BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Roh SH, Stam NJ, Hryc CF, Couoh-Cardel S, Pintilie G, Chiu W, Wilkens S. The 3.5-Å CryoEM Structure of Nanodisc-Reconstituted Yeast Vacuolar ATPase Vo Proton Channel. Mol Cell 2018;69:993-1004.e3. [PMID: 29526695 DOI: 10.1016/j.molcel.2018.02.006] [Cited by in Crossref: 60] [Cited by in F6Publishing: 48] [Article Influence: 20.0] [Reference Citation Analysis]
Number Citing Articles
1 Collins MP, Forgac M. Regulation of V-ATPase Assembly in Nutrient Sensing and Function of V-ATPases in Breast Cancer Metastasis. Front Physiol 2018;9:902. [PMID: 30057555 DOI: 10.3389/fphys.2018.00902] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
2 Zeng J, Kang WN, Jin L, Anjum AA, Li GQ. Knockdown of Vacuolar ATPase Subunit G Gene Affects Larval Survival and Impaired Pupation and Adult Emergence in Henosepilachna vigintioctopunctata. Insects 2021;12:935. [PMID: 34680704 DOI: 10.3390/insects12100935] [Reference Citation Analysis]
3 Burendei B, Shinozaki R, Watanabe M, Terada T, Tani K, Fujiyoshi Y, Oshima A. Cryo-EM structures of undocked innexin-6 hemichannels in phospholipids. Sci Adv 2020;6:eaax3157. [PMID: 32095518 DOI: 10.1126/sciadv.aax3157] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
4 Banerjee S, Clapp K, Tarsio M, Kane PM. Interaction of the late endo-lysosomal lipid PI(3,5)P2 with the Vph1 isoform of yeast V-ATPase increases its activity and cellular stress tolerance. J Biol Chem 2019;294:9161-71. [PMID: 31023825 DOI: 10.1074/jbc.RA119.008552] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
5 Krah A, Huber RG, McMillan DGG, Bond PJ. The Molecular Basis for Purine Binding Selectivity in the Bacterial ATP Synthase ϵ Subunit. Chembiochem 2020;21:3249-54. [PMID: 32608105 DOI: 10.1002/cbic.202000291] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Abbas YM, Wu D, Bueler SA, Robinson CV, Rubinstein JL. Structure of V-ATPase from the mammalian brain. Science 2020;367:1240-6. [PMID: 32165585 DOI: 10.1126/science.aaz2924] [Cited by in Crossref: 46] [Cited by in F6Publishing: 38] [Article Influence: 46.0] [Reference Citation Analysis]
7 Zhou L, Sazanov LA. Structure and conformational plasticity of the intact Thermus thermophilus V/A-type ATPase. Science 2019;365:eaaw9144. [PMID: 31439765 DOI: 10.1126/science.aaw9144] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 24.0] [Reference Citation Analysis]
8 Binger KJ, Neukam M, Tattikota SG, Qadri F, Puchkov D, Willmes DM, Wurmsee S, Geisberger S, Dechend R, Raile K, Kurth T, Nguyen G, Poy MN, Solimena M, Muller DN, Birkenfeld AL. Atp6ap2 deletion causes extensive vacuolation that consumes the insulin content of pancreatic β cells. Proc Natl Acad Sci U S A 2019;116:19983-8. [PMID: 31527264 DOI: 10.1073/pnas.1903678116] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
9 Novitskaia O, Buslaev P, Gushchin I. Assembly of Spinach Chloroplast ATP Synthase Rotor Ring Protein-Lipid Complex. Front Mol Biosci 2019;6:135. [PMID: 31850368 DOI: 10.3389/fmolb.2019.00135] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Guida MC, Hermle T, Graham LA, Hauser V, Ryan M, Stevens TH, Simons M. ATP6AP2 functions as a V-ATPase assembly factor in the endoplasmic reticulum. Mol Biol Cell 2018;29:2156-64. [PMID: 29995586 DOI: 10.1091/mbc.E18-04-0234] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 4.3] [Reference Citation Analysis]
11 Jaskolka MC, Winkley SR, Kane PM. RAVE and Rabconnectin-3 Complexes as Signal Dependent Regulators of Organelle Acidification. Front Cell Dev Biol 2021;9:698190. [PMID: 34249946 DOI: 10.3389/fcell.2021.698190] [Reference Citation Analysis]
12 Renaud J, Chari A, Ciferri C, Liu W, Rémigy H, Stark H, Wiesmann C. Cryo-EM in drug discovery: achievements, limitations and prospects. Nat Rev Drug Discov 2018;17:471-92. [DOI: 10.1038/nrd.2018.77] [Cited by in Crossref: 136] [Cited by in F6Publishing: 102] [Article Influence: 45.3] [Reference Citation Analysis]
13 Pinke G, Zhou L, Sazanov LA. Cryo-EM structure of the entire mammalian F-type ATP synthase. Nat Struct Mol Biol 2020;27:1077-85. [DOI: 10.1038/s41594-020-0503-8] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 36.0] [Reference Citation Analysis]
14 Wang Y, Zhang L, Wei Y, Huang W, Li L, Wu AA, Dastur A, Greninger P, Bray WM, Zhang CS, Li M, Lian W, Hu Z, Wang X, Liu G, Yao L, Guh JH, Chen L, Wang HR, Zhou D, Lin SC, Xu Q, Shen Y, Zhang J, Jurica MS, Benes CH, Deng X. Pharmacological Targeting of Vacuolar H+-ATPase via Subunit V1G Combats Multidrug-Resistant Cancer. Cell Chem Biol 2020;27:1359-1370.e8. [PMID: 32649904 DOI: 10.1016/j.chembiol.2020.06.011] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
15 Jaskolka MC, Tarsio M, Smardon AM, Khan MM, Kane PM. Defining steps in RAVE-catalyzed V-ATPase assembly using purified RAVE and V-ATPase subcomplexes. J Biol Chem 2021;296:100703. [PMID: 33895134 DOI: 10.1016/j.jbc.2021.100703] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Hohlweg W, Wagner GE, Hofbauer HF, Sarkleti F, Setz M, Gubensäk N, Lichtenegger S, Falsone SF, Wolinski H, Kosol S, Oostenbrink C, Kohlwein SD, Zangger K. A cation-π interaction in a transmembrane helix of vacuolar ATPase retains the proton-transporting arginine in a hydrophobic environment. J Biol Chem 2018;293:18977-88. [PMID: 30209131 DOI: 10.1074/jbc.RA118.005276] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
17 Kane PM. Energy powerhouses of cells come into focus. Science 2018;360:600-1. [PMID: 29748269 DOI: 10.1126/science.aat6275] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
18 Kishikawa JI, Nakanishi A, Furuta A, Kato T, Namba K, Tamakoshi M, Mitsuoka K, Yokoyama K. Mechanical inhibition of isolated Vo from V/A-ATPase for proton conductance. Elife 2020;9:e56862. [PMID: 32639230 DOI: 10.7554/eLife.56862] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
19 Muench SP, van der Laan M. No Longer Hidden Secrets of Proton Pumping: The Resolution Revolution Enlightens V-ATPases. Mol Cell 2018;69:921-2. [PMID: 29547720 DOI: 10.1016/j.molcel.2018.02.031] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Sharma S, Oot RA, Khan MM, Wilkens S. Functional reconstitution of vacuolar H+-ATPase from Vo proton channel and mutant V1-ATPase provides insight into the mechanism of reversible disassembly. J Biol Chem 2019;294:6439-49. [PMID: 30792311 DOI: 10.1074/jbc.RA119.007577] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
21 Vlasov AV, Kovalev KV, Marx SH, Round ES, Gushchin IY, Polovinkin VA, Tsoy NM, Okhrimenko IS, Borshchevskiy VI, Büldt GD, Ryzhykau YL, Rogachev AV, Chupin VV, Kuklin AI, Dencher NA, Gordeliy VI. Unusual features of the c-ring of F1FO ATP synthases. Sci Rep 2019;9:18547. [PMID: 31811229 DOI: 10.1038/s41598-019-55092-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
22 Vasanthakumar T, Rubinstein JL. Structure and Roles of V-type ATPases. Trends Biochem Sci 2020;45:295-307. [PMID: 32001091 DOI: 10.1016/j.tibs.2019.12.007] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 29.0] [Reference Citation Analysis]
23 Tonggu L, Wang L. Cryo-EM sample preparation method for extremely low concentration liposomes. Ultramicroscopy 2020;208:112849. [PMID: 31622807 DOI: 10.1016/j.ultramic.2019.112849] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
24 Banerjee S, Kane PM. Regulation of V-ATPase Activity and Organelle pH by Phosphatidylinositol Phosphate Lipids. Front Cell Dev Biol 2020;8:510. [PMID: 32656214 DOI: 10.3389/fcell.2020.00510] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
25 Krah A, Marzinek JK, Bond PJ. Insights into water accessible pathways and the inactivation mechanism of proton translocation by the membrane-embedded domain of V-type ATPases. Biochimica et Biophysica Acta (BBA) - Biomembranes 2019;1861:1004-10. [DOI: 10.1016/j.bbamem.2019.02.010] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
26 Gu J, Zhang L, Zong S, Guo R, Liu T, Yi J, Wang P, Zhuo W, Yang M. Cryo-EM structure of the mammalian ATP synthase tetramer bound with inhibitory protein IF1. Science 2019;364:1068-75. [PMID: 31197009 DOI: 10.1126/science.aaw4852] [Cited by in Crossref: 71] [Cited by in F6Publishing: 65] [Article Influence: 71.0] [Reference Citation Analysis]
27 Wang R, Wang J, Hassan A, Lee CH, Xie XS, Li X. Molecular basis of V-ATPase inhibition by bafilomycin A1. Nat Commun 2021;12:1782. [PMID: 33741963 DOI: 10.1038/s41467-021-22111-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Le Bon C, Michon B, Popot JL, Zoonens M. Amphipathic environments for determining the structure of membrane proteins by single-particle electron cryo-microscopy. Q Rev Biophys 2021;54:e6. [PMID: 33785082 DOI: 10.1017/S0033583521000044] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Wang C, Xiang Y, Qian D. Current progress in plant V-ATPase: From biochemical properties to physiological functions. J Plant Physiol 2021;266:153525. [PMID: 34560396 DOI: 10.1016/j.jplph.2021.153525] [Reference Citation Analysis]
30 Wang R, Long T, Hassan A, Wang J, Sun Y, Xie XS, Li X. Cryo-EM structures of intact V-ATPase from bovine brain. Nat Commun 2020;11:3921. [PMID: 32764564 DOI: 10.1038/s41467-020-17762-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
31 Santos-Pereira C, Rodrigues LR, Côrte-Real M. Emerging insights on the role of V-ATPase in human diseases: Therapeutic challenges and opportunities. Med Res Rev 2021;41:1927-64. [PMID: 33483985 DOI: 10.1002/med.21782] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
32 [DOI: 10.1101/494385] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
33 Aufschnaiter A, Büttner S. The vacuolar shapes of ageing: From function to morphology. Biochim Biophys Acta Mol Cell Res 2019;1866:957-70. [PMID: 30796938 DOI: 10.1016/j.bbamcr.2019.02.011] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
34 Roh SH, Shekhar M, Pintilie G, Chipot C, Wilkens S, Singharoy A, Chiu W. Cryo-EM and MD infer water-mediated proton transport and autoinhibition mechanisms of Vo complex. Sci Adv 2020;6:eabb9605. [PMID: 33028525 DOI: 10.1126/sciadv.abb9605] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 15.0] [Reference Citation Analysis]
35 Nakanishi A, Kishikawa JI, Mitsuoka K, Yokoyama K. Cryo-EM studies of the rotary H+-ATPase/synthase from Thermus thermophilus. Biophys Physicobiol 2019;16:140-6. [PMID: 31660281 DOI: 10.2142/biophysico.16.0_140] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
36 Collins MP, Forgac M. Regulation and function of V-ATPases in physiology and disease. Biochim Biophys Acta Biomembr 2020;1862:183341. [PMID: 32422136 DOI: 10.1016/j.bbamem.2020.183341] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 18.0] [Reference Citation Analysis]
37 Futai M, Sun-Wada GH, Wada Y, Matsumoto N, Nakanishi-Matsui M. Vacuolar-type ATPase: A proton pump to lysosomal trafficking. Proc Jpn Acad Ser B Phys Biol Sci. 2019;95:261-277. [PMID: 31189779 DOI: 10.2183/pjab.95.018] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]
38 Krah A, Marzinek JK, Bond PJ. Characterizing the Hydration Properties of Proton Binding Sites in the ATP Synthase c-Rings of Bacillus Species. J Phys Chem B 2020;124:7176-83. [PMID: 32687713 DOI: 10.1021/acs.jpcb.0c03896] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
39 Kalienkova V, Alvadia C, Clerico Mosina V, Paulino C. Single-Particle Cryo-EM of Membrane Proteins in Lipid Nanodiscs. In: Perez C, Maier T, editors. Expression, Purification, and Structural Biology of Membrane Proteins. New York: Springer US; 2020. pp. 245-73. [DOI: 10.1007/978-1-0716-0373-4_17] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
40 Gowrisankaran S, Milosevic I. Regulation of synaptic vesicle acidification at the neuronal synapse. IUBMB Life 2019;72:568-76. [DOI: 10.1002/iub.2235] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
41 Matsumoto N, Matsukawa R, Takahashi S, Kudo K, Sun-Wada GH, Wada Y, Nakanishi-Matsui M. V-ATPase a3 isoform mutations identified in osteopetrosis patients abolish its expression and disrupt osteoclast function. Exp Cell Res 2020;389:111901. [PMID: 32045577 DOI: 10.1016/j.yexcr.2020.111901] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
42 Peng W, Casey AK, Fernandez J, Carpinone EM, Servage KA, Chen Z, Li Y, Tomchick DR, Starai VJ, Orth K. A distinct inhibitory mechanism of the V-ATPase by Vibrio VopQ revealed by cryo-EM. Nat Struct Mol Biol 2020;27:589-97. [PMID: 32424347 DOI: 10.1038/s41594-020-0429-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
43 Vasanthakumar T, Bueler SA, Wu D, Beilsten-Edmands V, Robinson CV, Rubinstein JL. Structural comparison of the vacuolar and Golgi V-ATPases from Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2019;116:7272-7. [PMID: 30910982 DOI: 10.1073/pnas.1814818116] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 17.0] [Reference Citation Analysis]
44 A von der Dunk SH, Snel B. Recurrent sequence evolution after independent gene duplication. BMC Evol Biol 2020;20:98. [PMID: 32770961 DOI: 10.1186/s12862-020-01660-1] [Reference Citation Analysis]
45 Wang L, Wu D, Robinson CV, Wu H, Fu TM. Structures of a Complete Human V-ATPase Reveal Mechanisms of Its Assembly. Mol Cell 2020;80:501-511.e3. [PMID: 33065002 DOI: 10.1016/j.molcel.2020.09.029] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 15.0] [Reference Citation Analysis]
46 Gerle C. Essay on Biomembrane Structure. J Membr Biol 2019;252:115-30. [PMID: 30877332 DOI: 10.1007/s00232-019-00061-w] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
47 Oshima A. Structural insights into gap junction channels boosted by cryo-EM. Curr Opin Struct Biol 2020;63:42-8. [PMID: 32339861 DOI: 10.1016/j.sbi.2020.03.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Oot RA, Wilkens S. A "Sugar-Coated" Proton Pump Comes into Focus: High-Resolution Structure of a Human V-ATPase. Mol Cell 2020;80:379-80. [PMID: 33157012 DOI: 10.1016/j.molcel.2020.10.020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]