BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cha JH, Chan LC, Li CW, Hsu JL, Hung MC. Mechanisms Controlling PD-L1 Expression in Cancer. Mol Cell. 2019;76:359-370. [PMID: 31668929 DOI: 10.1016/j.molcel.2019.09.030] [Cited by in Crossref: 199] [Cited by in F6Publishing: 228] [Article Influence: 49.8] [Reference Citation Analysis]
Number Citing Articles
1 Zhao W, Li X, Ren Q, Wang Q, Liao C, Ding T, Li P, Liu J. Molecular mechanism of miRNA regulating PD-L1 expression. Gene Reports 2023;31:101763. [DOI: 10.1016/j.genrep.2023.101763] [Reference Citation Analysis]
2 Shin S, Ko H, Kim CH, Yoon BK, Son S, Lee JA, Shin JM, Lee J, Song SH, Jackman JA, Park JH. Curvature-sensing peptide inhibits tumour-derived exosomes for enhanced cancer immunotherapy. Nat Mater 2023. [PMID: 36959501 DOI: 10.1038/s41563-023-01515-2] [Reference Citation Analysis]
3 Chen K, Wang Q, Liu X, Tian X, Dong A, Yang Y. Immune profiling and prognostic model of pancreatic cancer using quantitative pathology and single-cell RNA sequencing. J Transl Med 2023;21:210. [PMID: 36944944 DOI: 10.1186/s12967-023-04051-4] [Reference Citation Analysis]
4 Li L, Wang LL, Wang TL, Zheng FM. ACADL suppresses PD-L1 expression to prevent cancer immune evasion by targeting Hippo/YAP signaling in lung adenocarcinoma. Med Oncol 2023;40:118. [PMID: 36929466 DOI: 10.1007/s12032-023-01978-y] [Reference Citation Analysis]
5 Wudtiwai B, Kodchakorn K, Shwe TH, Pothacharoen P, Phitak T, Suninthaboonrana R, Kongtawelert P. Brazilein inhibits epithelial-mesenchymal transition (EMT) and programmed death ligand 1 (PD-L1) expression in breast cancer cells. Int Immunopharmacol 2023;118:109988. [PMID: 36933493 DOI: 10.1016/j.intimp.2023.109988] [Reference Citation Analysis]
6 Xie Y, Ding J, Gao J, Zhang J, Cen S, Zhou J. Triptolide reduces PD-L1 through the EGFR and IFN-γ/IRF1 dual signaling pathways. Int Immunopharmacol 2023;118:109993. [PMID: 36931170 DOI: 10.1016/j.intimp.2023.109993] [Reference Citation Analysis]
7 Sridhar A, Singh PK, Parikh K. Immune checkpoint inhibitors in metastatic NSCLC: challenges and future directions. International Journal of Cancer Care and Delivery 2023. [DOI: 10.53876/001c.72631] [Reference Citation Analysis]
8 Wang YY, Yang X, Wang YC, Long JY, Sun HS, Li YR, Xun ZY, Zhang N, Xue JN, Ning C, Zhang JW, Zhu CP, Zhang LH, Yang XB, Zhao HT. Clinical outcomes of lenvatinib plus transarterial chemoembolization with or without programmed death receptor-1 inhibitors in unresectable hepatocellular carcinoma. World J Gastroenterol 2023; 29(10): 1470-1482 [DOI: 10.3748/wjg.v29.i10.1470] [Reference Citation Analysis]
9 Wang YY, Yang X, Wang YC, Long JY, Sun HS, Li YR, Xun ZY, Zhang N, Xue JN, Ning C, Zhang JW, Zhu CP, Zhang LH, Yang XB, Zhao HT. Clinical outcomes of lenvatinib plus transarterial chemoembolization with or without programmed death receptor-1 inhibitors in unresectable hepatocellular carcinoma. World J Gastroenterol 2023; 29(10): 1614-1626 [DOI: 10.3748/wjg.v29.i10.1614] [Reference Citation Analysis]
10 Liu Y, Li Y, Xu H, Zhou L, Yang X, Wang C. Exploration of Morphological Features of Clear Cell Renal Cell Carcinoma With PBRM1, SETD2, BAP1, or KDM5C Mutations. Int J Surg Pathol 2023;:10668969231157317. [PMID: 36911986 DOI: 10.1177/10668969231157317] [Reference Citation Analysis]
11 Chen SY, Cao JL, Li KP, Wan S, Yang L. BIN1 in cancer: biomarker and therapeutic target. J Cancer Res Clin Oncol 2023. [PMID: 36890396 DOI: 10.1007/s00432-023-04673-7] [Reference Citation Analysis]
12 Rosellini M, Marchetti A, Mollica V, Rizzo A, Santoni M, Massari F. Prognostic and predictive biomarkers for immunotherapy in advanced renal cell carcinoma. Nat Rev Urol 2023;20:133-57. [PMID: 36414800 DOI: 10.1038/s41585-022-00676-0] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
13 Zhu T, Wang R, Jiang H, Shi A, Chai M, Huang C, Yang S, Zhong W, Cai Y. Fibroblast Programmed Cell Death Ligand 1 Promotes Osteoclastogenesis in Odontogenic Keratocysts. Am J Pathol 2023;193:286-95. [PMID: 36509120 DOI: 10.1016/j.ajpath.2022.11.009] [Reference Citation Analysis]
14 Xie XQ, Yang Y, Wang Q, Liu HF, Fang XY, Li CL, Jiang YZ, Wang S, Zhao HY, Miao JY, Ding SS, Liu XD, Yao XH, Yang WT, Jiang J, Shao ZM, Jin G, Bian XW. Targeting ATAD3A-PINK1-mitophagy axis overcomes chemoimmunotherapy resistance by redirecting PD-L1 to mitochondria. Cell Res 2023;33:215-28. [PMID: 36627348 DOI: 10.1038/s41422-022-00766-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Zhou C, Weng J, Liu C, Liu S, Hu Z, Xie X, Gao D, Zhou Q, Sun J, Xu R, Li H, Shen Y, Yi Y, Shi Y, Sheng X, Dong Q, Hung MC, Ren N. Disruption of SLFN11 Deficiency-Induced CCL2 Signaling and Macrophage M2 Polarization Potentiates Anti-PD-1 Therapy Efficacy in Hepatocellular Carcinoma. Gastroenterology 2023:S0016-5085(23)00137-3. [PMID: 36863689 DOI: 10.1053/j.gastro.2023.02.005] [Reference Citation Analysis]
16 Bruno G, Nastasi N, Subbiani A, Boaretto A, Ciullini Mannurita S, Mattei G, Nardini P, Della Bella C, Magi A, Pini A, De Marco E, Tondo A, Favre C, Calvani M. β3-adrenergic receptor on tumor-infiltrating lymphocytes sustains IFN-γ-dependent PD-L1 expression and impairs anti-tumor immunity in neuroblastoma. Cancer Gene Ther 2023. [PMID: 36854895 DOI: 10.1038/s41417-023-00599-x] [Reference Citation Analysis]
17 Ivanović T, Božić D, Benzon B, Čapkun V, Vukojević K, Glavina Durdov M. Histological Type, Cytotoxic T Cells and Macrophages in the Tumor Microenvironment Affect the PD-L1 Status of Gastric Cancer. Biomedicines 2023;11:709. [DOI: 10.3390/biomedicines11030709] [Reference Citation Analysis]
18 Saliba J, Manseur C, Groult H, Akil H, Tannoury M, Troutaud D, Maugard T, Feuillard J, Arnaudin I, Jayat-Vignoles C. Anti-Proliferative and Pro-Apoptotic vLMW Fucoidan Formulas Decrease PD-L1 Surface Expression in EBV Latency III and DLBCL Tumoral B-Cells by Decreasing Actin Network. Mar Drugs 2023;21. [PMID: 36827173 DOI: 10.3390/md21020132] [Reference Citation Analysis]
19 Pan Y, Shu G, Fu L, Huang K, Zhou X, Gui C, Liu H, Jin X, Chen M, Li P, Cen J, Feng Z, Lu J, Chen Z, Li J, Xu Q, Wang Y, Liang H, Wang Z, Deng Q, Chen W, Luo J, Yang J, Zhang J, Wei J. EHBP1L1 Drives Immune Evasion in Renal Cell Carcinoma through Binding and Stabilizing JAK1. Adv Sci (Weinh) 2023;:e2206792. [PMID: 36775874 DOI: 10.1002/advs.202206792] [Reference Citation Analysis]
20 Bai H, Padron AS, Deng Y, Liao YJ, Murray CJ, Ontiveros C, Kari SJ, Kancharla A, Kornepati AVR, Garcia M, Reyes RM, Gupta HB, Conejo-Garcia JR, Curiel T. Pharmacological tumor PDL1 depletion with chlorambucil treats ovarian cancer and melanoma: improves antitumor immunity and renders anti-PDL1-resistant tumors anti-PDL1-sensitive through NK cell effects. J Immunother Cancer 2023;11. [PMID: 36759012 DOI: 10.1136/jitc-2022-004871] [Reference Citation Analysis]
21 Yu X, Li W, Liu H, Wang X, Coarfa C, Cheng C, Yu X, Zeng Z, Cao Y, Young KH, Li Y. PD-L1 translocation to the plasma membrane enables tumor immune evasion through MIB2 ubiquitination. J Clin Invest 2023;133. [PMID: 36719382 DOI: 10.1172/JCI160456] [Reference Citation Analysis]
22 Ye Y, Xie Y, Pei L, Jiang Z, Wu C, Liu S. Platycodin D induces neutrophil apoptosis by downregulating PD-L1 expression to inhibit breast cancer pulmonary metastasis. International Immunopharmacology 2023;115:109733. [DOI: 10.1016/j.intimp.2023.109733] [Reference Citation Analysis]
23 Zhang Q, Cao W, Yang C, Hong L, Geng S, Han H, Zhong C. Isothiocyanates attenuate immune checkpoint blockage therapy in gastric cancer via induction of PD-L1 expression. J Nutr Biochem 2023;112:109226. [PMID: 36435292 DOI: 10.1016/j.jnutbio.2022.109226] [Reference Citation Analysis]
24 Sasaya T, Kubo T, Murata K, Mizue Y, Sasaki K, Yanagawa J, Imagawa M, Kato H, Tsukahara T, Kanaseki T, Tamura Y, Miyazaki A, Hirohashi Y, Torigoe T. Cisplatin-induced HSF1-HSP90 axis enhances the expression of functional PD-L1 in oral squamous cell carcinoma. Cancer Med 2023;12:4605-15. [PMID: 36200687 DOI: 10.1002/cam4.5310] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
25 Majewska J, Agrawal A, Mayo A, Roitman L, Chatterjee R, Kralova J, Landsberger T, Katzenelenbogen Y, Meir-salame T, Hagai E, Stanojevic N, Amit I, Alon U, Krizhanovsky V. p16-dependent upregulation of PD-L1 impairs immunosurveillance of senescent cells.. [DOI: 10.1101/2023.01.30.524522] [Reference Citation Analysis]
26 Vranic S, Gatalica Z. PD-L1 testing by immunohistochemistry in immuno-oncology. Biomol Biomed 2023;23:15-25. [PMID: 35964287 DOI: 10.17305/bjbms.2022.7953] [Reference Citation Analysis]
27 Zhang H, Chen H, Yin S, Fan L, Jin C, Zhao C, Hu H. Docosahexaenoic acid reverses PD-L1-mediated immune suppression by accelerating its ubiquitin-proteasome degradation. J Nutr Biochem 2023;112:109186. [PMID: 36309154 DOI: 10.1016/j.jnutbio.2022.109186] [Reference Citation Analysis]
28 Li J, Zhang D, Liu Z, Wang Y, Li X, Wang Z, Liang G, Yuan X, Li Y, Komorowski AL, Rozen WM, Orlandi A, Takabe K, Franceschini G, Jerusalem G, Wang X. The combined effect and mechanism of antiangiogenic drugs and PD-L1 inhibitor on cell apoptosis in triple negative breast cancer. Ann Transl Med 2023;11:83. [PMID: 36819490 DOI: 10.21037/atm-22-6446] [Reference Citation Analysis]
29 Fan G, Wang F, Chen Y, Zheng Q, Xiong J, Lv Q, Wu K, Xiong J, Wei L, Li D, Zhang J, Zhang W, Li F. The deubiquitinase OTUD1 noncanonically suppresses Akt activation through its N-terminal intrinsically disordered region. Cell Rep 2023;42:111916. [PMID: 36640312 DOI: 10.1016/j.celrep.2022.111916] [Reference Citation Analysis]
30 Takahara T, Nakamura S, Tsuzuki T, Satou A. The Immunology of DLBCL. Cancers (Basel) 2023;15. [PMID: 36765793 DOI: 10.3390/cancers15030835] [Reference Citation Analysis]
31 Laface C, Ranieri G, Maselli FM, Ambrogio F, Foti C, Ammendola M, Laterza M, Cazzato G, Memeo R, Mastrandrea G, Lioce M, Fedele P. Immunotherapy and the Combination with Targeted Therapies for Advanced Hepatocellular Carcinoma. Cancers (Basel) 2023;15. [PMID: 36765612 DOI: 10.3390/cancers15030654] [Reference Citation Analysis]
32 Ye S, Li S, Qin L, Zheng W, Liu B, Li X, Ren Z, Zhao H, Hu X, Ye N, Li G. GBP2 promotes clear cell renal cell carcinoma progression through immune infiltration and regulation of PD‑L1 expression via STAT1 signaling. Oncol Rep 2023;49:49. [PMID: 36660930 DOI: 10.3892/or.2023.8486] [Reference Citation Analysis]
33 Xin H, Zhou C, Wang G, Liu Y, Zhang J, Liu Y, Li B, Zhang J, Su M, Li Z, Wang G. Heterogeneity of PD-L1 expression and CD8 lymphocyte infiltration in metastatic colorectal cancer and their prognostic significance. Heliyon 2023;9:e13048. [PMID: 36814622 DOI: 10.1016/j.heliyon.2023.e13048] [Reference Citation Analysis]
34 Gao Y, Wang Z, Cui Y, Xu M, Weng L. Emerging Strategies of Engineering and Tracking Dendritic Cells for Cancer Immunotherapy. ACS Appl Bio Mater 2023;6:24-43. [PMID: 36520013 DOI: 10.1021/acsabm.2c00790] [Reference Citation Analysis]
35 Li T, Yang Y, Qi H, Cui W, Zhang L, Fu X, He X, Liu M, Li PF, Yu T. CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduct Target Ther 2023;8:36. [PMID: 36646687 DOI: 10.1038/s41392-023-01309-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Tang L, Li Y, Shen L, Li N, Shen L, Li Z. Integrative analyses reveal prognostic and immunogenic characteristics of m7G methylation regulators in patients with glioma. Am J Transl Res 2023;15:288-309. [PMID: 36777864] [Reference Citation Analysis]
37 Caron JM, Han X, Lary CW, Sathyanarayana P, Remick SC, Ernstoff MS, Herlyn M, Brooks PC. Targeting the secreted RGDKGE collagen fragment reduces PD‑L1 by a proteasome‑dependent mechanism and inhibits tumor growth. Oncol Rep 2023;49:44. [PMID: 36633146 DOI: 10.3892/or.2023.8481] [Reference Citation Analysis]
38 Yang X, Su X, Wang Z, Yu Y, Wu Z, Zhang D. ULBP2 is a biomarker related to prognosis and immunity in colon cancer. Mol Cell Biochem 2023. [PMID: 36633827 DOI: 10.1007/s11010-022-04647-2] [Reference Citation Analysis]
39 Hoskins EL, Samorodnitsky E, Wing MR, Reeser JW, Hopkins JF, Murugesan K, Kuang Z, Vella R, Stein L, Risch Z, Yu L, Adebola S, Paruchuri A, Carpten J, Chahoud J, Edge S, Kolesar J, McCarter M, Nepple KG, Reilley M, Scaife C, Tripathi A, Single N, Huang RSP, Albacker LA, Roychowdhury S. Pan-cancer Landscape of Programmed Death Ligand-1 and Programmed Death Ligand-2 Structural Variations. JCO Precis Oncol 2023;7:e2200300. [PMID: 36623238 DOI: 10.1200/PO.22.00300] [Reference Citation Analysis]
40 Ding L, Chen X, Zhang W, Dai X, Guo H, Pan X, Xu Y, Feng J, Yuan M, Gao X, Wang J, Xu X, Li S, Wu H, Cao J, He Q, Yang B. Canagliflozin primes antitumor immunity by triggering PD-L1 degradation in endocytic recycling. J Clin Invest 2023;133. [PMID: 36594471 DOI: 10.1172/JCI154754] [Reference Citation Analysis]
41 Wang Q, Liu Z, Cheng X, Wang H, Liang W, Zhu Q, Li P, Gao Y. HAT1 regulates the immune microenvironment and promotes the malignant pathology of lower-grade gliomas.. [DOI: 10.21203/rs.3.rs-2394039/v1] [Reference Citation Analysis]
42 Mo DC, Huang JF, Luo PH, Chen L, Zou B, Wang HL. PD-1/PD-L1 inhibitor plus chemotherapy versus standard of care in the first-line treatment for recurrent or metastatic head and neck squamous cell carcinoma. Eur Arch Otorhinolaryngol 2023;280:1-9. [PMID: 35907001 DOI: 10.1007/s00405-022-07571-9] [Reference Citation Analysis]
43 Li L, Li J. Correlation of tumor mutational burden with prognosis and immune infiltration in lung adenocarcinoma. Front Oncol 2023;13:1128785. [PMID: 36959799 DOI: 10.3389/fonc.2023.1128785] [Reference Citation Analysis]
44 Qin H, Sheng W, Zhang G, Yang Q, Yao S, Yue Y, Zhang P, Zhu Y, Wang Q, Chen Y, Zeng H, Weng J, Yu F, Yang J. Comprehensive analysis of cuproptosis-related prognostic gene signature and tumor immune microenvironment in HCC. Front Genet 2023;14:1094793. [PMID: 36891150 DOI: 10.3389/fgene.2023.1094793] [Reference Citation Analysis]
45 Vaishampayan P, Curiel-Lewandrowski C, Dickinson SE. Review: PD-L1 as an emerging target in the treatment and prevention of keratinocytic skin cancer. Mol Carcinog 2023;62:52-61. [PMID: 36121318 DOI: 10.1002/mc.23464] [Reference Citation Analysis]
46 Li W, Sun J, Feng SL, Wang F, Miao MZ, Wu EY, Wallet S, Loeser R, Li C. Intra-articular delivery of AAV vectors encoding PD-L1 attenuates joint inflammation and tissue damage in a mouse model of rheumatoid arthritis. Front Immunol 2023;14:1116084. [PMID: 36936967 DOI: 10.3389/fimmu.2023.1116084] [Reference Citation Analysis]
47 Shen M, Kang Y. Cancer fitness genes: emerging therapeutic targets for metastasis. Trends Cancer 2023;9:69-82. [PMID: 36184492 DOI: 10.1016/j.trecan.2022.08.007] [Reference Citation Analysis]
48 Li J, Zhang S, Chen S, Yuan Y, Zuo M, Li T, Wang Z, Liu Y. Lipid metabolism-related gene signature predicts prognosis and depicts tumor microenvironment immune landscape in gliomas. Front Immunol 2023;14:1021678. [PMID: 36860853 DOI: 10.3389/fimmu.2023.1021678] [Reference Citation Analysis]
49 Li M. Investigating the structures and mechanics of single animal cells by atomic force microscopy. Atomic Force Microscopy for Nanoscale Biophysics 2023. [DOI: 10.1016/b978-0-323-95360-3.00011-3] [Reference Citation Analysis]
50 Yan B, Wang S, Liu C, Wen N, Li H, Zhang Y, Wang H, Xi Z, Lv Y, Fan H, Liu X. Engineering magnetic nano-manipulators for boosting cancer immunotherapy. J Nanobiotechnology 2022;20:547. [PMID: 36587223 DOI: 10.1186/s12951-022-01760-8] [Reference Citation Analysis]
51 Guo S, Feng J, Li Z, Yang S, Qiu X, Xu Y, Shen Z. Improved cancer immunotherapy strategies by nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2022;:e1873. [PMID: 36576112 DOI: 10.1002/wnan.1873] [Reference Citation Analysis]
52 Jiang X, Lee M, Xia J, Luo T, Liu J, Rodriguez M, Lin W. Two-Stage SN38 Release from a Core-Shell Nanoparticle Enhances Tumor Deposition and Antitumor Efficacy for Synergistic Combination with Immune Checkpoint Blockade. ACS Nano 2022;16:21417-30. [PMID: 36382721 DOI: 10.1021/acsnano.2c09788] [Reference Citation Analysis]
53 Ye Z, Xiong Y, Peng W, Wei W, Huang L, Yue J, Zhang C, Lin G, Huang F, Zhang L, Zheng S, Yue J. Manipulation of PD-L1 Endosomal Trafficking Promotes Anticancer Immunity. Adv Sci (Weinh) 2023;10:e2206411. [PMID: 36567273 DOI: 10.1002/advs.202206411] [Reference Citation Analysis]
54 Zhang X, Tai Z, Miao F, Huang H, Zhu Q, Bao L, Chen Z. Metabolism heterogeneity in melanoma fuels deactivation of immunotherapy: Predict before protect. Front Oncol 2022;12:1046102. [PMID: 36620597 DOI: 10.3389/fonc.2022.1046102] [Reference Citation Analysis]
55 zhou X, hu Y, sun H, chen R, huang G, Liu J. Relationship between SUVmax on 18F-FDG PET and PD-L1 expression in hepatocellular carcinoma.. [DOI: 10.21203/rs.3.rs-2382213/v1] [Reference Citation Analysis]
56 Bai K, Song Q, Zhou Z, Bai J, Liu N. Research on the fatty acid metabolism gene FN1 and establishment of a model to guide immunotherapy of bladder cancer.. [DOI: 10.21203/rs.3.rs-2360942/v1] [Reference Citation Analysis]
57 Wang Q, Liu Z, Tang S, Wu Z. Morphine suppresses the immune function of lung cancer by up-regulating MAEL expression. BMC Pharmacol Toxicol 2022;23:92. [PMID: 36476246 DOI: 10.1186/s40360-022-00632-z] [Reference Citation Analysis]
58 Vodicka P, Klener P, Trneny M. Diffuse Large B-Cell Lymphoma (DLBCL): Early Patient Management and Emerging Treatment Options. Onco Targets Ther 2022;15:1481-501. [PMID: 36510607 DOI: 10.2147/OTT.S326632] [Reference Citation Analysis]
59 Zhou S, Lu C, Liu G, Hu Q, Yang J. IRF1 expression might be a biomarker of CD8+ T cell infiltration in cutaneous melanoma. Expert Rev Clin Immunol 2022;18:1319-27. [PMID: 36300336 DOI: 10.1080/1744666X.2022.2141228] [Reference Citation Analysis]
60 Hareedy AA, Rohim EZA, Al Sheikh SAM, Al Shereef ZAEA. Immunohistochemical Expression of PD-L1 and IDH1 with Detection of MGMT Promoter Methylation in Astrocytoma. Asian Pac J Cancer Prev 2022;23:4333-8. [PMID: 36580017 DOI: 10.31557/APJCP.2022.23.12.4333] [Reference Citation Analysis]
61 Wang NH, Lei Z, Yang HN, Tang Z, Yang MQ, Wang Y, Sui JD, Wu YZ. Radiation-induced PD-L1 expression in tumor and its microenvironment facilitates cancer-immune escape: a narrative review. Ann Transl Med 2022;10:1406. [PMID: 36660640 DOI: 10.21037/atm-22-6049] [Reference Citation Analysis]
62 Hu C, Dai Y, Zhou H, Zhang J, Xie D, Xu R, Yang M, Zhang R. Identification of GINS1 as a therapeutic target in the cancer patients infected with COVID-19: a bioinformatics and system biology approach. Hereditas 2022;159:45. [PMID: 36451247 DOI: 10.1186/s41065-022-00258-5] [Reference Citation Analysis]
63 Abedi Kiasari B, Abbasi A, Ghasemi Darestani N, Adabi N, Moradian A, Yazdani Y, Sadat Hosseini G, Gholami N, Janati S. Combination therapy with nivolumab (anti-PD-1 monoclonal antibody): A new era in tumor immunotherapy. International Immunopharmacology 2022;113:109365. [DOI: 10.1016/j.intimp.2022.109365] [Reference Citation Analysis]
64 Park MK, Lee H, Lee CH. Post-Translational Modification of ZEB Family Members in Cancer Progression. Int J Mol Sci 2022;23. [PMID: 36499447 DOI: 10.3390/ijms232315127] [Reference Citation Analysis]
65 Ameri A, Tavakoli-far B, Rostami M, Abedi kiasari B, Sakhaei D, Saad Ahmed O, Forouzani F, Fazli Y. Recent advances in atezolizumab-based programmed death-ligand 1 (PD-L1) blockade therapy for breast cancer. International Immunopharmacology 2022;113:109334. [DOI: 10.1016/j.intimp.2022.109334] [Reference Citation Analysis]
66 He L, Xu K, Niu L, Lin L. Astragalus polysaccharide (APS) attenuated PD-L1-mediated immunosuppression via the miR-133a-3p/MSN axis in HCC. Pharm Biol 2022;60:1710-20. [PMID: 36086826 DOI: 10.1080/13880209.2022.2112963] [Reference Citation Analysis]
67 Ahn C, Oh K, Jin B, Lee WW, Kim J, Kim H, Park D, Swarup N, Chawla K, Ryu MH, Kim U, Choi S, Yoon H, Hong S, Shin J, Cho S. Targeting tumor-intrinsic PD-L1 suppresses the progression and aggressiveness of head and neck cancer by inhibiting GSK3β-dependent Snail degradation. Cell Oncol 2022. [DOI: 10.1007/s13402-022-00748-8] [Reference Citation Analysis]
68 Li C, Xue Y, Ba X, Wang R. The Role of 8-oxoG Repair Systems in Tumorigenesis and Cancer Therapy. Cells 2022;11. [PMID: 36497058 DOI: 10.3390/cells11233798] [Reference Citation Analysis]
69 Ma K, Zhang P, Xia Y, Dong L, Li Y, Liu L, Liu Y, Wang Y. A signature based on five immune-related genes to predict the survival and immune characteristics of neuroblastoma. BMC Med Genomics 2022;15:242. [PMID: 36419120 DOI: 10.1186/s12920-022-01400-y] [Reference Citation Analysis]
70 Jia X, Long Y, Yu X, Chen R, Gong L, Geng Y. Construction of stable membranal CMTM6-PD-L1 full-length complex to evaluate the PD-1/PD-L1-CMTM6 interaction and develop anti-tumor anti-CMTM6 nanobody. Acta Pharmacol Sin 2022. [DOI: 10.1038/s41401-022-01020-3] [Reference Citation Analysis]
71 Huang X, Chen Z, Xiang X, Liu Y, Long X, Li K, Qin M, Long C, Mo X, Tang W, Liu J. Comprehensive multi-omics analysis of the m7G in pan-cancer from the perspective of predictive, preventive, and personalized medicine. EPMA J 2022;13:671-97. [PMID: 36505892 DOI: 10.1007/s13167-022-00305-1] [Reference Citation Analysis]
72 Luo J, Liu K, Wang Y, Li H. Divergent roles of PD-L1 in immune regulation during ischemia-reperfusion injury. Front Immunol 2022;13:1021452. [PMID: 36479124 DOI: 10.3389/fimmu.2022.1021452] [Reference Citation Analysis]
73 Chen J, Wu Z, He K, Guo L, Rao M, Zhang J, Li H, Su K, Xu K, Gu T, Wang P, Zeng H, Hu L, Han Y. A Potential Predictive Marker for Advanced Hepatocellular Carcinoma PD-1 Inhibitors Combined with Radiation: Expression of PD-L1 on Circulating Tumor Cells.. [DOI: 10.21203/rs.3.rs-2277477/v1] [Reference Citation Analysis]
74 Chen YY, Zhang SM, Zhao HX, Zhang JY, Lian LR, Liu DL, Chu SF. Identification and validation of immune and prognosis-related genes in hepatocellular carcinoma: A review. Medicine (Baltimore) 2022;101:e31814. [PMID: 36401409 DOI: 10.1097/MD.0000000000031814] [Reference Citation Analysis]
75 Ghazi B, El Ghanmi A, Kandoussi S, Ghouzlani A, Badou A. CAR T-cells for colorectal cancer immunotherapy: Ready to go? Front Immunol 2022;13. [DOI: 10.3389/fimmu.2022.978195] [Reference Citation Analysis]
76 Tang X, Yang J, Shi A, Xiong Y, Wen M, Luo Z, Tian H, Zheng K, Liu Y, Shu C, Ma N, Wang R, Zhao J. CD155 Cooperates with PD-1/PD-L1 to Promote Proliferation of Esophageal Squamous Cancer Cells via PI3K/Akt and MAPK Signaling Pathways. Cancers (Basel) 2022;14. [PMID: 36428703 DOI: 10.3390/cancers14225610] [Reference Citation Analysis]
77 Alexandraki A, Strati K. Decitabine Treatment Induces a Viral Mimicry Response in Cervical Cancer Cells and Further Sensitizes Cells to Chemotherapy. Int J Mol Sci 2022;23. [PMID: 36430521 DOI: 10.3390/ijms232214042] [Reference Citation Analysis]
78 Sun X, Zhang J, Xiao C, Ge Z. Expression profile and prognostic values of LSM family in skin cutaneous melanoma. BMC Med Genomics 2022;15:238. [DOI: 10.1186/s12920-022-01395-6] [Reference Citation Analysis]
79 Chen S, Zhang S, Wang Z, Li J, Yuan Y, Li T, Zuo M, Feng W, Li W, Chen M, Liu Y. Purine metabolism-related gene expression signature predicts survival outcome and indicates immune microenvironment profile of gliomas. Front Pharmacol 2022;13. [DOI: 10.3389/fphar.2022.1038272] [Reference Citation Analysis]
80 Dong C, Miao YR, Zhao R, Yang M, Guo AY, Xue ZH, Li T, Zhang Q, Bao Y, Shen C, Sun C, Yang Y, Gu XX, Jin Y, Li R, Xu M, Guo JX, Zong ZY, Zhou W, He M, Wang DN, Su JY, Zhang XM, Zeng XH, Gao JL, Gu ZF. Single-Cell Transcriptomics Reveals Longevity Immune Remodeling Features Shared by Centenarians and Their Offspring. Adv Sci (Weinh) 2022;9:e2204849. [PMID: 36354175 DOI: 10.1002/advs.202204849] [Reference Citation Analysis]
81 Luo L, Xu G. Fascaplysin Induces Apoptosis and Ferroptosis, and Enhances Anti-PD-1 Immunotherapy in Non-Small Cell Lung Cancer (NSCLC) by Promoting PD-L1 Expression. Int J Mol Sci 2022;23. [PMID: 36430250 DOI: 10.3390/ijms232213774] [Reference Citation Analysis]
82 Shi H, Liang C, Yao C, Gao Z, Qin J, Cao J, Zhang M, Li Y, Wang M, Sun H, Xie S, Fang D. Elevation of spermine remodels immunosuppressive microenvironment through driving the modification of PD-L1 in hepatocellular carcinoma. Cell Commun Signal 2022;20:175. [DOI: 10.1186/s12964-022-00981-6] [Reference Citation Analysis]
83 Dang Q, Sun Z, Wang Y, Wang L, Liu Z, Han X. Ferroptosis: a double-edged sword mediating immune tolerance of cancer. Cell Death Dis 2022;13:925. [PMID: 36335094 DOI: 10.1038/s41419-022-05384-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
84 Li L, Wang J, Zhang Z, Yang Q, Deng Z, Zou W, Ge X, Pan K, Li C, Liu R. Identification of CKS1B as a prognostic indicator and a predictive marker for immunotherapy in pancreatic cancer. Front Immunol 2022;13. [DOI: 10.3389/fimmu.2022.1052768] [Reference Citation Analysis]
85 Li D, Wu X, Song W, Cheng C, Hao L, Zhang W. Clinical significance and immune landscape of cuproptosis-related lncRNAs in kidney renal clear cell carcinoma: a bioinformatical analysis. Ann Transl Med 2022;10:1235. [PMID: 36544675 DOI: 10.21037/atm-22-5204] [Reference Citation Analysis]
86 Matsuzaka Y, Yashiro R. Molecular Docking and Intracellular Translocation of Extracellular Vesicles for Efficient Drug Delivery. IJMS 2022;23:12971. [DOI: 10.3390/ijms232112971] [Reference Citation Analysis]
87 Liu H, Hei G, Zhang L, Jiang Y, Lu H. Identification of a novel ceRNA network related to prognosis and immunity in HNSCC based on integrated bioinformatic investigation. Sci Rep 2022;12:17560. [PMID: 36266384 DOI: 10.1038/s41598-022-21473-0] [Reference Citation Analysis]
88 Onorati A, Havas AP, Lin B, Rajagopal J, Sen P, Adams PD, Dou Z. Upregulation of PD-L1 in Senescence and Aging. Mol Cell Biol 2022;42:e0017122. [PMID: 36154662 DOI: 10.1128/mcb.00171-22] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
89 Yu X, Liu R, Wang X, Zhang Y. Upregulation of CHAC1 promotes bladder inflammation and predicts adverse prognosis in Bladder Urothelial Carcinoma.. [DOI: 10.21203/rs.3.rs-2078193/v1] [Reference Citation Analysis]
90 Carlsen L, El-deiry WS. Anti-cancer immune responses to DNA damage response inhibitors: Molecular mechanisms and progress toward clinical translation. Front Oncol 2022;12:998388. [DOI: 10.3389/fonc.2022.998388] [Reference Citation Analysis]
91 Chen S, Zhang S, Yuan Y, Wang Z, Li J, Li T, Zuo M, Feng W, Chen M, Liu Y. Prognostic value of cuproptosis-related genes signature and its impact on the reshaped immune microenvironment of glioma. Front Pharmacol 2022;13:1016520. [DOI: 10.3389/fphar.2022.1016520] [Reference Citation Analysis]
92 Tang X, Xiong Y, Zhao Y, Yang J, Shi A, Zheng K, Liu Y, Shu C, Jiang T, Ma N, Zhao J. Dual immunological and proliferative regulation of immune checkpoint FGL1 in lung adenocarcinoma: The pivotal role of the YY1–FGL1–MYH9 axis. Front Immunol 2022;13:1014053. [DOI: 10.3389/fimmu.2022.1014053] [Reference Citation Analysis]
93 Quan Z, Yang Y, Zheng H, Zhan Y, Luo J, Ning Y, Fan S. Clinical implications of the interaction between PD-1/PD-L1 and PI3K/AKT/mTOR pathway in progression and treatment of non-small cell lung cancer. J Cancer 2022;13:3434-43. [PMID: 36313041 DOI: 10.7150/jca.77619] [Reference Citation Analysis]
94 Zhang S, You X, Xu T, Chen Q, Li H, Dou L, Sun Y, Xiong X, Meredith MA, Sun Y. PD-L1 induction via the MEK-JNK-AP1 axis by a neddylation inhibitor promotes cancer-associated immunosuppression. Cell Death Dis 2022;13:844. [PMID: 36192389 DOI: 10.1038/s41419-022-05292-9] [Reference Citation Analysis]
95 Yang J, Pan X, Zhang J, Ma S, Zhou J, Jia Z, Wei Y, Liu Z, Yang N, Shen Q. Reprogramming dysfunctional dendritic cells by a versatile metabolism nano-intervenor for enhancing cancer combinatorial immunotherapy. Nano Today 2022;46:101618. [DOI: 10.1016/j.nantod.2022.101618] [Reference Citation Analysis]
96 Xiong J, Wang QQ. Mechanisms and strategies to overcome immunotherapy resistance in hepatobiliary malignancies. Hepatobiliary Pancreat Dis Int 2022;21:430-9. [PMID: 35907687 DOI: 10.1016/j.hbpd.2022.07.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
97 Cherry ABC, Gherardin NA, Sikder HI. Intracellular radar: Understanding γδ T cell immune surveillance and implications for clinical strategies in oncology. Front Oncol 2022;12:1011081. [DOI: 10.3389/fonc.2022.1011081] [Reference Citation Analysis]
98 Yan Y, Feng X, Li C, Lerut T, Li H. Treatments for resectable esophageal cancer: from traditional systemic therapy to immunotherapy. Chin Med J (Engl) 2022;135:2143-56. [PMID: 36525602 DOI: 10.1097/CM9.0000000000002371] [Reference Citation Analysis]
99 Sun X, Chen Y, Tao X, Zhang W, Wang X, Wang X, Ruan Z, Chen Z. INPP4B inhibits glioma cell proliferation and immune escape via inhibition of the PI3K/AKT signaling pathway. Front Oncol 2022;12:983537. [DOI: 10.3389/fonc.2022.983537] [Reference Citation Analysis]
100 Li T, Liu T, Zhao Z, Pan Y, Xu X, Zhang Y, Zhan S, Zhou S, Zhu W, Guo H, Yang R. Antifungal immunity mediated by C-type lectin receptors may be a novel target in immunotherapy for urothelial bladder cancer. Front Immunol 2022;13:911325. [DOI: 10.3389/fimmu.2022.911325] [Reference Citation Analysis]
101 Fang L, Liu K, Liu C, Wang X, Ma W, Xu W, Wu J, Sun C. Tumor accomplice: T cell exhaustion induced by chronic inflammation. Front Immunol 2022;13:979116. [DOI: 10.3389/fimmu.2022.979116] [Reference Citation Analysis]
102 Yang Z, Sun JK, Lee MM, Chan MK. Restoration of p53 activity via intracellular protein delivery sensitizes triple negative breast cancer to anti-PD-1 immunotherapy. J Immunother Cancer 2022;10:e005068. [PMID: 36104100 DOI: 10.1136/jitc-2022-005068] [Reference Citation Analysis]
103 Zhang Z, Han Y, Sun Q, Wang Y, Sun L. . JIR 2022;Volume 15:5595-609. [DOI: 10.2147/jir.s377678] [Reference Citation Analysis]
104 Cui R, Yang Z, Liu L. What does radiomics do in PD-L1 blockade therapy of NSCLC patients? Thorac Cancer 2022. [PMID: 36039482 DOI: 10.1111/1759-7714.14620] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
105 Liu C, Tao Y, Lin H, Lou X, Wu S, Chen L. Classification of stomach adenocarcinoma based on fatty acid metabolism-related genes frofiling. Front Mol Biosci 2022;9:962435. [DOI: 10.3389/fmolb.2022.962435] [Reference Citation Analysis]
106 Sun Z, Zhao Y, Wei Y, Ding X, Tan C, Wang C. Identification and validation of an anoikis-associated gene signature to predict clinical character, stemness, IDH mutation, and immune filtration in glioblastoma. Front Immunol 2022;13:939523. [DOI: 10.3389/fimmu.2022.939523] [Reference Citation Analysis]
107 Chandrasekaran J, Elumalai S, Murugesan V, Kunjiappan S, Pavadai P, Theivendren P. Computational design of PD-L1 small molecule inhibitors for cancer therapy. Mol Divers 2022. [PMID: 36006501 DOI: 10.1007/s11030-022-10516-3] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
108 Wu J, Lin R, Zhang L, Wei Y, Zhang R, Cai W, Hu W, Huang T. LINC00887 Fosters Development of Clear Cell Renal Cell Carcinoma via Inhibiting CD8+ T Cell Immune Infiltration. Computational and Mathematical Methods in Medicine 2022;2022:1-17. [DOI: 10.1155/2022/2582474] [Reference Citation Analysis]
109 Chen Z, Yue Z, Wang R, Yang K, Li S. Nanomaterials: A powerful tool for tumor immunotherapy. Front Immunol 2022;13:979469. [DOI: 10.3389/fimmu.2022.979469] [Reference Citation Analysis]
110 Chen R, Ma L, Jiang C, Zhang S. Expression and potential role of CCL4 in CD8+T cells in NSCLC. Clin Transl Oncol. [DOI: 10.1007/s12094-022-02913-9] [Reference Citation Analysis]
111 Yamamoto T, Yamamoto Y, Ochiya T. Extracellular vesicle-mediated immunoregulation in cancer. Int J Hematol 2022. [PMID: 35951282 DOI: 10.1007/s12185-022-03436-3] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
112 Qi L, Li N, Lin A, Wang X, Cong J. Efficacy and safety of pembrolizumab on cervical cancer: A systematic review and single-arm meta-analysis. Front Oncol 2022;12:910486. [DOI: 10.3389/fonc.2022.910486] [Reference Citation Analysis]
113 Wang K, Gu C, Yu G, Lin J, Wang Z, Lu Q, Xu Y, Zhao D, Jiang X, Mai W, Liu S, Yang H. Berberine enhances the anti-hepatocellular carcinoma effect of NK92-MI cells through inhibiting IFN-gamma-mediated PD-L1 expression. Liver Research 2022. [DOI: 10.1016/j.livres.2022.08.003] [Reference Citation Analysis]
114 Zhang W, Huang X. Stem cell membrane-camouflaged targeted delivery system in tumor. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100377] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
115 Tong L, Shan M, Zou W, Liu X, Felsher DW, Wang J. Cyclic adenosine monophosphate/phosphodiesterase 4 pathway associated with immune infiltration and PD-L1 expression in lung adenocarcinoma cells. Front Oncol 2022;12:904969. [DOI: 10.3389/fonc.2022.904969] [Reference Citation Analysis]
116 Wang XH, Guo W, Qiu W, Ao LQ, Yao MW, Xing W, Yu Y, Chen Q, Wu XF, Li Z, Hu XT, Xu X. Fibroblast-like cells Promote Wound Healing via PD-L1-mediated Inflammation Resolution. Int J Biol Sci 2022;18:4388-99. [PMID: 35864974 DOI: 10.7150/ijbs.69890] [Reference Citation Analysis]
117 Wang Y, Liu J, Zhang L, Li Y, Pan D. A Predictive Model Based on Pyroptosis-Related Gene Features Can Effectively Predict Clear Cell Renal Cell Carcinoma Prognosis and May Be an Underlying Target for Immunotherapy. Disease Markers 2022;2022:1-21. [DOI: 10.1155/2022/6402599] [Reference Citation Analysis]
118 Mei J, Jiang G, Chen Y, Xu Y, Wan Y, Chen R, Liu F, Mao W, Zheng M, Xu J. HLA class II molecule HLA-DRA identifies immuno-hot tumors and predicts the therapeutic response to anti-PD-1 immunotherapy in NSCLC. BMC Cancer 2022;22. [DOI: 10.1186/s12885-022-09840-6] [Reference Citation Analysis]
119 Grenda A, Iwan E, Chmielewska I, Krawczyk P, Giza A, Bomba A, Frąk M, Rolska A, Szczyrek M, Kieszko R, Kucharczyk T, Jarosz B, Wasyl D, Milanowski J. Presence of Akkermansiaceae in gut microbiome and immunotherapy effectiveness in patients with advanced non-small cell lung cancer. AMB Expr 2022;12. [DOI: 10.1186/s13568-022-01428-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
120 Doukuni R, Kobori T, Tanaka C, Tameishi M, Urashima Y, Ito T, Obata T. Moesin Serves as Scaffold Protein for PD-L1 in Human Uterine Cervical Squamous Carcinoma Cells. JCM 2022;11:3830. [DOI: 10.3390/jcm11133830] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
121 Chen Y, Mei J, Zhang P, Liu J, Chen L, Wu L, Zhang Y. IQGAP1 is positively correlated with PD-L1 and regulates its expression via mediating STAT proteins phosphorylation. International Immunopharmacology 2022;108:108897. [DOI: 10.1016/j.intimp.2022.108897] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
122 Du X, Li Y, Zhang Z, Zhang C, Hu J, Wang X, Zhang R, Yang J, Zhou L, Zhang H, Liu M, Zhou J. An electrochemical biosensor for the assessment of tumor immunotherapy based on the detection of immune checkpoint protein programmed death ligand-1. Biosensors and Bioelectronics 2022;207:114166. [DOI: 10.1016/j.bios.2022.114166] [Reference Citation Analysis]
123 Li M, Wang Z, Dong S, Xu Y, Wang F. NAV3 Is a Novel Prognostic Biomarker Affecting the Immune Status of the Tumor Microenvironment in Colorectal Cancer. Journal of Immunology Research 2022;2022:1-19. [DOI: 10.1155/2022/8337048] [Reference Citation Analysis]
124 Greisen SR, Aspari M, Deleuran B. Co-Inhibitory Molecules – Their Role in Health and Autoimmunity; Highlighted by Immune Related Adverse Events. Front Immunol 2022;13:883733. [DOI: 10.3389/fimmu.2022.883733] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
125 Głowacki P, Rieske P. Application and Design of Switches Used in CAR. Cells 2022;11:1910. [PMID: 35741039 DOI: 10.3390/cells11121910] [Reference Citation Analysis]
126 Lumibao JC, Tremblay JR, Hsu J, Engle DD. Altered glycosylation in pancreatic cancer and beyond. J Exp Med 2022;219:e20211505. [PMID: 35522218 DOI: 10.1084/jem.20211505] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
127 Xu N, Yao Z, Shang G, Ye D, Wang H, Zhang H, Qu Y, Xu F, Wang Y, Qin Z, Zhu J, Zhang F, Feng J, Tian S, Liu Y, Zhao J, Hou J, Guo J, Hou Y, Ding C. Integrated proteogenomic characterization of urothelial carcinoma of the bladder. J Hematol Oncol 2022;15:76. [PMID: 35659036 DOI: 10.1186/s13045-022-01291-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
128 Lv T, Xiong X, Yan W, Liu M, Xu H, He Q. Targeting of GSDMD sensitizes HCC to anti-PD-1 by activating cGAS pathway and downregulating PD-L1 expression. J Immunother Cancer 2022;10:e004763. [PMID: 35688553 DOI: 10.1136/jitc-2022-004763] [Reference Citation Analysis]
129 Fares CM, Fenerty KE, Chander C, Theisen MK, Konecny GE. Homologous recombination deficiency and molecular subtype are associated with immunogenicity in ovarian cancer. Biomark Med 2022. [PMID: 35642517 DOI: 10.2217/bmm-2022-0044] [Reference Citation Analysis]
130 Wang T, Denman D, Bacot SM, Feldman GM. Challenges and the Evolving Landscape of Assessing Blood-Based PD-L1 Expression as a Biomarker for Anti-PD-(L)1 Immunotherapy. Biomedicines 2022;10:1181. [DOI: 10.3390/biomedicines10051181] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
131 Yamaguchi H, Wang SC, Hung MC. Prospects of the potential strategies to improve the efficacy of anti-PD-1/PD-L1 therapy. Clin Transl Med 2022;12:e803. [PMID: 35588146 DOI: 10.1002/ctm2.803] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
132 Chen L, Huang S, Liu Q, Kong X, Su Z, Zhu M, Fang Y, Zhang L, Li X, Wang J. PD-L1 Protein Expression Is Associated With Good Clinical Outcomes and Nomogram for Prediction of Disease Free Survival and Overall Survival in Breast Cancer Patients Received Neoadjuvant Chemotherapy. Front Immunol 2022;13:849468. [DOI: 10.3389/fimmu.2022.849468] [Reference Citation Analysis]
133 Laurin KM, Coutu-Beaudry K, Salazar A, Méribout N, Audet-Walsh É, Gravel SP. Low expression of PGC-1β and other mitochondrial biogenesis modulators in melanoma is associated with growth arrest and the induction of an immunosuppressive gene expression program dependent on MEK and IRF-1. Cancer Lett 2022;:215738. [PMID: 35594996 DOI: 10.1016/j.canlet.2022.215738] [Reference Citation Analysis]
134 Xiao M, Duhem C, Chammout A, Berchem G, Janji B. CMTM6 and CMTM7: New leads for PD-L1 regulation in breast cancer cells undergoing EMT. J Cell Biochem 2022. [PMID: 35575054 DOI: 10.1002/jcb.30273] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
135 DeLucia DC, Lee JK. Development of Cancer Immunotherapies. Cancer Treat Res 2022;183:1-48. [PMID: 35551655 DOI: 10.1007/978-3-030-96376-7_1] [Reference Citation Analysis]
136 Fan JY, Huang Y, Li Y, Muluh TA, Fu SZ, Wu JB. Bacteria in cancer therapy: A new generation of weapons. Cancer Med 2022;11:4457-68. [PMID: 35522104 DOI: 10.1002/cam4.4799] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
137 Wang Y, Chen R, Wa Y, Ding S, Yang Y, Liao J, Tong L, Xiao G. Tumor Immune Microenvironment and Immunotherapy in Brain Metastasis From Non-Small Cell Lung Cancer. Front Immunol 2022;13:829451. [PMID: 35251014 DOI: 10.3389/fimmu.2022.829451] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
138 Labib D, Wang Z, Prakash P, Zimmer M, Smith MD, Frazel PW, Barbar L, Sapar ML, Calabresi PA, Peng J, Liddelow SA, Fossati V. Proteomic Alterations and Novel Markers of Neurotoxic Reactive Astrocytes in Human Induced Pluripotent Stem Cell Models. Front Mol Neurosci 2022;15:870085. [DOI: 10.3389/fnmol.2022.870085] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
139 Ye L, Pan K, Fang S, Wu S, Chen S, Tang S, Wang N, Zhang H, Tong X, Shi X, Feng S, Xiang D, Zou R, Hu Y, Xue X, Guo G. Four Types of RNA Modification Writer-Related lncRNAs Are Effective Predictors of Prognosis and Immunotherapy Response in Serous Ovarian Carcinoma. Front Immunol 2022;13:863484. [DOI: 10.3389/fimmu.2022.863484] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
140 Zhang Y, Wei Y, Jiang S, Dang Y, Yang Y, Zuo W, Zhu Q, Liu P, Gao Y, Lu S. Traditional Chinese medicine CFF-1 exerts a potent anti-tumor immunity to hinder tumor growth and metastasis in prostate cancer through EGFR/JAK1/STAT3 pathway to inhibit PD-1/PD-L1 checkpoint signaling. Phytomedicine 2022;99:153939. [DOI: 10.1016/j.phymed.2022.153939] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
141 Wang X, Zhao W, Zhang W, Wu S, Yan Z. Candida albicans induces upregulation of programmed death ligand 1 in oral squamous cell carcinoma. J Oral Pathol Med 2022;51:444-53. [PMID: 35362187 DOI: 10.1111/jop.13298] [Reference Citation Analysis]
142 Wu L, Li L, Li S, Liu L, Xin W, Li C, Yin X, Xu X, Bao F, Hua Z. Macrophage-mediated tumor-targeted delivery of engineered Salmonella typhimurium VNP20009 in anti-PD1 therapy against melanoma. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.05.006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
143 Zapała Ł, Kunc M, Sharma S, Pęksa R, Popęda M, Biernat W, Radziszewski P. Evaluation of PD-L1 (E1L3N, 22C3) expression in venous tumor thrombus is superior to its assessment in renal tumor in predicting overall survival in renal cell carcinoma. Urologic Oncology: Seminars and Original Investigations 2022;40:200.e1-200.e10. [DOI: 10.1016/j.urolonc.2022.02.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
144 Bari S, Muzaffar J, Eroglu Z. Combination targeted and immune therapy in the treatment of advanced melanoma: a valid treatment option for patients? Ther Adv Med Oncol 2022;14:17588359221090306. [PMID: 35478991 DOI: 10.1177/17588359221090306] [Reference Citation Analysis]
145 Tameishi M, Ishikawa H, Tanaka C, Kobori T, Urashima Y, Ito T, Obata T. Ezrin Contributes to the Plasma Membrane Expression of PD-L1 in A2780 Cells. J Clin Med 2022;11:2457. [PMID: 35566582 DOI: 10.3390/jcm11092457] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
146 Kleczko EK, Nguyen DT, Marsh KH, Bauer CD, Li AS, Furgeson SB, Gitomer BY, Chonchol MB, Clambey ET, Zimmerman KA, Nemenoff RA, Hopp K. Immune Checkpoint Activity Regulates Polycystic Kidney Disease Progression.. [DOI: 10.1101/2022.04.24.489306] [Reference Citation Analysis]
147 Liu S, Li X, Liu D, Xie S, Zhang S, Li Y, Xie Z. LAMP2 as a Biomarker Related to Prognosis and Immune Infiltration in Esophageal Cancer and Other Cancers: A Comprehensive Pan-Cancer Analysis. Front Oncol 2022;12:884448. [DOI: 10.3389/fonc.2022.884448] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
148 Wei F, Cheng XX, Xue JZ, Xue SA. Emerging Strategies in TCR-Engineered T Cells. Front Immunol 2022;13:850358. [PMID: 35432319 DOI: 10.3389/fimmu.2022.850358] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
149 Tanaka C, Kobori T, Okada R, Doukuni R, Tameishi M, Urashima Y, Ito T, Takagaki N, Obata T. Ezrin Regulates the Cell Surface Localization of PD-L1 in HEC-151 Cells. JCM 2022;11:2226. [DOI: 10.3390/jcm11082226] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
150 Chen M, Wang Y, Wang L, Shen C, Chen C, Lee H. PD‐L1 expressed from tumor cells promotes tumor growth and invasion in lung cancer via modulating TGF ‐β1/ SMAD4 expression. Thoracic Cancer. [DOI: 10.1111/1759-7714.14388] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
151 Milosevic Feenstra JD, Jäger R, Schischlik F, Ivanov D, Eisenwort G, Rumi E, Schuster M, Gisslinger B, Machherndl-Spandl S, Bettelheim P, Krauth MT, Keil F, Bock C, Cazzola M, Gisslinger H, Kralovics R, Valent P. PD-L1 overexpression correlates with JAK2-V617F mutational burden and is associated with 9p uniparental disomy in myeloproliferative neoplasms. Am J Hematol 2022;97:390-400. [PMID: 35015307 DOI: 10.1002/ajh.26461] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
152 Lopatina T, Koni M, Grange C, Cedrino M, Femminò S, Lombardo G, Favaro E, Brizzi MF. IL-3 signalling in the tumour microenvironment shapes the immune response via tumour endothelial cell-derived extracellular vesicles. Pharmacological Research 2022. [DOI: 10.1016/j.phrs.2022.106206] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
153 Jia H, Guo J, Liu Z, Chen P, Li Y, Li R, Yang Y, Li X, Wei P, Zhong J, Ren F, Wang M, Ren J, Feng Z, Zhao T. High expression of CD28 enhanced the anti-cancer effect of siRNA-PD-1 through prompting the immune response of melanoma-bearing mice. International Immunopharmacology 2022;105:108572. [DOI: 10.1016/j.intimp.2022.108572] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
154 Pan C, Luo M, Lu Y, Pan X, Chen X, Ding L, Che J, He Q, Dong X. Design, Synthesis and Biological Evaluation of New Dihydropyridine Derivatives as PD-L1 Degraders for Enhancing Antitumor Immunity. Bioorganic Chemistry 2022. [DOI: 10.1016/j.bioorg.2022.105820] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
155 Liang L, Yan B, Liu Y, Jiang S, He H, Huang J, Liu W, Xie L, Zhang Y. FOXP3 Contributes to TMZ Resistance, Prognosis, and Immune Infiltration in GBM from a Novel Pyroptosis-Associated Risk Signature. Disease Markers 2022;2022:1-21. [DOI: 10.1155/2022/4534080] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
156 Kang SU, Cho SY, Jeong H, Han J, Chae HY, Yang H, Sung CO, Choi YL, Shin YK, Kwon MJ. Matrix metalloproteinase 11 (MMP11) in macrophages promotes the migration of HER2-positive breast cancer cells and monocyte recruitment through CCL2-CCR2 signaling. Lab Invest 2022;102:376-90. [PMID: 34775491 DOI: 10.1038/s41374-021-00699-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
157 Liu Y, Yan H, Gu H, Zhang E, He J, Cao W, Qu J, Xu R, Cao L, He D, Zhang J, Hou Y, Cai Z. Myeloma-derived IL-32γ induced PD-L1 expression in macrophages facilitates immune escape via the PFKFB3-JAK1 axis. OncoImmunology 2022;11:2057837. [DOI: 10.1080/2162402x.2022.2057837] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
158 Deng J, Zhou M, Liao T, Kuang W, Xia H, Yin Z, Tan Q, Li Y, Song S, Zhou E, Jin Y. Targeting Cancer Cell Ferroptosis to Reverse Immune Checkpoint Inhibitor Therapy Resistance. Front Cell Dev Biol 2022;10:818453. [DOI: 10.3389/fcell.2022.818453] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
159 Nihira NT, Miki Y. Regulation of Intrinsic Functions of PD-L1 by Post-Translational Modification in Tumors. Front Oncol 2022;12:825284. [DOI: 10.3389/fonc.2022.825284] [Reference Citation Analysis]
160 Yan Q, Lin HM, Zhu K, Cao Y, Xu XL, Zhou ZY, Xu LB, Liu C, Zhang R. Immune Checkpoint FGL1 Expression of Circulating Tumor Cells Is Associated With Poor Survival in Curatively Resected Hepatocellular Carcinoma. Front Oncol 2022;12:810269. [PMID: 35273912 DOI: 10.3389/fonc.2022.810269] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
161 Kalyanaraman B. Exploiting the tumor immune microenvironment and immunometabolism using mitochondria-targeted drugs: Challenges and opportunities in racial disparity and cancer outcome research. FASEB J 2022;36:e22226. [PMID: 35233843 DOI: 10.1096/fj.202101862R] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
162 Dong S, Guo X, Han F, He Z, Wang Y. Emerging role of natural products in cancer immunotherapy. Acta Pharm Sin B 2022;12:1163-85. [PMID: 35530162 DOI: 10.1016/j.apsb.2021.08.020] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
163 Li T, Liu T, Zhao Z, Xu X, Zhan S, Zhou S, Jiang N, Zhu W, Sun R, Wei F, Feng B, Guo H, Yang R. The Lymph Node Microenvironment May Invigorate Cancer Cells With Enhanced Metastatic Capacities. Front Oncol 2022;12:816506. [DOI: 10.3389/fonc.2022.816506] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
164 Zhang R, Yang Y, Dong W, Lin M, He J, Zhang X, Tian T, Yang Y, Chen K, Lei QY, Zhang S, Xu Y, Lv L. D-mannose facilitates immunotherapy and radiotherapy of triple-negative breast cancer via degradation of PD-L1. Proc Natl Acad Sci U S A 2022;119:e2114851119. [PMID: 35181605 DOI: 10.1073/pnas.2114851119] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
165 Zhang Y, Zhu S, Du Y, Xu F, Sun W, Xu Z, Wang X, Qian P, Zhang Q, Feng J, Xu Y. RelB upregulates PD-L1 and exacerbates prostate cancer immune evasion. J Exp Clin Cancer Res 2022;41:66. [PMID: 35177112 DOI: 10.1186/s13046-022-02243-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
166 Wang J, Ge J, Wang Y, Xiong F, Guo J, Jiang X, Zhang L, Deng X, Gong Z, Zhang S, Yan Q, He Y, Li X, Shi L, Guo C, Wang F, Li Z, Zhou M, Xiang B, Li Y, Xiong W, Zeng Z. EBV miRNAs BART11 and BART17-3p promote immune escape through the enhancer-mediated transcription of PD-L1. Nat Commun 2022;13. [DOI: 10.1038/s41467-022-28479-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
167 Liu L, Huang X, Shi F, Song J, Guo C, Yang J, Liang T, Bai X. Combination therapy for pancreatic cancer: anti-PD-(L)1-based strategy. J Exp Clin Cancer Res 2022;41:56. [PMID: 35139879 DOI: 10.1186/s13046-022-02273-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
168 Zhou X, Zou L, Liao H, Luo J, Yang T, Wu J, Chen W, Wu K, Cen S, Lv D, Shu F, Yang Y, Li C, Li B, Mao X. Abrogation of HnRNP L enhances anti-PD-1 therapy efficacy via diminishing PD-L1 and promoting CD8+ T cell-mediated ferroptosis in castration-resistant prostate cancer. Acta Pharm Sin B 2022;12:692-707. [PMID: 35256940 DOI: 10.1016/j.apsb.2021.07.016] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
169 Liu J, Peng X, Yang S, Li X, Huang M, Wei S, Zhang S, He G, Zheng H, Fan Q, Yang L, Li H. Extracellular vesicle PD-L1 in reshaping tumor immune microenvironment: biological function and potential therapy strategies. Cell Commun Signal 2022;20. [DOI: 10.1186/s12964-021-00816-w] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
170 Xu S, Shi C, Xia R, Wang L, Tian Z, Ye W, Liu L, Liu S, Zhang C, Hu Y, Zhou R, Han Y, Wang Y, Zhang Z, Li J. Analysis of Immunological Characteristics and Genomic Alterations in HPV-Positive Oropharyngeal Squamous Cell Carcinoma Based on PD-L1 Expression. Front Immunol 2022;12:798424. [DOI: 10.3389/fimmu.2021.798424] [Reference Citation Analysis]
171 Palamarchuk A, Tsyba L, Tomasello L, Pekarsky Y, Croce CM. PDCD1 (PD-1) is a direct target of miR-15a-5p and miR-16-5p. Signal Transduct Target Ther 2022;7:12. [PMID: 35042864 DOI: 10.1038/s41392-021-00832-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
172 Zhang J, Yu S, Li Q, Wang Q, Zhang J. Increased co-expression of MEST and BRCA1 is associated with worse prognosis and immune infiltration in ovarian cancer. Gynecol Oncol 2022:S0090-8258(22)00018-X. [PMID: 35042621 DOI: 10.1016/j.ygyno.2022.01.010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
173 Chen Q, Zhuang S, Hong Y, Yang L, Guo P, Mo P, Peng K, Li W, Xiao N, Yu C. Demethylase JMJD2D induces PD-L1 expression to promote colorectal cancer immune escape by enhancing IFNGR1-STAT3-IRF1 signaling. Oncogene 2022. [PMID: 35027670 DOI: 10.1038/s41388-021-02173-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
174 Chen C, Kajita H, Aramaki-hattori N, Sakai S, Kishi K, Wang F. Screening of Autophagy-Related Prognostic Genes in Metastatic Skin Melanoma. Disease Markers 2022;2022:1-17. [DOI: 10.1155/2022/8556593] [Reference Citation Analysis]
175 Kobori T, Doukuni R, Ishikawa H, Ito Y, Okada R, Tanaka C, Tameishi M, Urashima Y, Ito T, Obata T. Ezrin and Radixin Differentially Modulate Cell Surface Expression of Programmed Death Ligand-1 in Human Pancreatic Ductal Adenocarcinoma KP-2 Cells. Immuno 2022;2:68-84. [DOI: 10.3390/immuno2010006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
176 Chen C, Huang Z, Huang P, Li K, Zeng J, Wen Y, Li B, Zhao J, Wu P. Urogenital Microbiota:Potentially Important Determinant of PD-L1 Expression in Male Patients with Non-muscle Invasive Bladder Cancer. BMC Microbiol 2022;22:7. [PMID: 34983384 DOI: 10.1186/s12866-021-02407-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
177 Tu J, Xu H, Ma L, Li C, Qin W, Chen X, Yi M, Sun L, Liu B, Yuan X. Nintedanib enhances the efficacy of PD-L1 blockade by upregulating MHC-I and PD-L1 expression in tumor cells. Theranostics 2022;12:747-66. [PMID: 34976211 DOI: 10.7150/thno.65828] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
178 Puleo J, Polyak K. A Darwinian perspective on tumor immune evasion. Biochim Biophys Acta Rev Cancer 2022;1877:188671. [PMID: 34933050 DOI: 10.1016/j.bbcan.2021.188671] [Reference Citation Analysis]
179 Bunz F. Cancer and the Immune System. Principles of Cancer Genetics 2022. [DOI: 10.1007/978-3-030-99387-0_7] [Reference Citation Analysis]
180 Yang H, Yang J, Bian H, Wang X. A novel cuproptosis-related gene signature predicting overall survival in pediatric neuroblastoma patients. Front Pediatr 2022;10:1049858. [PMID: 36568423 DOI: 10.3389/fped.2022.1049858] [Reference Citation Analysis]
181 Malara N. Predictive and On-Treatment Monitoring Role of Circulating Biomarkers in Immuno-oncology. Handbook of Cancer and Immunology 2022. [DOI: 10.1007/978-3-030-80962-1_130-1] [Reference Citation Analysis]
182 Luo L, Zhong A, Wang Q, Zheng T. Structure-Based Pharmacophore Modeling, Virtual Screening, Molecular Docking, ADMET, and Molecular Dynamics (MD) Simulation of Potential Inhibitors of PD-L1 from the Library of Marine Natural Products. Mar Drugs 2021;20:29. [PMID: 35049884 DOI: 10.3390/md20010029] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
183 Bie F, Tian H, Sun N, Zang R, Zhang M, Song P, Liu L, Peng Y, Bai G, Zhou B, Gao S. Comprehensive analysis of PD-L1 expression, tumor-infiltrating lymphocytes, and tumor microenvironment in LUAD: differences between Asians and Caucasians. Clin Epigenetics 2021;13:229. [PMID: 34933667 DOI: 10.1186/s13148-021-01221-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
184 Dai E, Zhu Z, Wahed S, Qu Z, Storkus WJ, Guo ZS. Epigenetic modulation of antitumor immunity for improved cancer immunotherapy. Mol Cancer 2021;20. [DOI: 10.1186/s12943-021-01464-x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
185 Chen Y, Wang C, Song J, Xu R, Ruze R, Zhao Y. S100A2 Is a Prognostic Biomarker Involved in Immune Infiltration and Predict Immunotherapy Response in Pancreatic Cancer. Front Immunol 2021;12:758004. [PMID: 34887861 DOI: 10.3389/fimmu.2021.758004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
186 Chavez-Dominguez R, Perez-Medina M, Aguilar-Cazares D, Galicia-Velasco M, Meneses-Flores M, Islas-Vazquez L, Camarena A, Lopez-Gonzalez JS. Old and New Players of Inflammation and Their Relationship With Cancer Development. Front Oncol 2021;11:722999. [PMID: 34881173 DOI: 10.3389/fonc.2021.722999] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
187 Yap KM, Sekar M, Wu YS, Gan SH, Rani NNIM, Seow LJ, Subramaniyan V, Fuloria NK, Fuloria S, Lum PT. Hesperidin and its aglycone hesperetin in breast cancer therapy: A review of recent developments and future prospects. Saudi J Biol Sci 2021;28:6730-47. [PMID: 34866972 DOI: 10.1016/j.sjbs.2021.07.046] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
188 Togashi Y. Cancer-immunotherapy biomarkers in the tumor microenvironment. Okayama I Z 2021;133:151-157. [DOI: 10.4044/joma.133.151] [Reference Citation Analysis]
189 Xu T, Liu J, Xia Y, Wang Z, Li X, Gao Q. Integrated analysis reveals the participation of IL4I1, ITGB7, and FUT7 in reshaping the TNBC immune microenvironment by targeting glycolysis. Ann Med 2021;53:916-28. [PMID: 34134578 DOI: 10.1080/07853890.2021.1937694] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
190 Huo Y, Zhang K, Han S, Feng Y, Bao Y. Lymphocyte cytosolic protein 2 is a novel prognostic marker in lung adenocarcinoma. J Int Med Res 2021;49:3000605211059681. [PMID: 34816740 DOI: 10.1177/03000605211059681] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
191 De S, Holvey-Bates EG, Mahen K, Willard B, Stark GR. The ubiquitin E3 ligase FBXO22 degrades PD-L1 and sensitizes cancer cells to DNA damage. Proc Natl Acad Sci U S A 2021;118:e2112674118. [PMID: 34795058 DOI: 10.1073/pnas.2112674118] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
192 Zhou Z, Jiang N, Chen J, Zheng C, Guo Y, Ye R, Qi R, Shen J. Selectively down-regulated PD-L1 by albumin-phenformin nanoparticles mediated mitochondrial dysfunction to stimulate tumor-specific immunological response for enhanced mild-temperature photothermal efficacy. J Nanobiotechnology 2021;19:375. [PMID: 34794446 DOI: 10.1186/s12951-021-01124-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
193 Yu X, Li W, Young KH, Li Y. Posttranslational Modifications in PD-L1 Turnover and Function: From Cradle to Grave. Biomedicines 2021;9:1702. [PMID: 34829931 DOI: 10.3390/biomedicines9111702] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
194 Palicelli A, Croci S, Bisagni A, Zanetti E, De Biase D, Melli B, Sanguedolce F, Ragazzi M, Zanelli M, Chaux A, Cañete-Portillo S, Bonasoni MP, Soriano A, Ascani S, Zizzo M, Castro Ruiz C, De Leo A, Giordano G, Landriscina M, Carrieri G, Cormio L, Berney DM, Gandhi J, Copelli V, Bernardelli G, Santandrea G, Bonacini M. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 3: PD-L1, Intracellular Signaling Pathways and Tumor Microenvironment. Int J Mol Sci 2021;22. [PMID: 34830209 DOI: 10.3390/ijms222212330] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
195 Zhu X, Shanzhou Q, Li D, Pang X, Ma D. PD-1 inhibitors versus chemotherapy as second-line treatment for advanced esophageal squamous cell carcinoma: a meta-analysis. BMC Cancer 2021;21:1195. [PMID: 34758782 DOI: 10.1186/s12885-021-08958-3] [Reference Citation Analysis]
196 Xi Z, Jones PS, Mikamoto M, Jiang X, Faje AT, Nie C, Labelle KE, Zhou Y, Miller KK, Soberman RJ, Zhang X. The Upregulation of Molecules Related to Tumor Immune Escape in Human Pituitary Adenomas. Front Endocrinol (Lausanne) 2021;12:726448. [PMID: 34745002 DOI: 10.3389/fendo.2021.726448] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
197 Liu K, Ma J, Ao J, Mu L, Wang Y, Qian Y, Xue J, Zhang W. The Oncogenic Role and Immune Infiltration for CARM1 Identified by Pancancer Analysis. J Oncol 2021;2021:2986444. [PMID: 34745258 DOI: 10.1155/2021/2986444] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
198 Wu HC, Hu QR, Luo T, Wei WC, Wu HJ, Li J, Zheng LF, Xu QY, Deng ZY, Chen F. The immunomodulatory effects of ginsenoside derivative Rh2-O on splenic lymphocytes in H22 tumor-bearing mice is partially mediated by TLR4. Int Immunopharmacol 2021;101:108316. [PMID: 34768129 DOI: 10.1016/j.intimp.2021.108316] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
199 Li N, Qiu L, Zeng C, Fang Z, Chen S, Song X, Song H, Zhang G. Bioinformatic analysis of differentially expressed genes and pathways in idiopathic pulmonary fibrosis. Ann Transl Med 2021;9:1459. [PMID: 34734011 DOI: 10.21037/atm-21-4224] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
200 Niu X, Wang W, Liang T, Li S, Yang C, Xu X, Li L, Liu S. CPI-203 improves the efficacy of anti-PD-1 therapy by inhibiting the induced PD-L1 overexpression in liver cancer. Cancer Sci 2021. [PMID: 34727389 DOI: 10.1111/cas.15190] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
201 Wu F, Sun G, Zheng W, Tang W, Cheng Y, Wu L, Li X, Tao J, Ma S, Cao H. circCORO1C promotes the proliferation and metastasis of hepatocellular carcinoma by enhancing the expression of PD-L1 through NF-κB pathway. J Clin Lab Anal 2021;:e24003. [PMID: 34676904 DOI: 10.1002/jcla.24003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
202 Somarribas Patterson LF, Vardhana SA. Metabolic regulation of the cancer-immunity cycle. Trends Immunol 2021;42:975-93. [PMID: 34610889 DOI: 10.1016/j.it.2021.09.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
203 Liu X, Yin M, Dong J, Mao G, Min W, Kuang Z, Yang P, Liu L, Zhang N, Deng H. Tubeimoside-1 induces TFEB-dependent lysosomal degradation of PD-L1 and promotes antitumor immunity by targeting mTOR. Acta Pharm Sin B 2021;11:3134-49. [PMID: 34745852 DOI: 10.1016/j.apsb.2021.03.039] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
204 Cen B, Wei J, Wang D, Xiong Y, Shay JW, DuBois RN. Mutant APC promotes tumor immune evasion via PD-L1 in colorectal cancer. Oncogene 2021;40:5984-92. [PMID: 34385594 DOI: 10.1038/s41388-021-01972-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
205 Tameishi M, Kobori T, Tanaka C, Urashima Y, Ito T, Obata T. Contribution of Ezrin on the Cell Surface Plasma Membrane Localization of Programmed Cell Death Ligand-1 in Human Choriocarcinoma JEG-3 Cells. Pharmaceuticals (Basel) 2021;14:963. [PMID: 34681187 DOI: 10.3390/ph14100963] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
206 Lim WJ, Lee M, Oh Y, Fang XQ, Lee S, Lim CH, Park J, Lim JH. Statins Decrease Programmed Death-Ligand 1 (PD-L1) by Inhibiting AKT and β-Catenin Signaling. Cells 2021;10:2488. [PMID: 34572136 DOI: 10.3390/cells10092488] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
207 Tanaka C, Kobori T, Tameishi M, Urashima Y, Ito T, Obata T. Ezrin Modulates the Cell Surface Expression of Programmed Cell Death Ligand-1 in Human Cervical Adenocarcinoma Cells. Molecules 2021;26:5648. [PMID: 34577118 DOI: 10.3390/molecules26185648] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
208 Jiang Y, Yuan Y, Chen M, Li S, Bai J, Zhang Y, Sun Y, Wang G, Xu H, Wang Z, Zheng Y, Nie H. PRMT5 disruption drives antitumor immunity in cervical cancer by reprogramming T cell-mediated response and regulating PD-L1 expression. Theranostics 2021;11:9162-76. [PMID: 34522232 DOI: 10.7150/thno.59605] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
209 Wu B, Chiang HC, Sun X, Yuan B, Mitra P, Hu Y, Curiel TJ, Li R. Genetic ablation of adipocyte PD-L1 reduces tumor growth but accentuates obesity-associated inflammation. J Immunother Cancer 2020;8:e000964. [PMID: 32817394 DOI: 10.1136/jitc-2020-000964] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
210 Yoneda T, Hiasa M, Okui T, Hata K. Sensory nerves: A driver of the vicious cycle in bone metastasis? J Bone Oncol 2021;30:100387. [PMID: 34504741 DOI: 10.1016/j.jbo.2021.100387] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
211 Xu HZ, Li TF, Wang C, Ma Y, Liu Y, Zheng MY, Liu ZJ, Chen JB, Li K, Sun SK, Komatsu N, Xu YH, Zhao L, Chen X. Synergy of nanodiamond-doxorubicin conjugates and PD-L1 blockade effectively turns tumor-associated macrophages against tumor cells. J Nanobiotechnology 2021;19:268. [PMID: 34488792 DOI: 10.1186/s12951-021-01017-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
212 Adorisio S, Cannarile L, Delfino DV, Ayroldi E. Glucocorticoid and PD-1 Cross-Talk: Does the Immune System Become Confused? Cells 2021;10:2333. [PMID: 34571982 DOI: 10.3390/cells10092333] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
213 Glorieux C, Xia X, Huang P. The Role of Oncogenes and Redox Signaling in the Regulation of PD-L1 in Cancer. Cancers (Basel) 2021;13:4426. [PMID: 34503236 DOI: 10.3390/cancers13174426] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
214 Zhu C, Dai Y, Zhang H, Ruan Y, Zhou Y, Dai Y, Fan L, Jia T, Lu H, Chen Q. T cell exhaustion is associated with the risk of papillary thyroid carcinoma and can be a predictive and sensitive biomarker for diagnosis. Diagn Pathol 2021;16:84. [PMID: 34465342 DOI: 10.1186/s13000-021-01139-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
215 Kobori T, Tanaka C, Tameishi M, Urashima Y, Ito T, Obata T. Role of Ezrin/Radixin/Moesin in the Surface Localization of Programmed Cell Death Ligand-1 in Human Colon Adenocarcinoma LS180 Cells. Pharmaceuticals (Basel) 2021;14:864. [PMID: 34577564 DOI: 10.3390/ph14090864] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
216 Mosquera-Heredia MI, Morales LC, Vidal OM, Barceló E, Silvera-Redondo C, Vélez JI, Garavito-Galofre P. Exosomes: Potential Disease Biomarkers and New Therapeutic Targets. Biomedicines 2021;9:1061. [PMID: 34440265 DOI: 10.3390/biomedicines9081061] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
217 Hu W, Ma Y, Zhao C, Yin S, Hu H. Methylseleninic acid overcomes programmed death-ligand 1-mediated resistance of prostate cancer and lung cancer. Mol Carcinog 2021;60:746-57. [PMID: 34411338 DOI: 10.1002/mc.23340] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
218 Hühn D, Martí-Rodrigo P, Mouron S, Hansel C, Tschapalda K, Porebski B, Häggblad M, Lidemalm L, Quintela-Fandino M, Carreras-Puigvert J, Fernandez-Capetillo O. Prolonged estrogen deprivation triggers a broad immunosuppressive phenotype in breast cancer cells. Mol Oncol 2021. [PMID: 34392603 DOI: 10.1002/1878-0261.13083] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
219 Ma X, Wang N, Chen K, Zhang C. Oncosuppressive role of MicroRNA-205-3p in gastric cancer through inhibition of proliferation and induction of senescence: Oncosuppressive role of MicroRNA-205 in gastric cancer. Transl Oncol 2021;14:101199. [PMID: 34388692 DOI: 10.1016/j.tranon.2021.101199] [Reference Citation Analysis]
220 Xu P, Xiong W, Lin Y, Fan L, Pan H, Li Y. Histone deacetylase 2 knockout suppresses immune escape of triple-negative breast cancer cells via downregulating PD-L1 expression. Cell Death Dis 2021;12:779. [PMID: 34365463 DOI: 10.1038/s41419-021-04047-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
221 Koikawa K, Kibe S, Suizu F, Sekino N, Kim N, Manz TD, Pinch BJ, Akshinthala D, Verma A, Gaglia G, Nezu Y, Ke S, Qiu C, Ohuchida K, Oda Y, Lee TH, Wegiel B, Clohessy JG, London N, Santagata S, Wulf GM, Hidalgo M, Muthuswamy SK, Nakamura M, Gray NS, Zhou XZ, Lu KP. Targeting Pin1 renders pancreatic cancer eradicable by synergizing with immunochemotherapy. Cell 2021:S0092-8674(21)00879-5. [PMID: 34388391 DOI: 10.1016/j.cell.2021.07.020] [Cited by in Crossref: 31] [Cited by in F6Publishing: 39] [Article Influence: 15.5] [Reference Citation Analysis]
222 Boesch M, Baty F, Rothschild SI, Tamm M, Joerger M, Früh M, Brutsche MH. Tumour neoantigen mimicry by microbial species in cancer immunotherapy. Br J Cancer 2021;125:313-23. [PMID: 33824481 DOI: 10.1038/s41416-021-01365-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
223 Hanna A, Balko JM. Breast cancer resistance mechanisms: challenges to immunotherapy. Breast Cancer Res Treat 2021. [PMID: 34322780 DOI: 10.1007/s10549-021-06337-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
224 Srour N, Villarreal OD, Yu Z, Preston S, Miller WH, Szewczyk MM, Barsyte-lovejoy D, Xu H, del Rincón SV, Richard S. PRMT7 ablation stimulates anti-tumor immunity and sensitizes melanoma to immune checkpoint blockade.. [DOI: 10.1101/2021.07.28.454202] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
225 Liu SR, Yan Q, Lin HM, Shi GZ, Cao Y, Zeng H, Liu C, Zhang R. Anti-programmed cell death ligand 1-based immunotherapy in recurrent hepatocellular carcinoma with inferior vena cava tumor thrombus and metastasis: Three case reports. World J Clin Cases 2021; 9(21): 5988-5998 [PMID: 34368318 DOI: 10.12998/wjcc.v9.i21.5988] [Cited by in CrossRef: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
226 Sukowati CHC, El-Khobar KE, Tiribelli C. Immunotherapy against programmed death-1/programmed death ligand 1 in hepatocellular carcinoma: Importance of molecular variations, cellular heterogeneity, and cancer stem cells. World J Stem Cells 2021;13:795-824. [PMID: 34367478 DOI: 10.4252/wjsc.v13.i7.795] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
227 Bai D, Chen S, Feng H, Yin A, Lu J, Ma Y, Sugiyama H. Integrated analysis of immune-related gene subtype and immune index for immunotherapy in clear cell renal cell carcinoma. Pathol Res Pract 2021;225:153557. [PMID: 34329838 DOI: 10.1016/j.prp.2021.153557] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
228 Feng X, Xue F, He G, Ni Q, Huang S. Banxia xiexin decoction affects drug sensitivity in gastric cancer cells by regulating MGMT expression via IL‑6/JAK/STAT3‑mediated PD‑L1 activity. Int J Mol Med 2021;48:165. [PMID: 34278452 DOI: 10.3892/ijmm.2021.4998] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
229 Chen W, Saxton B, Tessema M, Belinsky SA. Inhibition of GFAT1 in lung cancer cells destabilizes PD-L1 protein. Carcinogenesis 2021:bgab063. [PMID: 34270713 DOI: 10.1093/carcin/bgab063] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
230 Luo L, Liu P, Zhao K, Zhao W, Zhang X. The Immune Microenvironment in Brain Metastases of Non-Small Cell Lung Cancer. Front Oncol 2021;11:698844. [PMID: 34336687 DOI: 10.3389/fonc.2021.698844] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
231 Bukkuri A, Adler FR. Viewing Cancer Through the Lens of Corruption: Using Behavioral Ecology to Understand Cancer. Front Ecol Evol 2021;9:678533. [DOI: 10.3389/fevo.2021.678533] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
232 Wang Y, Wang M, Wu HX, Xu RH. Advancing to the era of cancer immunotherapy. Cancer Commun (Lond) 2021. [PMID: 34165252 DOI: 10.1002/cac2.12178] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 14.0] [Reference Citation Analysis]
233 Ozawa N, Yokobori T, Osone K, Katayama C, Suga K, Komine C, Shibasaki Y, Shiraishi T, Okada T, Kato R, Ogawa H, Sano A, Sakai M, Sohda M, Ojima H, Miyazaki T, Motegi Y, Ide M, Yao T, Kuwano H, Shirabe K, Saeki H. PD-L1 upregulation is associated with activation of the DNA double-strand break repair pathway in patients with colitic cancer. Sci Rep 2021;11:13077. [PMID: 34158547 DOI: 10.1038/s41598-021-92530-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
234 Xu J, Yang X, Mao Y, Mei J, Wang H, Ding J, Hua D. Removal of N-Linked Glycosylation Enhances PD-L1 Detection in Colon Cancer: Validation Research Based on Immunohistochemistry Analysis. Technol Cancer Res Treat 2021;20:15330338211019442. [PMID: 34060360 DOI: 10.1177/15330338211019442] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
235 Zhang W, Song Y, Zhang X. Relationship of Programmed Death-1 (PD-1) and Programmed Death Ligand-1 (PD-L1) Polymorphisms with Overall Cancer Susceptibility: An Updated Meta-Analysis of 28 Studies with 60 612 Subjects. Med Sci Monit 2021;27:e932146. [PMID: 34024901 DOI: 10.12659/MSM.932146] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
236 Abunasser AAA, Xue J, Balawi EJA, Zhu Y. Combination of the EP and Anti-PD-1 Pathway or Anti-CTLA-4 for the Phase III Trial of Small-Cell Lung Cancer: A Meta-Analysis. J Oncol 2021;2021:6662344. [PMID: 34122547 DOI: 10.1155/2021/6662344] [Reference Citation Analysis]
237 Munari E, Mariotti FR, Quatrini L, Bertoglio P, Tumino N, Vacca P, Eccher A, Ciompi F, Brunelli M, Martignoni G, Bogina G, Moretta L. PD-1/PD-L1 in Cancer: Pathophysiological, Diagnostic and Therapeutic Aspects. Int J Mol Sci 2021;22:5123. [PMID: 34066087 DOI: 10.3390/ijms22105123] [Cited by in Crossref: 27] [Cited by in F6Publishing: 33] [Article Influence: 13.5] [Reference Citation Analysis]
238 Lailler C, Lamuraglia M, Racine F, Louandre C, Godin C, Chauffert B, Galmiche A, Saidak Z. DNA damage response- and JAK-dependent regulation of PD-L1 expression in head and neck squamous cell carcinoma (HNSCC) cells exposed to 5-fluorouracil (5-FU). Transl Oncol 2021;14:101110. [PMID: 33951601 DOI: 10.1016/j.tranon.2021.101110] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
239 Du Z, Niu S, Wang J, Wu J, Li S, Yi X. SChLAP1 contributes to non-small cell lung cancer cell progression and immune evasion through regulating the AUF1/PD-L1 axis. Autoimmunity 2021;54:225-33. [PMID: 33904361 DOI: 10.1080/08916934.2021.1913582] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
240 Xiong W, Gao Y, Wei W, Zhang J. Extracellular and nuclear PD-L1 in modulating cancer immunotherapy. Trends Cancer 2021;7:837-46. [PMID: 33903073 DOI: 10.1016/j.trecan.2021.03.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
241 Kong F, Sun K, Zhu J, Li F, Lin F, Sun X, Luo X, Ren C, Lu L, Zhao S, Sun J, Wang Y, Shi J. PD-L1 Improves Motor Function and Alleviates Neuropathic Pain in Male Mice After Spinal Cord Injury by Inhibiting MAPK Pathway. Front Immunol 2021;12:670646. [PMID: 33936116 DOI: 10.3389/fimmu.2021.670646] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
242 Wang JY, Xiu J, Baca Y, Arai H, Battaglin F, Kawanishi N, Soni S, Zhang W, Millstein J, Shields AF, Grothey A, Weinberg BA, Marshall JL, Lou E, Khushman M, Sohal DPS, Hall MJ, Oberley M, Spetzler D, Shen L, Korn WM, Lenz HJ. Distinct genomic landscapes of gastroesophageal adenocarcinoma depending on PD-L1 expression identify mutations in RAS-MAPK pathway and TP53 as potential predictors of immunotherapy efficacy. Ann Oncol 2021;32:906-16. [PMID: 33798656 DOI: 10.1016/j.annonc.2021.03.203] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
243 Cao Z, Kon N, Liu Y, Xu W, Wen J, Yao H, Zhang M, Wu Z, Yan X, Zhu WG, Gu W, Wang D. An unexpected role for p53 in regulating cancer cell-intrinsic PD-1 by acetylation. Sci Adv 2021;7:eabf4148. [PMID: 33789902 DOI: 10.1126/sciadv.abf4148] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
244 Ma YS, Liu JB, Wu TM, Fu D. New Therapeutic Options for Advanced Hepatocellular Carcinoma. Cancer Control 2020;27:1073274820945975. [PMID: 32799550 DOI: 10.1177/1073274820945975] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
245 Lipinski S, Tiemann K. Extracellular Vesicles and Their Role in the Spatial and Temporal Expansion of Tumor-Immune Interactions. Int J Mol Sci 2021;22:3374. [PMID: 33806053 DOI: 10.3390/ijms22073374] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
246 Jimbu L, Mesaros O, Popescu C, Neaga A, Berceanu I, Dima D, Gaman M, Zdrenghea M. Is There a Place for PD-1-PD-L Blockade in Acute Myeloid Leukemia? Pharmaceuticals (Basel) 2021;14:288. [PMID: 33804850 DOI: 10.3390/ph14040288] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
247 Lei Y, Li X, Huang Q, Zheng X, Liu M. Progress and Challenges of Predictive Biomarkers for Immune Checkpoint Blockade. Front Oncol 2021;11:617335. [PMID: 33777757 DOI: 10.3389/fonc.2021.617335] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 13.5] [Reference Citation Analysis]
248 Tang H, Xu X, Chen Y, Xin H, Wan T, Li B, Pan H, Li D, Ping Y. Reprogramming the Tumor Microenvironment through Second-Near-Infrared-Window Photothermal Genome Editing of PD-L1 Mediated by Supramolecular Gold Nanorods for Enhanced Cancer Immunotherapy. Adv Mater 2021;33:e2006003. [PMID: 33538047 DOI: 10.1002/adma.202006003] [Cited by in Crossref: 53] [Cited by in F6Publishing: 56] [Article Influence: 26.5] [Reference Citation Analysis]
249 Wang Z, Kang W, Li O, Qi F, Wang J, You Y, He P, Suo Z, Zheng Y, Liu HM. Abrogation of USP7 is an alternative strategy to downregulate PD-L1 and sensitize gastric cancer cells to T cells killing. Acta Pharm Sin B 2021;11:694-707. [PMID: 33777676 DOI: 10.1016/j.apsb.2020.11.005] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
250 Chen J, Zhong W, Yang M, Hou W, Wang X, Xia K, Yu H, Yang M, Zhou B, Wang B, Huang J, Lin T. Development and validation of a PD-L1/PD-1/CD8 axis-based classifier to predict cancer survival of upper tract urothelial carcinoma after radical nephroureterectomy. Cancer Immunol Immunother 2021;70:2657-68. [PMID: 33606065 DOI: 10.1007/s00262-020-02827-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
251 Ashrafizadeh M, Delfi M, Hashemi F, Zabolian A, Saleki H, Bagherian M, Azami N, Farahani MV, Sharifzadeh SO, Hamzehlou S, Hushmandi K, Makvandi P, Zarrabi A, Hamblin MR, Varma RS. Biomedical application of chitosan-based nanoscale delivery systems: Potential usefulness in siRNA delivery for cancer therapy. Carbohydr Polym 2021;260:117809. [PMID: 33712155 DOI: 10.1016/j.carbpol.2021.117809] [Cited by in Crossref: 58] [Cited by in F6Publishing: 61] [Article Influence: 29.0] [Reference Citation Analysis]
252 Zhang C, Zhao S, Wang X. Co-expression of CMTM6 and PD-L1: a novel prognostic indicator of gastric cancer. Cancer Cell Int 2021;21:78. [PMID: 33509216 DOI: 10.1186/s12935-020-01734-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
253 Chen YC, Huang MY, Zhang LL, Feng ZL, Jiang XM, Yuan LW, Huang RY, Liu B, Yu H, Wang YT, Chen XP, Lin LG, Lu JJ. Nagilactone E increases PD-L1 expression through activation of c-Jun in lung cancer cells. Chin J Nat Med 2020;18:517-25. [PMID: 32616192 DOI: 10.1016/S1875-5364(20)30062-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
254 Liu Q, Aminu B, Roscow O, Zhang W. Targeting the Ubiquitin Signaling Cascade in Tumor Microenvironment for Cancer Therapy. Int J Mol Sci 2021;22:E791. [PMID: 33466790 DOI: 10.3390/ijms22020791] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
255 Pan C, Yang H, Lu Y, Hu S, Wu Y, He Q, Dong X. Recent advance of peptide-based molecules and nonpeptidic small-molecules modulating PD-1/PD-L1 protein-protein interaction or targeting PD-L1 protein degradation. Eur J Med Chem 2021;213:113170. [PMID: 33454550 DOI: 10.1016/j.ejmech.2021.113170] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
256 Segovia-Mendoza M, Romero-Garcia S, Lemini C, Prado-Garcia H. Determining Factors in the Therapeutic Success of Checkpoint Immunotherapies against PD-L1 in Breast Cancer: A Focus on Epithelial-Mesenchymal Transition Activation. J Immunol Res 2021;2021:6668573. [PMID: 33506060 DOI: 10.1155/2021/6668573] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
257 Yi M, Niu M, Xu L, Luo S, Wu K. Regulation of PD-L1 expression in the tumor microenvironment. J Hematol Oncol 2021;14:10. [PMID: 33413496 DOI: 10.1186/s13045-020-01027-5] [Cited by in Crossref: 103] [Cited by in F6Publishing: 113] [Article Influence: 51.5] [Reference Citation Analysis]
258 Wang S, Zhang X, Leng S, Xu Q, Sheng Z, Zhang Y, Yu J, Feng Q, Hou M, Peng J, Hu X. Immune Checkpoint-Related Gene Polymorphisms Are Associated With Primary Immune Thrombocytopenia. Front Immunol 2020;11:615941. [PMID: 33584705 DOI: 10.3389/fimmu.2020.615941] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
259 Hu H, Zhang W, Zhi T, Li J, Wen Y, Li F, Mei Y, Huang D. Genotypic Characteristics of Hepatoblastoma as Detected by Next Generation Sequencing and Their Correlation With Clinical Efficacy. Front Oncol 2021;11:628531. [PMID: 34426785 DOI: 10.3389/fonc.2021.628531] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
260 Schubert A, Boutros M. Extracellular vesicles and oncogenic signaling. Mol Oncol 2021;15:3-26. [PMID: 33207034 DOI: 10.1002/1878-0261.12855] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
261 Fanciulli G, Di Molfetta S, Dotto A, Florio T, Feola T, Rubino M, de Cicco F, Colao A, Faggiano A, Nike Group. Emerging Therapies in Pheochromocytoma and Paraganglioma: Immune Checkpoint Inhibitors in the Starting Blocks. J Clin Med 2020;10:E88. [PMID: 33383673 DOI: 10.3390/jcm10010088] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
262 Teng CF, Li TC, Wang T, Wu TH, Wang J, Wu HC, Shyu WC, Su IJ, Jeng LB. Increased Expression of Programmed Death Ligand 1 in Hepatocellular Carcinoma of Patients with Hepatitis B Virus Pre-S2 Mutant. J Hepatocell Carcinoma 2020;7:385-401. [PMID: 33365286 DOI: 10.2147/JHC.S282818] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
263 Guo W, Ma J, Guo S, Wang H, Wang S, Shi Q, Liu L, Zhao T, Yang F, Chen S, Chen J, Zhao J, Yu C, Yi X, Yang Y, Ma J, Ni Q, Zhu G, Gao T, Li C. A20 regulates the therapeutic effect of anti-PD-1 immunotherapy in melanoma. J Immunother Cancer 2020;8:e001866. [PMID: 33298620 DOI: 10.1136/jitc-2020-001866] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
264 Sasi B, Ethiraj P, Myers J, Lin AP, Jiang S, Qiu Z, Holder KN, Aguiar RCT. Regulation of PD-L1 expression is a novel facet of cyclic-AMP-mediated immunosuppression. Leukemia 2021;35:1990-2001. [PMID: 33299141 DOI: 10.1038/s41375-020-01105-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
265 Bastaki S, Aravindhan S, Ahmadpour Saheb N, Afsari Kashani M, Evgenievich Dorofeev A, Karoon Kiani F, Jahandideh H, Beigi Dargani F, Aksoun M, Nikkhoo A, Masjedi A, Mahmoodpoor A, Ahmadi M, Dolati S, Namvar Aghdash S, Jadidi-Niaragh F. Codelivery of STAT3 and PD-L1 siRNA by hyaluronate-TAT trimethyl/thiolated chitosan nanoparticles suppresses cancer progression in tumor-bearing mice. Life Sci 2021;266:118847. [PMID: 33309720 DOI: 10.1016/j.lfs.2020.118847] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 7.0] [Reference Citation Analysis]
266 Schubert A, Boutros M. Extracellular vesicles and oncogenic signaling. Mol Oncol 2021;15:3-26. [PMID: 33207034 DOI: 10.1002/1878-0261.12855] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
267 Ma W, Zhao F, Yu X, Guan S, Suo H, Tao Z, Qiu Y, Wu Y, Cao Y, Jin F. Immune-related lncRNAs as predictors of survival in breast cancer: a prognostic signature. J Transl Med 2020;18:442. [PMID: 33225954 DOI: 10.1186/s12967-020-02522-6] [Cited by in Crossref: 40] [Cited by in F6Publishing: 44] [Article Influence: 13.3] [Reference Citation Analysis]
268 Chen W, Saxton B, Belinsky SA. Inhibition of GFAT1 in lung cancer cells destabilizes PD-L1 protein and improves immune response.. [DOI: 10.1101/2020.11.17.385039] [Reference Citation Analysis]
269 Huang W, Yan YG, Wang WJ, Ouyang ZH, Li XL, Zhang TL, Wang XB, Wang B, Lv GH, Li J, Zou MX. Development and Validation of a 6-miRNA Prognostic Signature in Spinal Chordoma. Front Oncol 2020;10:556902. [PMID: 33194623 DOI: 10.3389/fonc.2020.556902] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
270 Lu F, Zhao Y, Pang Y, Ji M, Sun Y, Wang H, Zou J, Wang Y, Li G, Sun T, Li J, Ma D, Ye J, Ji C. NLRP3 inflammasome upregulates PD-L1 expression and contributes to immune suppression in lymphoma. Cancer Lett 2021;497:178-89. [PMID: 33091534 DOI: 10.1016/j.canlet.2020.10.024] [Cited by in Crossref: 21] [Cited by in F6Publishing: 26] [Article Influence: 7.0] [Reference Citation Analysis]
271 Wang L, Ruan M, Lei B, Yan H, Sun X, Chang C, Liu L, Xie W. The potential of 18F-FDG PET/CT in predicting PDL1 expression status in pulmonary lesions of untreated stage IIIB-IV non-small-cell lung cancer. Lung Cancer 2020;150:44-52. [PMID: 33065462 DOI: 10.1016/j.lungcan.2020.10.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
272 Xu J, Brosseau JP, Shi H. Targeted degradation of immune checkpoint proteins: emerging strategies for cancer immunotherapy. Oncogene 2020;39:7106-13. [PMID: 33024277 DOI: 10.1038/s41388-020-01491-w] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
273 Shen X, Zhao Y, Liu G, Zhou H, Fan J, Zhang L, Li Y, Wang Y, Liang J, Xu Z. Upregulation of programmed death ligand 1 by liver kinase B1 and its implication in programmed death 1 blockade therapy in non-small cell lung cancer. Life Sciences 2020;256:117923. [DOI: 10.1016/j.lfs.2020.117923] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
274 Wang L, Hu Y, Wang S, Shen J, Wang X. Biomarkers of immunotherapy in non-small cell lung cancer. Oncol Lett 2020;20:139. [PMID: 32934707 DOI: 10.3892/ol.2020.11999] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
275 Liu C, Miao X, Wang Y, Wen L, Cheng X, Kong D, Zhao P, Song D, Wang X, Ding X, Xia H, Wang W, Sun Q, Gong W. Bromo- and extraterminal domain protein inhibition improves immunotherapy efficacy in hepatocellular carcinoma. Cancer Sci 2020;111:3503-15. [PMID: 32726482 DOI: 10.1111/cas.14588] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
276 Grel H, Ratajczak K, Jakiela S, Stobiecka M. Gated Resonance Energy Transfer (gRET) Controlled by Programmed Death Protein Ligand 1. Nanomaterials (Basel) 2020;10:E1592. [PMID: 32823551 DOI: 10.3390/nano10081592] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
277 Zhu H, Du C, Yuan M, Fu P, He Q, Yang B, Cao J. PD-1/PD-L1 counterattack alliance: multiple strategies for treating triple-negative breast cancer. Drug Discov Today 2020;25:1762-71. [PMID: 32663441 DOI: 10.1016/j.drudis.2020.07.006] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
278 Wang YN, Lee HH, Hsu JL, Yu D, Hung MC. The impact of PD-L1 N-linked glycosylation on cancer therapy and clinical diagnosis. J Biomed Sci 2020;27:77. [PMID: 32620165 DOI: 10.1186/s12929-020-00670-x] [Cited by in Crossref: 42] [Cited by in F6Publishing: 46] [Article Influence: 14.0] [Reference Citation Analysis]
279 Yasuoka H, Asai A, Ohama H, Tsuchimoto Y, Fukunishi S, Higuchi K. Increased both PD-L1 and PD-L2 expressions on monocytes of patients with hepatocellular carcinoma was associated with a poor prognosis. Sci Rep 2020;10:10377. [PMID: 32587357 DOI: 10.1038/s41598-020-67497-2] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
280 Imai Y, Chiba T, Kondo T, Kanzaki H, Kanayama K, Ao J, Kojima R, Kusakabe Y, Nakamura M, Saito T, Nakagawa R, Suzuki E, Nakamoto S, Muroyama R, Tawada A, Matsumura T, Nakagawa T, Kato J, Kotani A, Matsubara H, Kato N. Interferon-γ induced PD-L1 expression and soluble PD-L1 production in gastric cancer. Oncol Lett 2020;20:2161-8. [PMID: 32782533 DOI: 10.3892/ol.2020.11757] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
281 Hasegawa M, Hasegawa G, Ikeda Y, Hara N, Nishiyama T. Emergence of undifferentiated urothelial carcinoma after pembrolizumab treatment for patient with invasive urothelial bladder cancer: A case report. SAGE Open Med Case Rep 2020;8:2050313X20932694. [PMID: 32587697 DOI: 10.1177/2050313X20932694] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
282 Izquierdo E, Vorholt D, Sackey B, Nolte JL, Blakemore S, Schmitz J, Barbarino V, Nickel N, Bachurski D, Lobastova L, Nikolic M, Michalik M, Brinker R, Merkel O, Neuhaus R, Koch M, Knittel G, Frenzel L, Reinhardt HC, Peifer M, Rebollido-rios R, Bruns H, Krüger M, Hallek M, Pallasch C. Loss of TP53 mediates suppression of Macrophage Effector Function via Extracellular Vesicles and PDL1 towards Resistance against Chemoimmunotherapy in B-cell malignancies.. [DOI: 10.1101/2020.06.11.145268] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
283 Gao X, Yang J, Chen Y. Identification of a four immune-related genes signature based on an immunogenomic landscape analysis of clear cell renal cell carcinoma. J Cell Physiol 2020;235:9834-50. [PMID: 32452055 DOI: 10.1002/jcp.29796] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
284 Kim B, Sun R, Oh W, Kim AMJ, Schwarz JR, Lim S. Saccharide analog, 2‐deoxy‐ d ‐glucose enhances 4‐1BB‐mediated antitumor immunity via PD‐L1 deglycosylation. Molecular Carcinogenesis 2020;59:691-700. [DOI: 10.1002/mc.23170] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
285 Bastaki S, Irandoust M, Ahmadi A, Hojjat-Farsangi M, Ambrose P, Hallaj S, Edalati M, Ghalamfarsa G, Azizi G, Yousefi M, Chalajour H, Jadidi-Niaragh F. PD-L1/PD-1 axis as a potent therapeutic target in breast cancer. Life Sci 2020;247:117437. [PMID: 32070710 DOI: 10.1016/j.lfs.2020.117437] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
286 Verdura S, Cuyàs E, Cortada E, Brunet J, Lopez-Bonet E, Martin-Castillo B, Bosch-Barrera J, Encinar JA, Menendez JA. Resveratrol targets PD-L1 glycosylation and dimerization to enhance antitumor T-cell immunity. Aging (Albany NY) 2020;12:8-34. [PMID: 31901900 DOI: 10.18632/aging.102646] [Cited by in Crossref: 64] [Cited by in F6Publishing: 65] [Article Influence: 21.3] [Reference Citation Analysis]
287 Min Y, Wang X, Chen H, Yin G. The exploration of Hashimoto's Thyroiditis related miscarriage for better treatment modalities. Int J Med Sci 2020;17:2402-15. [PMID: 33029083 DOI: 10.7150/ijms.48128] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
288 Kaijian Zhou, Shu Guo, Fei Li, Qiang Sun, Guoxin Liang. Exosomal PD-L1: New Insights Into Tumor Immune Escape Mechanisms and Therapeutic Strategies. Front Cell Dev Biol 2020;8:569219. [PMID: 33178688 DOI: 10.3389/fcell.2020.569219] [Cited by in Crossref: 40] [Cited by in F6Publishing: 32] [Article Influence: 13.3] [Reference Citation Analysis]