BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhou B, Augenfeld Z, Chapiro J, Zhou SK, Liu C, Duncan JS. Anatomy-guided multimodal registration by learning segmentation without ground truth: Application to intraprocedural CBCT/MR liver segmentation and registration. Med Image Anal 2021;71:102041. [PMID: 33823397 DOI: 10.1016/j.media.2021.102041] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
Number Citing Articles
1 Yang T, Bai X, Cui X, Gong Y, Li L. DAU‐Net : An unsupervised 3D brain MRI registration model with dual‐attention mechanism. Int J Imaging Syst Tech. [DOI: 10.1002/ima.22801] [Reference Citation Analysis]
2 Liu H, Zhuang Y, Song E, Xu X, Hung CC. A bidirectional multilayer contrastive adaptation network with anatomical structure preservation for unpaired cross-modality medical image segmentation. Comput Biol Med 2022;149:105964. [PMID: 36007288 DOI: 10.1016/j.compbiomed.2022.105964] [Reference Citation Analysis]
3 Yang T, Bai X, Cui X, Gong Y, Li L. GraformerDIR: Graph convolution transformer for deformable image registration. Computers in Biology and Medicine 2022;147:105799. [DOI: 10.1016/j.compbiomed.2022.105799] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Nam D, Chapiro J, Paradis V, Seraphin TP, Kather JN. Artificial intelligence in liver diseases: improving diagnostics, prognostics and response prediction. JHEP Reports 2022. [DOI: 10.1016/j.jhepr.2022.100443] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
5 Liu L, Zhang J, Wang JX, Xiong S, Zhang H. Co-optimization Learning Network for MRI Segmentation of Ischemic Penumbra Tissues. Front Neuroinform 2021;15:782262. [PMID: 34975444 DOI: 10.3389/fninf.2021.782262] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Zhou B, Chen X, Zhou SK, Duncan JS, Liu C. DuDoDR-Net: Dual-domain data consistent recurrent network for simultaneous sparse view and metal artifact reduction in computed tomography. Med Image Anal 2021;75:102289. [PMID: 34758443 DOI: 10.1016/j.media.2021.102289] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
7 Chen J, Sun Y, Fang Z, Lin W, Li G, Wang L. Harmonized neonatal brain MR image segmentation model for cross-site datasets. Biomedical Signal Processing and Control 2021;69:102810. [DOI: 10.1016/j.bspc.2021.102810] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]