Cited by in Crossref: 178] [Cited by in F6Publishing: 166] [Article Influence: 22.3] [Reference Citation Analysis]
344 Hong K. Cellular reprogramming and its application in regenerative medicine. Tissue Eng Regen Med 2015;12:80-9. [DOI: 10.1007/s13770-014-0099-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
345 Lau S, Rylander Ottosson D, Jakobsson J, Parmar M. Direct neural conversion from human fibroblasts using self-regulating and nonintegrating viral vectors. Cell Rep. 2014;9:1673-1680. [PMID: 25482564 DOI: 10.1016/j.celrep.2014.11.017] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 3.5] [Reference Citation Analysis]
346 Chen K, Pernelle K, Tsai Y, Wu Y, Hsieh J, Liao K, Guguen-guillouzo C, Wang H. Liver X receptor α (LXRα/NR1H3) regulates differentiation of hepatocyte-like cells via reciprocal regulation of HNF4α. Journal of Hepatology 2014;61:1276-86. [DOI: 10.1016/j.jhep.2014.07.025] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
347 Daley GQ. Dissecting reprogramming, differentiation and conversion with network biology. Leuk Suppl 2014;3:S3-4. [PMID: 27175271 DOI: 10.1038/leusup.2014.2] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
348 Batta K, Florkowska M, Kouskoff V, Lacaud G. Direct reprogramming of murine fibroblasts to hematopoietic progenitor cells. Cell Rep 2014;9:1871-84. [PMID: 25466247 DOI: 10.1016/j.celrep.2014.11.002] [Cited by in Crossref: 115] [Cited by in F6Publishing: 105] [Article Influence: 14.4] [Reference Citation Analysis]
349 Tanimizu N, Kobayashi S, Ichinohe N, Mitaka T. Downregulation of miR122 by grainyhead-like 2 restricts the hepatocytic differentiation potential of adult liver progenitor cells. Development. 2014;141:4448-4456. [PMID: 25406394 DOI: 10.1242/dev.113654] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 4.0] [Reference Citation Analysis]
350 Müller FJ, Loring JF. Network biology: A compass for stem-cell differentiation. Nature 2014;513:498-9. [PMID: 25254472 DOI: 10.1038/513498a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
351 Okabayashi T, Shima Y, Sumiyoshi T, Kozuki A, Iiyama T, Tokumaru T, Namikawa T, Sugimoto T, Takezaki Y, Maeda H, Kobayashi M, Hanazaki K. Extrahepatic stem cells mobilized from the bone marrow by the supplementation of branched-chain amino acids ameliorate liver regeneration in an animal model. J Gastroenterol Hepatol 2014;29:870-7. [PMID: 24224518 DOI: 10.1111/jgh.12450] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
352 Vallier L. Heps with pep: direct reprogramming into human hepatocytes. Cell Stem Cell. 2014;14:267-269. [PMID: 24607399 DOI: 10.1016/j.stem.2014.02.010] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
353 Han J, Chang S, Cho H, Choi S, Ahn H, Lee J, Jeong H, Youn S, Lee H, Kwon Y, Cho H, Oh B, Oettgen P, Park Y, Kim H. Direct Conversion of Adult Skin Fibroblasts to Endothelial Cells by Defined Factors. Circulation 2014;130:1168-78. [DOI: 10.1161/circulationaha.113.007727] [Cited by in Crossref: 71] [Cited by in F6Publishing: 64] [Article Influence: 8.9] [Reference Citation Analysis]
354 Alder O, Cullum R, Lee S, Kan AC, Wei W, Yi Y, Garside VC, Bilenky M, Griffith M, Morrissy AS. Hippo signaling influences HNF4A and FOXA2 enhancer switching during hepatocyte differentiation. Cell Rep. 2014;9:261-271. [PMID: 25263553 DOI: 10.1016/j.celrep.2014.08.046] [Cited by in Crossref: 57] [Cited by in F6Publishing: 60] [Article Influence: 7.1] [Reference Citation Analysis]
355 Beck S, Lee BK, Kim J. Multi-layered global gene regulation in mouse embryonic stem cells. Cell Mol Life Sci 2015;72:199-216. [PMID: 25227241 DOI: 10.1007/s00018-014-1734-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
356 Chin MT. Reprogramming cell fate: a changing story. Front Cell Dev Biol 2014;2:46. [PMID: 25364753 DOI: 10.3389/fcell.2014.00046] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 0.6] [Reference Citation Analysis]
357 Miura S, Suzuki A. Acquisition of lipid metabolic capability in hepatocyte-like cells directly induced from mouse fibroblasts. Front Cell Dev Biol 2014;2:43. [PMID: 25364750 DOI: 10.3389/fcell.2014.00043] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
358 Kim YJ, Lim H, Li Z, Oh Y, Kovlyagina I, Choi IY, Dong X, Lee G. Generation of multipotent induced neural crest by direct reprogramming of human postnatal fibroblasts with a single transcription factor. Cell Stem Cell. 2014;15:497-506. [PMID: 25158936 DOI: 10.1016/j.stem.2014.07.013] [Cited by in Crossref: 93] [Cited by in F6Publishing: 90] [Article Influence: 11.6] [Reference Citation Analysis]
359 Lang AH, Li H, Collins JJ, Mehta P. Epigenetic landscapes explain partially reprogrammed cells and identify key reprogramming genes. PLoS Comput Biol 2014;10:e1003734. [PMID: 25122086 DOI: 10.1371/journal.pcbi.1003734] [Cited by in Crossref: 68] [Cited by in F6Publishing: 66] [Article Influence: 8.5] [Reference Citation Analysis]
360 Yamada Y, Haga H, Yamada Y. Concise review: dedifferentiation meets cancer development: proof of concept for epigenetic cancer. Stem Cells Transl Med 2014;3:1182-7. [PMID: 25122691 DOI: 10.5966/sctm.2014-0090] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 3.5] [Reference Citation Analysis]
361 Kim K, Schöler H. CellNet—Where Your Cells Are Standing. Cell 2014;158:699-701. [DOI: 10.1016/j.cell.2014.08.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
362 Tomaru Y, Hasegawa R, Suzuki T, Sato T, Kubosaki A, Suzuki M, Kawaji H, Forrest AR, Hayashizaki Y, Shin JW, Suzuki H; FANTOM Consortium. A transient disruption of fibroblastic transcriptional regulatory network facilitates trans-differentiation. Nucleic Acids Res 2014;42:8905-13. [PMID: 25013174 DOI: 10.1093/nar/gku567] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 3.1] [Reference Citation Analysis]
363 Qiu GH, Xie X, Xu F, Shi X, Wang Y, Deng L. Distinctive pharmacological differences between liver cancer cell lines HepG2 and Hep3B. Cytotechnology 2015;67:1-12. [PMID: 25002206 DOI: 10.1007/s10616-014-9761-9] [Cited by in Crossref: 47] [Cited by in F6Publishing: 57] [Article Influence: 5.9] [Reference Citation Analysis]
364 Simeonov KP, Uppal H. Direct reprogramming of human fibroblasts to hepatocyte-like cells by synthetic modified mRNAs. PLoS One. 2014;9:e100134. [PMID: 24963715 DOI: 10.1371/journal.pone.0100134] [Cited by in Crossref: 53] [Cited by in F6Publishing: 52] [Article Influence: 6.6] [Reference Citation Analysis]
365 Takasato M, Vanslambrouck JM, Little MH. Reprogramming somatic cells to a kidney fate. Semin Nephrol 2014;34:462-80. [PMID: 25217274 DOI: 10.1016/j.semnephrol.2014.06.012] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
366 Muraoka N, Yamakawa H, Miyamoto K, Sadahiro T, Umei T, Isomi M, Nakashima H, Akiyama M, Wada R, Inagawa K. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures. EMBO J. 2014;33:1565-1581. [PMID: 24920580 DOI: 10.15252/embj.201387605] [Cited by in Crossref: 204] [Cited by in F6Publishing: 192] [Article Influence: 25.5] [Reference Citation Analysis]
367 Crespo I, Del Sol A. A general strategy for cellular reprogramming: the importance of transcription factor cross-repression. Stem Cells 2013;31:2127-35. [PMID: 23873656 DOI: 10.1002/stem.1473] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 4.5] [Reference Citation Analysis]
368 Magner NL, Jung Y, Wu J, Nolta JA, Zern MA, Zhou P. Insulin and IGFs enhance hepatocyte differentiation from human embryonic stem cells via the PI3K/AKT pathway. Stem Cells. 2013;31:2095-2103. [PMID: 23836547 DOI: 10.1002/stem.1478] [Cited by in Crossref: 44] [Cited by in F6Publishing: 48] [Article Influence: 5.5] [Reference Citation Analysis]
369 Sánchez Alvarado A, Yamanaka S. Rethinking differentiation: stem cells, regeneration, and plasticity. Cell 2014;157:110-9. [PMID: 24679530 DOI: 10.1016/j.cell.2014.02.041] [Cited by in Crossref: 164] [Cited by in F6Publishing: 154] [Article Influence: 20.5] [Reference Citation Analysis]
370 Oh SI, Park HS, Hwang I, Park HK, Choi KA, Jeong H, Kim SW, Hong S. Efficient reprogramming of mouse fibroblasts to neuronal cells including dopaminergic neurons. ScientificWorldJournal 2014;2014:957548. [PMID: 24991651 DOI: 10.1155/2014/957548] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
371 Hirschi KK, Li S, Roy K. Induced pluripotent stem cells for regenerative medicine. Annu Rev Biomed Eng. 2014;16:277-294. [PMID: 24905879 DOI: 10.1146/annurev-bioeng-071813-105108] [Cited by in Crossref: 77] [Cited by in F6Publishing: 72] [Article Influence: 9.6] [Reference Citation Analysis]
372 Ang CE, Wernig M. Induced neuronal reprogramming. J Comp Neurol 2014;522:2877-86. [PMID: 24771471 DOI: 10.1002/cne.23620] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.4] [Reference Citation Analysis]
373 Cicchini C, Amicone L, Alonzi T, Marchetti A, Mancone C, Tripodi M. Molecular mechanisms controlling the phenotype and the EMT/MET dynamics of hepatocyte. Liver Int 2015;35:302-10. [PMID: 24766136 DOI: 10.1111/liv.12577] [Cited by in Crossref: 46] [Cited by in F6Publishing: 53] [Article Influence: 5.8] [Reference Citation Analysis]
374 Benda C, Zhou T, Wang X, Tian W, Grillari J, Tse HF, Grillari-Voglauer R, Pei D, Esteban MA. Urine as a source of stem cells. Adv Biochem Eng Biotechnol 2013;129:19-32. [PMID: 23038280 DOI: 10.1007/10_2012_157] [Cited by in Crossref: 5] [Cited by in F6Publishing: 12] [Article Influence: 0.6] [Reference Citation Analysis]
375 Miyajima A, Tanaka M, Itoh T. Stem/Progenitor Cells in Liver Development, Homeostasis, Regeneration, and Reprogramming. Cell Stem Cell 2014;14:561-74. [DOI: 10.1016/j.stem.2014.04.010] [Cited by in Crossref: 325] [Cited by in F6Publishing: 307] [Article Influence: 40.6] [Reference Citation Analysis]
376 Yin JW, Wang G. The Mediator complex: a master coordinator of transcription and cell lineage development. Development 2014;141:977-87. [PMID: 24550107 DOI: 10.1242/dev.098392] [Cited by in Crossref: 126] [Cited by in F6Publishing: 127] [Article Influence: 15.8] [Reference Citation Analysis]
377 Chen JX, Plonowska K, Wu SM. Somatic Cell Reprogramming into Cardiovascular Lineages. J Cardiovasc Pharmacol Ther 2014;19:340-9. [PMID: 24764131 DOI: 10.1177/1074248414527641] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
378 Giri S, Bader A. Shortcut route for generation of functional hepatocyte cells from human skin allogenically for autologous treatment of chronic liver diseases. J Clin Exp Hepatol 2014;4:74-8. [PMID: 25755540 DOI: 10.1016/j.jceh.2014.03.051] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
379 Kami D, Gojo S. Tuning cell fate: from insights to vertebrate regeneration. Organogenesis 2014;10:231-40. [PMID: 24736602 DOI: 10.4161/org.28816] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
380 Li W, Li K, Wei W, Ding S. Chemical approaches to stem cell biology and therapeutics. Cell Stem Cell. 2013;13:270-283. [PMID: 24012368 DOI: 10.1016/j.stem.2013.08.002] [Cited by in Crossref: 111] [Cited by in F6Publishing: 116] [Article Influence: 13.9] [Reference Citation Analysis]
381 Liu T, Zhang S, Xiang D, Wang Y. Induction of hepatocyte-like cells from mouse embryonic stem cells by lentivirus-mediated constitutive expression of Foxa2/Hnf4a. J Cell Biochem. 2013;114:2531-2541. [PMID: 23744720 DOI: 10.1002/jcb.24604] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
382 Palomo AB, Lucas M, Dilley RJ, McLenachan S, Chen FK, Requena J, Sal MF, Lucas A, Alvarez I, Jaraquemada D, Edel MJ. The Power and the Promise of Cell Reprogramming: Personalized Autologous Body Organ and Cell Transplantation. J Clin Med 2014;3:373-87. [PMID: 26237380 DOI: 10.3390/jcm3020373] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
383 Acimovic I, Vilotic A, Pesl M, Lacampagne A, Dvorak P, Rotrekl V, Meli AC. Human pluripotent stem cell-derived cardiomyocytes as research and therapeutic tools. Biomed Res Int 2014;2014:512831. [PMID: 24800237 DOI: 10.1155/2014/512831] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 4.5] [Reference Citation Analysis]
384 Blum HE. Cell therapies and regenerative medicine. Hepatol Int 2014;8:158-65. [PMID: 26202498 DOI: 10.1007/s12072-013-9512-6] [Reference Citation Analysis]
385 Botman O, Wyns C. Induced pluripotent stem cell potential in medicine, specifically focused on reproductive medicine. Front Surg 2014;1:5. [PMID: 25671222 DOI: 10.3389/fsurg.2014.00005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
386 Kim SM, Flaßkamp H, Hermann A, Araúzo-Bravo MJ, Lee SC, Lee SH, Seo EH, Lee SH, Storch A, Lee HT. Direct conversion of mouse fibroblasts into induced neural stem cells. Nat Protoc. 2014;9:871-881. [PMID: 24651499 DOI: 10.1038/nprot.2014.056] [Cited by in Crossref: 56] [Cited by in F6Publishing: 56] [Article Influence: 7.0] [Reference Citation Analysis]
387 Xu WP, Zhang X, Xie WF. Differentiation therapy for solid tumors: Differentiation therapy for solid tumors. Journal of Digestive Diseases 2014;15:159-65. [DOI: 10.1111/1751-2980.12122] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 2.5] [Reference Citation Analysis]
388 Blum HE. Advances in individualized and regenerative medicine. Adv Med Sci 2014;59:7-12. [PMID: 24797966 DOI: 10.1016/j.advms.2013.12.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
389 Verfaillie CM. Biliary Cells to the Rescue of Prometheus. Gastroenterology 2014;146:611-4. [DOI: 10.1053/j.gastro.2014.01.039] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
390 Ruggieri M, Riboldi G, Brajkovic S, Bucchia M, Bresolin N, Comi GP, Corti S. Induced neural stem cells: Methods of reprogramming and potential therapeutic applications. Progress in Neurobiology 2014;114:15-24. [DOI: 10.1016/j.pneurobio.2013.11.001] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 4.0] [Reference Citation Analysis]
391 Huang P, Zhang L, Gao Y, He Z, Yao D, Wu Z, Cen J, Chen X, Liu C, Hu Y, Lai D, Hu Z, Chen L, Zhang Y, Cheng X, Ma X, Pan G, Wang X, Hui L. Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell. 2014;14:370-384. [PMID: 24582927 DOI: 10.1016/j.stem.2014.01.003] [Cited by in Crossref: 321] [Cited by in F6Publishing: 316] [Article Influence: 40.1] [Reference Citation Analysis]
392 Du Y, Wang J, Jia J, Song N, Xiang C, Xu J, Hou Z, Su X, Liu B, Jiang T, Zhao D, Sun Y, Shu J, Guo Q, Yin M, Sun D, Lu S, Shi Y, Deng H. Human hepatocytes with drug metabolic function induced from fibroblasts by lineage reprogramming. Cell Stem Cell 2014;14:394-403. [PMID: 24582926 DOI: 10.1016/j.stem.2014.01.008] [Cited by in Crossref: 208] [Cited by in F6Publishing: 199] [Article Influence: 26.0] [Reference Citation Analysis]
393 Sasai Y. Next-generation regenerative medicine: organogenesis from stem cells in 3D culture. Cell Stem Cell 2013;12:520-30. [PMID: 23642363 DOI: 10.1016/j.stem.2013.04.009] [Cited by in Crossref: 242] [Cited by in F6Publishing: 223] [Article Influence: 30.3] [Reference Citation Analysis]
394 Iida Y, Kazuki Y, Hayashi M, Ueda Y, Hasegawa M, Kouprina N, Larionov V, Oshimura M. Bi-HAC vector system toward gene and cell therapy. ACS Synth Biol 2014;3:83-90. [PMID: 25101815 DOI: 10.1021/sb400166j] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
395 Kelaini S, Cochrane A, Margariti A. Direct reprogramming of adult cells: Avoiding the pluripotent state. Stem Cells Cloning. 2014;7:19-29. [PMID: 24627642 DOI: 10.2147/sccaa.s38006] [Cited by in Crossref: 17] [Cited by in F6Publishing: 44] [Article Influence: 2.1] [Reference Citation Analysis]
396 Huch M, Boj SF, Clevers H. Lgr5(+) liver stem cells, hepatic organoids and regenerative medicine. Regen Med. 2013;8:385-387. [PMID: 23826690 DOI: 10.2217/rme.13.39] [Cited by in Crossref: 58] [Cited by in F6Publishing: 56] [Article Influence: 7.3] [Reference Citation Analysis]
397 Inoue H, Nagata N, Kurokawa H, Yamanaka S. iPS cells: a game changer for future medicine. EMBO J. 2014;33:409-417. [PMID: 24500035 DOI: 10.1002/embj.201387098] [Cited by in Crossref: 287] [Cited by in F6Publishing: 248] [Article Influence: 35.9] [Reference Citation Analysis]
398 Nozaki T, Ohura K. Regulation of miRNA during direct reprogramming of dental pulp cells to insulin-producing cells. Biochemical and Biophysical Research Communications 2014;444:195-8. [DOI: 10.1016/j.bbrc.2014.01.030] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
399 Zhang K, Liu GH, Yi F, Montserrat N, Hishida T, Esteban CR, Izpisua Belmonte JC. Direct conversion of human fibroblasts into retinal pigment epithelium-like cells by defined factors. Protein Cell 2014;5:48-58. [PMID: 24474194 DOI: 10.1007/s13238-013-0011-2] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 4.8] [Reference Citation Analysis]
400 Takebe T, Zhang RR, Koike H, Kimura M, Yoshizawa E, Enomura M, Koike N, Sekine K, Taniguchi H. Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant. Nat Protoc. 2014;9:396-409. [PMID: 24457331 DOI: 10.1038/nprot.2014.020] [Cited by in Crossref: 216] [Cited by in F6Publishing: 197] [Article Influence: 27.0] [Reference Citation Analysis]
401 Armond JW, Saha K, Rana AA, Oates CJ, Jaenisch R, Nicodemi M, Mukherjee S. A stochastic model dissects cell states in biological transition processes. Sci Rep 2014;4:3692. [PMID: 24435049 DOI: 10.1038/srep03692] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
402 Schwartz RE, Fleming HE, Khetani SR, Bhatia SN. Pluripotent stem cell-derived hepatocyte-like cells. Biotechnol Adv 2014;32:504-13. [PMID: 24440487 DOI: 10.1016/j.biotechadv.2014.01.003] [Cited by in Crossref: 177] [Cited by in F6Publishing: 168] [Article Influence: 22.1] [Reference Citation Analysis]
403 Crespo I, Perumal TM, Jurkowski W, del Sol A. Detecting cellular reprogramming determinants by differential stability analysis of gene regulatory networks. BMC Syst Biol 2013;7:140. [PMID: 24350678 DOI: 10.1186/1752-0509-7-140] [Cited by in Crossref: 35] [Cited by in F6Publishing: 24] [Article Influence: 3.9] [Reference Citation Analysis]
404 Chang TT, Hughes-Fulford M. Molecular mechanisms underlying the enhanced functions of three-dimensional hepatocyte aggregates. Biomaterials 2014;35:2162-71. [PMID: 24332390 DOI: 10.1016/j.biomaterials.2013.11.063] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 4.0] [Reference Citation Analysis]
405 He J, Lu H, Zou Q, Luo L. Regeneration of liver after extreme hepatocyte loss occurs mainly via biliary transdifferentiation in zebrafish. Gastroenterology. 2014;146:789-800.e8. [PMID: 24315993 DOI: 10.1053/j.gastro.2013.11.045] [Cited by in Crossref: 122] [Cited by in F6Publishing: 136] [Article Influence: 13.6] [Reference Citation Analysis]
406 Liu WH, Ren LN, Chen T, You N, Liu LY, Wang T, Yan HT, Luo H, Tang LJ. Unbalanced distribution of materials: the art of giving rise to hepatocytes from liver stem/progenitor cells. J Cell Mol Med 2014;18:1-14. [PMID: 24286303 DOI: 10.1111/jcmm.12183] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
407 Yamamizu K, Piao Y, Sharov AA, Zsiros V, Yu H, Nakazawa K, Schlessinger D, Ko MS. Identification of transcription factors for lineage-specific ESC differentiation. Stem Cell Reports 2013;1:545-59. [PMID: 24371809 DOI: 10.1016/j.stemcr.2013.10.006] [Cited by in Crossref: 52] [Cited by in F6Publishing: 50] [Article Influence: 5.8] [Reference Citation Analysis]
408 Gerbal-Chaloin S, Funakoshi N, Caillaud A, Gondeau C, Champon B, Si-Tayeb K. Human induced pluripotent stem cells in hepatology: beyond the proof of concept. Am J Pathol. 2014;184:332-347. [PMID: 24269594 DOI: 10.1016/j.ajpath.2013.09.026] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 4.8] [Reference Citation Analysis]
409 Shin D, Monga SP. Cellular and molecular basis of liver development. Compr Physiol 2013;3:799-815. [PMID: 23720330 DOI: 10.1002/cphy.c120022] [Cited by in Crossref: 10] [Cited by in F6Publishing: 23] [Article Influence: 1.1] [Reference Citation Analysis]
410 Kiyoshima T, Fujiwara H, Nagata K, Wada H, Ookuma YF, Shiotsuka M, Kihara M, Hasegawa K, Someya H, Sakai H. Induction of dental epithelial cell differentiation marker gene expression in non-odontogenic human keratinocytes by transfection with thymosin beta 4. Stem Cell Res 2014;12:309-22. [PMID: 24342703 DOI: 10.1016/j.scr.2013.11.006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
411 Cui L, Shi Y, Zhou X, Wang X, Wang J, Lan Y, Wang M, Zheng L, Li H, Wu Q, Zhang J, Fan D, Han Y. A set of microRNAs mediate direct conversion of human umbilical cord lining-derived mesenchymal stem cells into hepatocytes. Cell Death Dis. 2013;4:e918. [PMID: 24232094 DOI: 10.1038/cddis.2013.429] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 3.6] [Reference Citation Analysis]
412 He WJ, Hou Q, Han QW, Han WD, Fu XB. Pluripotent reprogramming and lineage reprogramming: promises and challenges in cardiovascular regeneration. Tissue Eng Part B Rev 2014;20:304-13. [PMID: 24063625 DOI: 10.1089/ten.TEB.2013.0393] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
413 Qian L, Srivastava D. Direct cardiac reprogramming: from developmental biology to cardiac regeneration. Circ Res 2013;113:915-21. [PMID: 24030021 DOI: 10.1161/CIRCRESAHA.112.300625] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 3.8] [Reference Citation Analysis]
414 Sun P, Zhou X, Farnworth SL, Patel AH, Hay DC. Modeling human liver biology using stem cell-derived hepatocytes. Int J Mol Sci 2013;14:22011-21. [PMID: 24201130 DOI: 10.3390/ijms141122011] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
415 Romano G, Morales F, Marino IR, Giordano A. A Commentary on iPS Cells: Potential Applications in Autologous Transplantation, Study of Illnesses and Drug Screening: iPS CELL BIOLOGY. J Cell Physiol 2014;229:148-52. [DOI: 10.1002/jcp.24437] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
416 Outani H, Okada M, Yamashita A, Nakagawa K, Yoshikawa H, Tsumaki N. Direct induction of chondrogenic cells from human dermal fibroblast culture by defined factors. PLoS One. 2013;8:e77365. [PMID: 24146984 DOI: 10.1371/journal.pone.0077365] [Cited by in Crossref: 60] [Cited by in F6Publishing: 58] [Article Influence: 6.7] [Reference Citation Analysis]
417 van Oevelen C, Kallin E, Graf T. Transcription factor-induced enhancer modulations during cell fate conversions. Current Opinion in Genetics & Development 2013;23:562-7. [DOI: 10.1016/j.gde.2013.07.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
418 Xi G, Hu P, Qu C, Qiu S, Tong C, Ying QL. Induced neural stem cells generated from rat fibroblasts. Genomics Proteomics Bioinformatics 2013;11:312-9. [PMID: 24076032 DOI: 10.1016/j.gpb.2013.09.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
419 Addis RC, Epstein JA. Induced regeneration--the progress and promise of direct reprogramming for heart repair. Nat Med. 2013;19:829-836. [PMID: 23836233 DOI: 10.1038/nm.3225] [Cited by in Crossref: 71] [Cited by in F6Publishing: 65] [Article Influence: 7.9] [Reference Citation Analysis]
420 Dianat N, Steichen C, Vallier L, Weber A, Dubart-Kupperschmitt A. Human pluripotent stem cells for modelling human liver diseases and cell therapy. Curr Gene Ther. 2013;13:120-132. [PMID: 23444872 DOI: 10.2174/1566523211313020006] [Cited by in Crossref: 43] [Cited by in F6Publishing: 37] [Article Influence: 4.8] [Reference Citation Analysis]
421 Zhang XB. Cellular reprogramming of human peripheral blood cells. Genomics Proteomics Bioinformatics 2013;11:264-74. [PMID: 24060839 DOI: 10.1016/j.gpb.2013.09.001] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 3.7] [Reference Citation Analysis]
422 Yang XY, Wang W, Li X. In vitro hepatic differentiation of human endometrial stromal stem cells. In Vitro Cell Dev Biol Anim 2014;50:162-70. [PMID: 24052474 DOI: 10.1007/s11626-013-9688-z] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
423 Raju R, Chau D, Verfaillie CM, Hu WS. The road to regenerative liver therapies: the triumphs, trials and tribulations. Biotechnol Adv 2013;31:1085-93. [PMID: 24055818 DOI: 10.1016/j.biotechadv.2013.08.022] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
424 Tanimizu N, Nakamura Y, Ichinohe N, Mizuguchi T, Hirata K, Mitaka T. Hepatic biliary epithelial cells acquire epithelial integrity but lose plasticity to differentiate into hepatocytes in vitro during development. J Cell Sci 2013;126:5239-46. [PMID: 24046446 DOI: 10.1242/jcs.133082] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 3.9] [Reference Citation Analysis]
425 Martovetsky G, Tee JB, Nigam SK. Hepatocyte nuclear factors 4α and 1α regulate kidney developmental expression of drug-metabolizing enzymes and drug transporters. Mol Pharmacol 2013;84:808-23. [PMID: 24038112 DOI: 10.1124/mol.113.088229] [Cited by in Crossref: 64] [Cited by in F6Publishing: 64] [Article Influence: 7.1] [Reference Citation Analysis]
426 Ieda M. Heart regeneration using reprogramming technology. Proc Jpn Acad Ser B Phys Biol Sci 2013;89:118-28. [PMID: 23474887 DOI: 10.2183/pjab.89.118] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
427 Xie S, Zhang Y, Qu L, Xu H. A Helm model for microRNA regulation in cell fate decision and conversion. Sci China Life Sci 2013;56:897-906. [PMID: 24008388 DOI: 10.1007/s11427-013-4547-4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
428 Zhang Y, Li W, Laurent T, Ding S. Small molecules, big roles -- the chemical manipulation of stem cell fate and somatic cell reprogramming. J Cell Sci. 2012;125:5609-5620. [PMID: 23420199 DOI: 10.1242/jcs.096032] [Cited by in Crossref: 101] [Cited by in F6Publishing: 102] [Article Influence: 11.2] [Reference Citation Analysis]
429 Srivastava D, Berry EC. Cardiac reprogramming: from mouse toward man. Curr Opin Genet Dev 2013;23:574-8. [PMID: 23993230 DOI: 10.1016/j.gde.2013.07.007] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
430 Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CE, Gómez-Lechón MJ, Groothuis GM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Häussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhütter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EH, Stieger B, Stöber R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 2013;87:1315-530. [PMID: 23974980 DOI: 10.1007/s00204-013-1078-5] [Cited by in Crossref: 751] [Cited by in F6Publishing: 761] [Article Influence: 83.4] [Reference Citation Analysis]
431 Lin C, Yu C, Ding S. Toward directed reprogramming through exogenous factors. Curr Opin Genet Dev 2013;23:519-25. [PMID: 23932127 DOI: 10.1016/j.gde.2013.06.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
432 Chen Y, Mistry DS, Sen GL. Highly rapid and efficient conversion of human fibroblasts to keratinocyte-like cells. J Invest Dermatol 2014;134:335-44. [PMID: 23921950 DOI: 10.1038/jid.2013.327] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 3.1] [Reference Citation Analysis]
433 Guarino AT, McKinnon RD. Reprogramming cells for brain repair. Brain Sci. 2013;3:1215-1228. [PMID: 24961526 DOI: 10.3390/brainsci3031215] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
434 Mailly L, Robinet E, Meuleman P, Baumert TF, Zeisel MB. Hepatitis C virus infection and related liver disease: the quest for the best animal model. Front Microbiol. 2013;4:213. [PMID: 23898329 DOI: 10.3389/fmicb.2013.00212] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 3.1] [Reference Citation Analysis]
435 Mazzoni EO, Mahony S, Closser M, Morrison CA, Nedelec S, Williams DJ, An D, Gifford DK, Wichterle H. Synergistic binding of transcription factors to cell-specific enhancers programs motor neuron identity. Nat Neurosci 2013;16:1219-27. [PMID: 23872598 DOI: 10.1038/nn.3467] [Cited by in Crossref: 126] [Cited by in F6Publishing: 125] [Article Influence: 14.0] [Reference Citation Analysis]
436 Yu B, He ZY, You P, Han QW, Xiang D, Chen F, Wang MJ, Liu CC, Lin XW, Borjigin U. Reprogramming fibroblasts into bipotential hepatic stem cells by defined factors. Cell Stem Cell. 2013;13:328-340. [PMID: 23871605 DOI: 10.1016/j.stem.2013.06.017] [Cited by in Crossref: 115] [Cited by in F6Publishing: 111] [Article Influence: 12.8] [Reference Citation Analysis]
437 Wada R, Muraoka N, Inagawa K, Yamakawa H, Miyamoto K, Sadahiro T, Umei T, Kaneda R, Suzuki T, Kamiya K. Induction of human cardiomyocyte-like cells from fibroblasts by defined factors. Proc Natl Acad Sci USA. 2013;110:12667-12672. [PMID: 23861494 DOI: 10.1073/pnas.1304053110] [Cited by in Crossref: 212] [Cited by in F6Publishing: 200] [Article Influence: 23.6] [Reference Citation Analysis]
438 Bernal JA. RNA-based tools for nuclear reprogramming and lineage-conversion: towards clinical applications. J Cardiovasc Transl Res 2013;6:956-68. [PMID: 23852582 DOI: 10.1007/s12265-013-9494-8] [Cited by in Crossref: 42] [Cited by in F6Publishing: 36] [Article Influence: 4.7] [Reference Citation Analysis]
439 Deng XG, Qiu RL, Wu YH, Li ZX, Xie P, Zhang J, Zhou JJ, Zeng LX, Tang J, Maharjan A. Overexpression of miR-122 promotes the hepatic differentiation and maturation of mouse ESCs through a miR-122/FoxA1/HNF4a-positive feedback loop. Liver Int. 2014;34:281-295. [PMID: 23834235 DOI: 10.1111/liv.12239] [Cited by in Crossref: 59] [Cited by in F6Publishing: 62] [Article Influence: 6.6] [Reference Citation Analysis]
440 Christ GJ, Saul JM, Furth ME, Andersson KE. The pharmacology of regenerative medicine. Pharmacol Rev 2013;65:1091-133. [PMID: 23818131 DOI: 10.1124/pr.112.007393] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 3.7] [Reference Citation Analysis]
441 Maucksch C, Jones KS, Connor B. Concise review: the involvement of SOX2 in direct reprogramming of induced neural stem/precursor cells. Stem Cells Transl Med. 2013;2:579-583. [PMID: 23817132 DOI: 10.5966/sctm.2012-0179] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 3.9] [Reference Citation Analysis]
442 Oda M, Kumaki Y, Shigeta M, Jakt LM, Matsuoka C, Yamagiwa A, Niwa H, Okano M. DNA methylation restricts lineage-specific functions of transcription factor Gata4 during embryonic stem cell differentiation. PLoS Genet 2013;9:e1003574. [PMID: 23825962 DOI: 10.1371/journal.pgen.1003574] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 3.2] [Reference Citation Analysis]
443 Miki K, Yoshida Y, Yamanaka S. Making Steady Progress on Direct Cardiac Reprogramming Toward Clinical Application. Circ Res 2013;113:13-5. [DOI: 10.1161/circresaha.113.301788] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
444 Alicea B, Murthy S, Keaton SA, Cobbett P, Cibelli JB, Suhr ST. Defining the diversity of phenotypic respecification using multiple cell lines and reprogramming regimens. Stem Cells Dev 2013;22:2641-54. [PMID: 23672680 DOI: 10.1089/scd.2013.0040] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
445 Ji S, Zhang L, Hui L. Cell fate conversion: direct induction of hepatocyte-like cells from fibroblasts. J Cell Biochem. 2013;114:256-265. [PMID: 22948752 DOI: 10.1002/jcb.24380] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 1.8] [Reference Citation Analysis]
446 Katz LS, Geras-Raaka E, Gershengorn MC. Reprogramming adult human dermal fibroblasts to islet-like cells by epigenetic modification coupled to transcription factor modulation. Stem Cells Dev 2013;22:2551-60. [PMID: 23627894 DOI: 10.1089/scd.2013.0134] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
447 Qian L, Berry EC, Fu JD, Ieda M, Srivastava D. Reprogramming of mouse fibroblasts into cardiomyocyte-like cells in vitro. Nat Protoc 2013;8:1204-15. [PMID: 23722259 DOI: 10.1038/nprot.2013.067] [Cited by in Crossref: 72] [Cited by in F6Publishing: 58] [Article Influence: 8.0] [Reference Citation Analysis]
448 Kosaka T, Nagamatsu G, Saito S, Oya M, Suda T, Horimoto K. Identification of drug candidate against prostate cancer from the aspect of somatic cell reprogramming. Cancer Sci 2013;104:1017-26. [PMID: 23600803 DOI: 10.1111/cas.12183] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 2.8] [Reference Citation Analysis]
449 Suzuki A. Artificial induction and disease-related conversion of the hepatic fate. Curr Opin Genet Dev 2013;23:579-84. [PMID: 23702217 DOI: 10.1016/j.gde.2013.04.006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
450 Su G, Zhao Y, Wei J, Xiao Z, Chen B, Han J, Chen L, Guan J, Wang R, Dong Q. Direct conversion of fibroblasts into neural progenitor-like cells by forced growth into 3D spheres on low attachment surfaces. Biomaterials. 2013;34:5897-5906. [PMID: 23680365 DOI: 10.1016/j.biomaterials.2013.04.040] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 3.2] [Reference Citation Analysis]
451 Koike H, Taniguchi H. Characteristics of hepatic stem/progenitor cells in the fetal and adult liver. J Hepatobiliary Pancreat Sci. 2012;19:587-593. [PMID: 23010995 DOI: 10.1007/s00534-012-0544-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
452 Davis FP, Eddy SR. Transcription factors that convert adult cell identity are differentially polycomb repressed. PLoS One 2013;8:e63407. [PMID: 23650565 DOI: 10.1371/journal.pone.0063407] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
453 Lee TI, Young RA. Transcriptional regulation and its misregulation in disease. Cell. 2013;152:1237-1251. [PMID: 23498934 DOI: 10.1016/j.cell.2013.02.014] [Cited by in Crossref: 698] [Cited by in F6Publishing: 710] [Article Influence: 77.6] [Reference Citation Analysis]
454 Mukhopadhyay A. Perspective on liver regeneration by bone marrow-derived stem cells-a scientific realization or a paradox. Cytotherapy 2013;15:881-92. [PMID: 23623692 DOI: 10.1016/j.jcyt.2013.02.013] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
455 Addis RC, Ifkovits JL, Pinto F, Kellam LD, Esteso P, Rentschler S, Christoforou N, Epstein JA, Gearhart JD. Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success. J Mol Cell Cardiol 2013;60:97-106. [PMID: 23591016 DOI: 10.1016/j.yjmcc.2013.04.004] [Cited by in Crossref: 147] [Cited by in F6Publishing: 144] [Article Influence: 16.3] [Reference Citation Analysis]
456 Xu T, Zhang M, Laurent T, Xie M, Ding S. Concise review: chemical approaches for modulating lineage-specific stem cells and progenitors. Stem Cells Transl Med 2013;2:355-61. [PMID: 23580542 DOI: 10.5966/sctm.2012-0172] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 3.0] [Reference Citation Analysis]
457 Hikichi T, Matoba R, Ikeda T, Watanabe A, Yamamoto T, Yoshitake S, Tamura-Nakano M, Kimura T, Kamon M, Shimura M. Transcription factors interfering with dedifferentiation induce cell type-specific transcriptional profiles. Proc Natl Acad Sci USA. 2013;110:6412-6417. [PMID: 23550161 DOI: 10.1073/pnas.1220200110] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 3.2] [Reference Citation Analysis]
458 Jin HJ, Zhao JC, Ogden I, Bergan RC, Yu J. Androgen receptor-independent function of FoxA1 in prostate cancer metastasis. Cancer Res 2013;73:3725-36. [PMID: 23539448 DOI: 10.1158/0008-5472.CAN-12-3468] [Cited by in Crossref: 80] [Cited by in F6Publishing: 87] [Article Influence: 8.9] [Reference Citation Analysis]
459 Zhou J, Yue W, Pei X. Advances in cell lineage reprogramming. Sci China Life Sci 2013;56:228-33. [PMID: 23526388 DOI: 10.1007/s11427-013-4447-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.1] [Reference Citation Analysis]
460 Ma T, Xie M, Laurent T, Ding S. Progress in the reprogramming of somatic cells. Circ Res 2013;112:562-74. [PMID: 23371904 DOI: 10.1161/CIRCRESAHA.111.249235] [Cited by in Crossref: 85] [Cited by in F6Publishing: 66] [Article Influence: 9.4] [Reference Citation Analysis]
461 Palakkan AA, Hay DC, Pr AK, Tv K, Ross JA. Liver tissue engineering and cell sources: issues and challenges. Liver Int 2013;33:666-76. [DOI: 10.1111/liv.12134] [Cited by in Crossref: 80] [Cited by in F6Publishing: 68] [Article Influence: 8.9] [Reference Citation Analysis]
462 Ladewig J, Koch P, Brüstle O. Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies. Nat Rev Mol Cell Biol. 2013;14:225-236. [PMID: 23486282 DOI: 10.1038/nrm3543] [Cited by in Crossref: 159] [Cited by in F6Publishing: 148] [Article Influence: 17.7] [Reference Citation Analysis]
463 Kogiso T, Nagahara H, Otsuka M, Shiratori K, Dowdy SF. Transdifferentiation of human fibroblasts into hepatocyte-like cells by defined transcriptional factors. Hepatol Int 2013;7:937-44. [DOI: 10.1007/s12072-013-9432-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
464 Muraoka I, Takatsuki M, Sakai Y, Tomonaga T, Soyama A, Hidaka M, Hishikawa Y, Koji T, Utoh R, Ohashi K, Okano T, Kanematsu T, Eguchi S. Transplanted fibroblast cell sheets promote migration of hepatic progenitor cells in the incised host liver in allogeneic rat model: Fibroblast cell sheets promote migration of hepatic progenitor cells. J Tissue Eng Regen Med 2015;9:E108-15. [DOI: 10.1002/term.1718] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
465 Meng X, Su RJ, Baylink DJ, Neises A, Kiroyan JB, Lee WY, Payne KJ, Gridley DS, Wang J, Lau KH, Li G, Zhang XB. Rapid and efficient reprogramming of human fetal and adult blood CD34+ cells into mesenchymal stem cells with a single factor. Cell Res. 2013;23:658-672. [PMID: 23478301 DOI: 10.1038/cr.2013.40] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 2.8] [Reference Citation Analysis]
466 Nam YJ, Song K, Luo X, Daniel E, Lambeth K, West K, Hill JA, DiMaio JM, Baker LA, Bassel-Duby R, Olson EN. Reprogramming of human fibroblasts toward a cardiac fate. Proc Natl Acad Sci U S A. 2013;110:5588-5593. [PMID: 23487791 DOI: 10.1073/pnas.1301019110] [Cited by in Crossref: 349] [Cited by in F6Publishing: 336] [Article Influence: 38.8] [Reference Citation Analysis]
467 Shen J, Cheng Y, Han Q, Mu Y, Han W. Generating insulin-producing cells for diabetic therapy: existing strategies and new development. Ageing Res Rev 2013;12:469-78. [PMID: 23318683 DOI: 10.1016/j.arr.2013.01.001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
468 Cheng X, Tiyaboonchai A, Gadue P. Endodermal stem cell populations derived from pluripotent stem cells. Curr Opin Cell Biol 2013;25:265-71. [PMID: 23452824 DOI: 10.1016/j.ceb.2013.01.006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
469 Sancho-Martinez I, Baek SH, Izpisua Belmonte JC. Lineage conversion methodologies meet the reprogramming toolbox. Nat Cell Biol 2012;14:892-9. [PMID: 22945254 DOI: 10.1038/ncb2567] [Cited by in Crossref: 84] [Cited by in F6Publishing: 77] [Article Influence: 9.3] [Reference Citation Analysis]
470 Raju R, Verfaillie CM, Hu W. Cell-based liver support systems: status and prospect. Current Opinion in Chemical Engineering 2013;2:26-31. [DOI: 10.1016/j.coche.2013.01.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
471 Yoshida Y, Yamanaka S. An emerging strategy of gene therapy for cardiac disease. Circ Res 2012;111:1108-10. [PMID: 23065338 DOI: 10.1161/CIRCRESAHA.112.278820] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
472 Srivastava D, Ieda M, Fu J, Qian L. Cardiac repair with thymosin β4 and cardiac reprogramming factors. Ann N Y Acad Sci 2012;1270:66-72. [PMID: 23050819 DOI: 10.1111/j.1749-6632.2012.06696.x] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
473 Fairhall EA, Charles MA, Wallace K, Schwab CJ, Harrison CJ, Richter M, Hoffmann SA, Charlton KA, Zeilinger K, Wright MC. The B-13 hepatocyte progenitor cell resists pluripotency induction and differentiation to non-hepatocyte cells. Toxicol Res 2013;2:308. [DOI: 10.1039/c3tx50030f] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
474 Morris SA, Daley GQ. A blueprint for engineering cell fate: current technologies to reprogram cell identity. Cell Res. 2013;23:33-48. [PMID: 23277278 DOI: 10.1038/cr.2013.1] [Cited by in Crossref: 88] [Cited by in F6Publishing: 88] [Article Influence: 9.8] [Reference Citation Analysis]
475 Vierbuchen T, Wernig M. Molecular roadblocks for cellular reprogramming. Mol Cell. 2012;47:827-838. [PMID: 23020854 DOI: 10.1016/j.molcel.2012.09.008] [Cited by in Crossref: 139] [Cited by in F6Publishing: 130] [Article Influence: 13.9] [Reference Citation Analysis]
476 Wang L, Wang L, Huang W, Su H, Xue Y, Su Z, Liao B, Wang H, Bao X, Qin D. Generation of integration-free neural progenitor cells from cells in human urine. Nat Methods. 2013;10:84-89. [PMID: 23223155 DOI: 10.1038/nmeth.2283] [Cited by in Crossref: 147] [Cited by in F6Publishing: 141] [Article Influence: 14.7] [Reference Citation Analysis]
477 Maucksch C, Firmin E, Butler-Munro C, Montgomery J, Dottori M, Connor B. Non-Viral Generation of Neural Precursor-like Cells from Adult Human Fibroblasts. J Stem Cells Regen Med 2012;8:162-70. [PMID: 24693194 [PMID: 24693194 DOI: 10.46582/jsrm.0803009] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
478 Pereira CF, Lemischka IR, Moore K. Reprogramming cell fates: insights from combinatorial approaches. Ann N Y Acad Sci 2012;1266:7-17. [PMID: 22901251 DOI: 10.1111/j.1749-6632.2012.06508.x] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 1.7] [Reference Citation Analysis]
479 Rouaux C, Bhai S, Arlotta P. Programming and reprogramming neuronal subtypes in the central nervous system. Dev Neurobiol 2012;72:1085-98. [PMID: 22378700 DOI: 10.1002/dneu.22018] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
480 Lv X, Zhu H, Bai Y, Chu Z, Hu Y, Cao H, Liu C, He X, Peng S, Gao Z, Yang C, Hua J. Reversine promotes porcine muscle derived stem cells (PMDSCs) differentiation into female germ-like cells. J Cell Biochem 2012;113:3629-42. [DOI: 10.1002/jcb.24296] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 2.2] [Reference Citation Analysis]
481 Nizzardo M, Simone C, Falcone M, Riboldi G, Comi GP, Bresolin N, Corti S. Direct reprogramming of adult somatic cells into other lineages: past evidence and future perspectives. Cell Transplant. 2013;22:921-944. [PMID: 23044010 DOI: 10.3727/096368912x657477] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
482 Inagawa K, Ieda M. Direct reprogramming of mouse fibroblasts into cardiac myocytes. J Cardiovasc Transl Res 2013;6:37-45. [PMID: 23054660 DOI: 10.1007/s12265-012-9412-5] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 3.0] [Reference Citation Analysis]
483 Klotz C, Aebischer T, Seeber F. Stem cell-derived cell cultures and organoids for protozoan parasite propagation and studying host–parasite interaction. International Journal of Medical Microbiology 2012;302:203-9. [DOI: 10.1016/j.ijmm.2012.07.010] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 3.0] [Reference Citation Analysis]
484 Frietze S, Wang R, Yao L, Tak YG, Ye Z, Gaddis M, Witt H, Farnham PJ, Jin VX. Cell type-specific binding patterns reveal that TCF7L2 can be tethered to the genome by association with GATA3. Genome Biol 2012;13:R52. [PMID: 22951069 DOI: 10.1186/gb-2012-13-9-r52] [Cited by in Crossref: 83] [Cited by in F6Publishing: 77] [Article Influence: 8.3] [Reference Citation Analysis]
485 Gattinoni L, Klebanoff CA, Restifo NP. Paths to stemness: building the ultimate antitumour T cell. Nat Rev Cancer 2012;12:671-84. [PMID: 22996603 DOI: 10.1038/nrc3322] [Cited by in Crossref: 333] [Cited by in F6Publishing: 354] [Article Influence: 33.3] [Reference Citation Analysis]
486 Nie B, Wang H, Laurent T, Ding S. Cellular reprogramming: a small molecule perspective. Curr Opin Cell Biol 2012;24:784-92. [PMID: 22959962 DOI: 10.1016/j.ceb.2012.08.010] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 3.0] [Reference Citation Analysis]
487 Nagamatsu G, Saito S, Kosaka T, Takubo K, Kinoshita T, Oya M, Horimoto K, Suda T. Optimal ratio of transcription factors for somatic cell reprogramming. J Biol Chem 2012;287:36273-82. [PMID: 22955270 DOI: 10.1074/jbc.M112.380683] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 2.1] [Reference Citation Analysis]
488 Sindhu C, Samavarchi-Tehrani P, Meissner A. Transcription factor-mediated epigenetic reprogramming. J Biol Chem 2012;287:30922-31. [PMID: 22952239 DOI: 10.1074/jbc.R111.319046] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
489 Banga A, Akinci E, Greder LV, Dutton JR, Slack JM. In vivo reprogramming of Sox9+ cells in the liver to insulin-secreting ducts. Proc Natl Acad Sci U S A 2012;109:15336-41. [PMID: 22949652 DOI: 10.1073/pnas.1201701109] [Cited by in Crossref: 100] [Cited by in F6Publishing: 96] [Article Influence: 10.0] [Reference Citation Analysis]
490 Lluis F, Cosma MP. Resetting epigenetic signatures to induce somatic cell reprogramming. Cell Mol Life Sci 2013;70:1413-24. [DOI: 10.1007/s00018-012-1137-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
491 Yoshida Y, Yamanaka S. Labor pains of new technology: direct cardiac reprogramming. Circ Res 2012;111:3-4. [PMID: 22723216 DOI: 10.1161/CIRCRESAHA.112.271445] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
492 Greenhough S, Hay DC. Stem Cell-Based Toxicity Screening: Recent Advances in Hepatocyte Generation. Pharm Med 2012;26:85-9. [DOI: 10.1007/bf03256896] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
493 Gifford CA, Meissner A. Epigenetic obstacles encountered by transcription factors: reprogramming against all odds. Curr Opin Genet Dev 2012;22:409-15. [PMID: 22922161 DOI: 10.1016/j.gde.2012.08.002] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.2] [Reference Citation Analysis]
494 Guo Y, Mahony S, Gifford DK. High resolution genome wide binding event finding and motif discovery reveals transcription factor spatial binding constraints. PLoS Comput Biol 2012;8:e1002638. [PMID: 22912568 DOI: 10.1371/journal.pcbi.1002638] [Cited by in Crossref: 191] [Cited by in F6Publishing: 151] [Article Influence: 19.1] [Reference Citation Analysis]
495 Shin JW, Suzuki T, Ninomiya N, Kishima M, Hasegawa Y, Kubosaki A, Yabukami H, Hayashizaki Y, Suzuki H. Establishment of single-cell screening system for the rapid identification of transcriptional modulators involved in direct cell reprogramming. Nucleic Acids Res 2012;40:e165. [PMID: 22879381 DOI: 10.1093/nar/gks732] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
496 Adler AF, Grigsby CL, Kulangara K, Wang H, Yasuda R, Leong KW. Nonviral direct conversion of primary mouse embryonic fibroblasts to neuronal cells. Mol Ther Nucleic Acids. 2012;1:e32. [PMID: 23344148 DOI: 10.1038/mtna.2012.25] [Cited by in Crossref: 43] [Cited by in F6Publishing: 49] [Article Influence: 4.3] [Reference Citation Analysis]
497 Takahashi K. Cellular reprogramming--lowering gravity on Waddington's epigenetic landscape. J Cell Sci 2012;125:2553-60. [PMID: 22736045 DOI: 10.1242/jcs.084822] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
498 Ring KL, Tong LM, Balestra ME, Javier R, Andrews-Zwilling Y, Li G, Walker D, Zhang WR, Kreitzer AC, Huang Y. Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell. 2012;11:100-109. [PMID: 22683203 DOI: 10.1016/j.stem.2012.05.018] [Cited by in Crossref: 390] [Cited by in F6Publishing: 359] [Article Influence: 39.0] [Reference Citation Analysis]
499 Tian C, Ambroz RJ, Sun L, Wang Y, Ma K, Chen Q, Zhu B, Zheng JC. Direct conversion of dermal fibroblasts into neural progenitor cells by a novel cocktail of defined factors. Curr Mol Med. 2012;12:126-137. [PMID: 22172100 DOI: 10.2174/156652412798889018] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 3.4] [Reference Citation Analysis]
500 Holmberg J, Perlmann T. Maintaining differentiated cellular identity. Nat Rev Genet 2012;13:429-39. [PMID: 22596319 DOI: 10.1038/nrg3209] [Cited by in Crossref: 106] [Cited by in F6Publishing: 92] [Article Influence: 10.6] [Reference Citation Analysis]
501 Zhou WL, Medine CN, Zhu L, Hay DC. Stem cell differentiation and human liver disease. World J Gastroenterol 2012; 18(17): 2018-2025 [PMID: 22563188 DOI: 10.3748/wjg.v18.i17.2018] [Cited by in CrossRef: 11] [Cited by in F6Publishing: 14] [Article Influence: 1.1] [Reference Citation Analysis]
502 Efrat S, Russ HA. Making β cells from adult tissues. Trends Endocrinol Metab 2012;23:278-85. [PMID: 22537825 DOI: 10.1016/j.tem.2012.03.005] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 2.2] [Reference Citation Analysis]
503 Kumar A, Declercq J, Eggermont K, Agirre X, Prosper F, Verfaillie CM. Zic3 induces conversion of human fibroblasts to stable neural progenitor-like cells. J Mol Cell Biol. 2012;4:252-255. [PMID: 22508949 DOI: 10.1093/jmcb/mjs015] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 2.6] [Reference Citation Analysis]
504 Wu X, Robotham JM, Lee E, Dalton S, Kneteman NM, Gilbert DM, Tang H. Productive hepatitis C virus infection of stem cell-derived hepatocytes reveals a critical transition to viral permissiveness during differentiation. PLoS Pathog. 2012;8:e1002617. [PMID: 22496645 DOI: 10.1371/journal.ppat.1002617] [Cited by in Crossref: 127] [Cited by in F6Publishing: 113] [Article Influence: 12.7] [Reference Citation Analysis]
505 Benesic A, Rahm NL, Ernst S, Gerbes AL. Human monocyte-derived cells with individual hepatocyte characteristics: a novel tool for personalized in vitro studies. Lab Invest 2012;92:926-36. [PMID: 22469698 DOI: 10.1038/labinvest.2012.64] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 1.9] [Reference Citation Analysis]
506 Yang N, Ng YH, Pang ZP, Südhof TC, Wernig M. Induced neuronal cells: how to make and define a neuron. Cell Stem Cell 2011;9:517-25. [PMID: 22136927 DOI: 10.1016/j.stem.2011.11.015] [Cited by in Crossref: 124] [Cited by in F6Publishing: 122] [Article Influence: 12.4] [Reference Citation Analysis]
507 Graf T. Historical origins of transdifferentiation and reprogramming. Cell Stem Cell. 2011;9:504-516. [PMID: 22136926 DOI: 10.1016/j.stem.2011.11.012] [Cited by in Crossref: 137] [Cited by in F6Publishing: 119] [Article Influence: 13.7] [Reference Citation Analysis]
508 Han DW, Tapia N, Hermann A, Hemmer K, Höing S, Araúzo-Bravo MJ, Zaehres H, Wu G, Frank S, Moritz S. Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell. 2012;10:465-472. [PMID: 22445517 DOI: 10.1016/j.stem.2012.02.021] [Cited by in Crossref: 405] [Cited by in F6Publishing: 381] [Article Influence: 40.5] [Reference Citation Analysis]
509 Foshay KM, Looney TJ, Chari S, Mao FF, Lee JH, Zhang L, Fernandes CJ, Baker SW, Clift KL, Gaetz J, Di CG, Xiang AP, Lahn BT. Embryonic stem cells induce pluripotency in somatic cell fusion through biphasic reprogramming. Mol Cell 2012;46:159-70. [PMID: 22445485 DOI: 10.1016/j.molcel.2012.02.013] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 4.5] [Reference Citation Analysis]
510 Willenbring H. A simple code for installing hepatocyte function. Cell Stem Cell. 2011;9:89-91. [PMID: 21816357 DOI: 10.1016/j.stem.2011.07.009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
511 Nakamura N, Saeki K, Mitsumoto M, Matsuyama S, Nishio M, Saeki K, Hasegawa M, Miyagawa Y, Ohkita H, Kiyokawa N. Feeder-free and serum-free production of hepatocytes, cholangiocytes, and their proliferating progenitors from human pluripotent stem cells: application to liver-specific functional and cytotoxic assays. Cell Reprogram. 2012;14:171-185. [PMID: 22384928 DOI: 10.1089/cell.2011.0064] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 2.7] [Reference Citation Analysis]
512 Lalmansingh AS, Karmakar S, Jin Y, Nagaich AK. Multiple modes of chromatin remodeling by Forkhead box proteins. Biochim Biophys Acta 2012;1819:707-15. [PMID: 22406422 DOI: 10.1016/j.bbagrm.2012.02.018] [Cited by in Crossref: 72] [Cited by in F6Publishing: 68] [Article Influence: 7.2] [Reference Citation Analysis]
513 Yi F, Liu GH, Izpisua Belmonte JC. Rejuvenating liver and pancreas through cell transdifferentiation. Cell Res 2012;22:616-9. [PMID: 22373548 DOI: 10.1038/cr.2012.33] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
514 Asuelime GE, Shi Y. A case of cellular alchemy: lineage reprogramming and its potential in regenerative medicine. J Mol Cell Biol 2012;4:190-6. [PMID: 22371436 DOI: 10.1093/jmcb/mjs005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
515 Burke ZD, Tosh D. Ontogenesis of Hepatic and Pancreatic Stem Cells. Stem Cell Rev and Rep 2012;8:586-96. [DOI: 10.1007/s12015-012-9350-2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
516 Shenoy A, Blelloch R. microRNA induced transdifferentiation. F1000 Biol Rep. 2012;4:3. [PMID: 22312415 DOI: 10.3410/b4-3] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.4] [Reference Citation Analysis]
517 Vierbuchen T, Wernig M. Direct lineage conversions: unnatural but useful? Nat Biotechnol 2011;29:892-907. [PMID: 21997635 DOI: 10.1038/nbt.1946] [Cited by in Crossref: 209] [Cited by in F6Publishing: 175] [Article Influence: 20.9] [Reference Citation Analysis]
518 Lujan E, Chanda S, Ahlenius H, Südhof TC, Wernig M. Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proc Natl Acad Sci USA. 2012;109:2527-2532. [PMID: 22308465 DOI: 10.1073/pnas.1121003109] [Cited by in Crossref: 334] [Cited by in F6Publishing: 300] [Article Influence: 33.4] [Reference Citation Analysis]
519 Tang DG. Understanding cancer stem cell heterogeneity and plasticity. Cell Res. 2012;22:457-472. [PMID: 22357481 DOI: 10.1038/cr.2012.13] [Cited by in Crossref: 317] [Cited by in F6Publishing: 323] [Article Influence: 31.7] [Reference Citation Analysis]
520 Kitada M. Mesenchymal cell populations: development of the induction systems for Schwann cells and neuronal cells and finding the unique stem cell population. Anat Sci Int 2012;87:24-44. [PMID: 22237924 DOI: 10.1007/s12565-011-0128-4] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 1.4] [Reference Citation Analysis]
521 Rountree CB, Mishra L, Willenbring H. Stem cells in liver diseases and cancer: recent advances on the path to new therapies. Hepatology 2012;55:298-306. [PMID: 22030746 DOI: 10.1002/hep.24762] [Cited by in Crossref: 77] [Cited by in F6Publishing: 70] [Article Influence: 7.7] [Reference Citation Analysis]
522 Han S, Bourdon A, Hamou W, Dziedzic N, Goldman O, Gouon-Evans V. Generation of functional hepatic cells from pluripotent stem cells. J Stem Cell Res Ther. 2012;Suppl 10:1-7. [PMID: 25364624 DOI: 10.4172/2157-7633.s10-008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 14] [Article Influence: 0.5] [Reference Citation Analysis]
523 Zhang M, Zhong Y, Chen J. Model systems and clinical applications of hepatic stem cells for liver regeneration. Hepatol Int 2012;6:564-75. [DOI: 10.1007/s12072-011-9323-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
524 Gaetz J, Clift KL, Fernandes CJ, Mao FF, Lee JH, Zhang L, Baker SW, Looney TJ, Foshay KM, Yu WH, Xiang AP, Lahn BT. Evidence for a critical role of gene occlusion in cell fate restriction. Cell Res 2012;22:848-58. [PMID: 22124232 DOI: 10.1038/cr.2011.190] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 0.5] [Reference Citation Analysis]
525 Liu X, Li F, Stubblefield EA, Blanchard B, Richards TL, Larson GA, He Y, Huang Q, Tan AC, Zhang D, Benke TA, Sladek JR, Zahniser NR, Li CY. Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells. Cell Res. 2012;22:321-332. [PMID: 22105488 DOI: 10.1038/cr.2011.181] [Cited by in Crossref: 130] [Cited by in F6Publishing: 122] [Article Influence: 11.8] [Reference Citation Analysis]
526 Sancho-Martinez I, Nivet E, Izpisua Belmonte JC. The labyrinth of nuclear reprogramming. J Mol Cell Biol 2011;3:327-9. [PMID: 22090451 DOI: 10.1093/jmcb/mjr031] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
527 Pournasr B, Khaloughi K, Salekdeh GH, Totonchi M, Shahbazi E, Baharvand H. Concise Review: Alchemy of Biology: Generating Desired Cell Types from Abundant and Accessible Cells. STEM CELLS 2011;29:1933-41. [DOI: 10.1002/stem.760] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 3.1] [Reference Citation Analysis]
528 Takayama K, Inamura M, Kawabata K, Katayama K, Higuchi M, Tashiro K, Nonaka A, Sakurai F, Hayakawa T, Furue MK. Efficient generation of functional hepatocytes from human embryonic stem cells and induced pluripotent stem cells by HNF4α transduction. Mol Ther. 2012;20:127-137. [PMID: 22068426 DOI: 10.1038/mt.2011.234] [Cited by in Crossref: 182] [Cited by in F6Publishing: 158] [Article Influence: 16.5] [Reference Citation Analysis]
529 Chistiakov DA, Chistiakov PA. Strategies to produce hepatocytes and hepatocyte-like cells from pluripotent stem cells. Hepatol Res 2012;42:111-9. [PMID: 21988469 DOI: 10.1111/j.1872-034X.2011.00896.x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 1.1] [Reference Citation Analysis]
530 Ikonomou L, Hemnes AR, Bilousova G, Hamid R, Loyd JE, Hatzopoulos AK, Kotton DN, Majka SM, Austin ED. Programmatic change: lung disease research in the era of induced pluripotency. Am J Physiol Lung Cell Mol Physiol 2011;301:L830-5. [PMID: 21984571 DOI: 10.1152/ajplung.00255.2011] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
531 Shiota G, Yasui T. Progress in stem cell biology in regenerative medicine for liver disease. Hepatol Res 2012;42:15-21. [PMID: 21951276 DOI: 10.1111/j.1872-034X.2011.00874.x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
532 Ivacik D, Ely A, Arbuthnot P. Countering hepatitis B virus infection using RNAi: how far are we from the clinic? Rev Med Virol. 2011;21:383-396. [PMID: 21913277 DOI: 10.1002/rmv.705] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 2.2] [Reference Citation Analysis]
533 Ray K. Liver: Successful conversion of fibroblasts into liver cells. Nat Rev Gastroenterol Hepatol 2011;8:474. [PMID: 21892130 DOI: 10.1038/nrgastro.2011.127] [Reference Citation Analysis]
534 [DOI: 10.1101/262899] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
535 [DOI: 10.1101/335547] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
536 [DOI: 10.1101/2020.09.14.297275] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
537 [DOI: 10.1101/127860] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
538 [DOI: 10.1101/2020.02.17.947416] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
539 [DOI: 10.1101/2020.02.17.947390] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]