BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zheng Y, Han GW, Abagyan R, Wu B, Stevens RC, Cherezov V, Kufareva I, Handel TM. Structure of CC Chemokine Receptor 5 with a Potent Chemokine Antagonist Reveals Mechanisms of Chemokine Recognition and Molecular Mimicry by HIV. Immunity 2017;46:1005-1017.e5. [PMID: 28636951 DOI: 10.1016/j.immuni.2017.05.002] [Cited by in Crossref: 119] [Cited by in F6Publishing: 99] [Article Influence: 23.8] [Reference Citation Analysis]
Number Citing Articles
1 Secchi M, Vangelista L. Rational Engineering of a Sub-Picomolar HIV-1 Blocker. Viruses 2022;14:2415. [DOI: 10.3390/v14112415] [Reference Citation Analysis]
2 Mukanova S, Borissenko A, Kim A, Bolatbek A, Abdrakhmanova A, Vangelista L, Sonnenberg-riethmacher E, Riethmacher D. Role of periostin in inflammatory bowel disease development and synergistic effects mediated by the CCL5–CCR5 axis. Front Immunol 2022;13:956691. [DOI: 10.3389/fimmu.2022.956691] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Goode-Romero G, Dominguez L. Computational study of the structural ensemble of CC chemokine receptor type 5 (CCR5) and its interactions with different ligands. PLoS One 2022;17:e0275269. [PMID: 36251708 DOI: 10.1371/journal.pone.0275269] [Reference Citation Analysis]
4 Lu M, Zhao W, Han S, Lin X, Xu T, Tan Q, Wang M, Yi C, Chu X, Yang W, Zhu Y, Wu B, Zhao Q. Activation of the human chemokine receptor CX3CR1 regulated by cholesterol. Sci Adv 2022;8:eabn8048. [PMID: 35767622 DOI: 10.1126/sciadv.abn8048] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Stewart V, Ronald PC. Sulfotyrosine residues: interaction specificity determinants for extracellular protein-protein interactions. Journal of Biological Chemistry 2022. [DOI: 10.1016/j.jbc.2022.102232] [Reference Citation Analysis]
6 Sonawani A, Kharche S, Dasgupta D, Sengupta D. Insights into the dynamic interactions at chemokine-receptor interfaces and mechanistic models of chemokine binding. J Struct Biol 2022;214:107877. [PMID: 35750237 DOI: 10.1016/j.jsb.2022.107877] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Hu X, Ni S, Zhao K, Qian J, Duan Y. Bioinformatics-Led Discovery of Osteoarthritis Biomarkers and Inflammatory Infiltrates. Front Immunol 2022;13:871008. [DOI: 10.3389/fimmu.2022.871008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Shao Z, Tan Y, Shen Q, Hou L, Yao B, Qin J, Xu P, Mao C, Chen L, Zhang H, Shen D, Zhang C, Li W, Du X, Li F, Chen Z, Jiang Y, Xu HE, Ying S, Ma H, Zhang Y, Shen H. Molecular insights into ligand recognition and activation of chemokine receptors CCR2 and CCR3. Cell Discov 2022;8. [DOI: 10.1038/s41421-022-00403-4] [Reference Citation Analysis]
9 Baer C, Kimura S, Rana MS, Kleist AB, Flerlage T, Feith DJ, Chockley P, Walter W, Meggendorfer M, Olson TL, Cheon H, Olson KC, Ratan A, Mueller ML, Foran JM, Janke LJ, Qu C, Porter SN, Pruett-Miller SM, Kalathur RC, Haferlach C, Kern W, Paietta E, Thomas PG, Babu MM, Loughran TP Jr, Iacobucci I, Haferlach T, Mullighan CG. CCL22 mutations drive natural killer cell lymphoproliferative disease by deregulating microenvironmental crosstalk. Nat Genet 2022. [PMID: 35513723 DOI: 10.1038/s41588-022-01059-2] [Reference Citation Analysis]
10 Sonawani A, Kharche S, Dasgupta D, Sengupta D. Allosteric modulation of the chemokine receptor-chemokine CXCR4-CXCL12 complex by tyrosine sulfation. Int J Biol Macromol 2022;206:812-22. [PMID: 35306016 DOI: 10.1016/j.ijbiomac.2022.03.078] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Pawnikar S, Miao Y. Mechanism of Peptide Agonist Binding in CXCR4 Chemokine Receptor. Front Mol Biosci 2022;9:821055. [DOI: 10.3389/fmolb.2022.821055] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Larsen O, van der Velden WJC, Mavri M, Schuermans S, Rummel PC, Karlshøj S, Gustavsson M, Proost P, Våbenø J, Rosenkilde MM. Identification of a conserved chemokine receptor motif that enables ligand discrimination. Sci Signal 2022;15:eabg7042. [PMID: 35258997 DOI: 10.1126/scisignal.abg7042] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Amerzhanova Y, Vangelista L. Filling the Gaps in Antagonist CCR5 Binding, a Retrospective and Perspective Analysis. Front Immunol 2022;13:826418. [DOI: 10.3389/fimmu.2022.826418] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Pawnikar S, Bhattarai A, Wang J, Miao Y. Binding Analysis Using Accelerated Molecular Dynamics Simulations and Future Perspectives. Adv Appl Bioinform Chem 2022;15:1-19. [PMID: 35023931 DOI: 10.2147/AABC.S247950] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Harms M, Hayn M, Zech F, Kirchhoff F, Münch J. Endogenous Peptide Inhibitors of HIV Entry. Advances in Experimental Medicine and Biology 2022. [DOI: 10.1007/978-981-16-8702-0_5] [Reference Citation Analysis]
16 Isaikina P, Tsai C, Petrovic I, Rogowski M, Dürr AM, Grzesiek S. Preparation of a stable CCL5·CCR5·Gi signaling complex for Cryo-EM analysis. Biomolecular Interactions Part B 2022. [DOI: 10.1016/bs.mcb.2022.03.001] [Reference Citation Analysis]
17 Suhail M. The mystery of chemistry behind the mechanism of action of anti-HIV drugs: A docking approach at an atomic level. Eur J Chem 2021;12:432-438. [DOI: 10.5155/eurjchem.12.4.432-438.2149] [Reference Citation Analysis]
18 Vu O, Bender BJ, Pankewitz L, Huster D, Beck-Sickinger AG, Meiler J. The Structural Basis of Peptide Binding at Class A G Protein-Coupled Receptors. Molecules 2021;27:210. [PMID: 35011444 DOI: 10.3390/molecules27010210] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Shao Z, Shen Q, Yao B, Mao C, Chen LN, Zhang H, Shen DD, Zhang C, Li W, Du X, Li F, Ma H, Chen ZH, Xu HE, Ying S, Zhang Y, Shen H. Identification and mechanism of G protein-biased ligands for chemokine receptor CCR1. Nat Chem Biol 2021. [PMID: 34949837 DOI: 10.1038/s41589-021-00918-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
20 Moseri A, Akabayov SR, Cohen LS, Naider F, Anglister J. Multiple binding modes of an N-terminal CCR5-peptide in complex with HIV-1 gp120. FEBS J 2021. [PMID: 34921512 DOI: 10.1111/febs.16328] [Reference Citation Analysis]
21 del Alamo D, Sala D, Mchaourab HS, Meiler J. Sampling the conformational landscapes of transporters and receptors with AlphaFold2.. [DOI: 10.1101/2021.11.22.469536] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
22 von Hundelshausen P, Wichapong K, Gabius HJ, Mayo KH. The marriage of chemokines and galectins as functional heterodimers. Cell Mol Life Sci 2021;78:8073-95. [PMID: 34767039 DOI: 10.1007/s00018-021-04010-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
23 Stewart V, Ronald PC. Sulfotyrosine, an interaction specificity determinant for extracellular protein-protein interactions.. [DOI: 10.1101/2021.10.29.466493] [Reference Citation Analysis]
24 Das A, Behera LM, Rana S. Interaction of Human C5a with the Major Peptide Fragments of C5aR1: Direct Evidence in Support of "Two-Site" Binding Paradigm. ACS Omega 2021;6:22876-87. [PMID: 34514259 DOI: 10.1021/acsomega.1c03400] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
25 Gutjahr JC, Crawford KS, Jensen DR, Naik P, Peterson FC, Samson GPB, Legler DF, Duchene J, Veldkamp CT, Rot A, Volkman BF. The dimeric form of CXCL12 binds to atypical chemokine receptor 1. Sci Signal 2021;14:eabc9012. [PMID: 34404752 DOI: 10.1126/scisignal.abc9012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Karl K, Hristova K. Pondering the mechanism of receptor tyrosine kinase activation: The case for ligand-specific dimer microstate ensembles. Curr Opin Struct Biol 2021;71:193-9. [PMID: 34399300 DOI: 10.1016/j.sbi.2021.07.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
27 van Aalst E, Koneri J, Wylie BJ. In Silico Identification of Cholesterol Binding Motifs in the Chemokine Receptor CCR3. Membranes (Basel) 2021;11:570. [PMID: 34436333 DOI: 10.3390/membranes11080570] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Stark LE, Guan W, Colvin ME, LiWang PJ. The binding and specificity of chemokine binding proteins, through the lens of experiment and computation. Biomed J 2021:S2319-4170(21)00092-5. [PMID: 34311129 DOI: 10.1016/j.bj.2021.07.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Jacquemard C, Koensgen F, Colin P, Lagane B, Kellenberger E. Modeling of CCR5 Recognition by HIV-1 gp120: How the Viral Protein Exploits the Conformational Plasticity of the Coreceptor. Viruses 2021;13:1395. [PMID: 34372601 DOI: 10.3390/v13071395] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
30 Zhang H, Chen K, Tan Q, Shao Q, Han S, Zhang C, Yi C, Chu X, Zhu Y, Xu Y, Zhao Q, Wu B. Structural basis for chemokine recognition and receptor activation of chemokine receptor CCR5. Nat Commun 2021;12:4151. [PMID: 34230484 DOI: 10.1038/s41467-021-24438-5] [Cited by in Crossref: 14] [Cited by in F6Publishing: 19] [Article Influence: 14.0] [Reference Citation Analysis]
31 Wang S, Foster SR, Sanchez J, Corcilius L, Larance M, Canals M, Stone MJ, Payne RJ. Glycosylation Regulates N-Terminal Proteolysis and Activity of the Chemokine CCL14. ACS Chem Biol 2021;16:973-81. [PMID: 33988967 DOI: 10.1021/acschembio.1c00006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
32 Isaikina P, Tsai CJ, Dietz N, Pamula F, Grahl A, Goldie KN, Guixà-González R, Branco C, Paolini-Bertrand M, Calo N, Cerini F, Schertler GFX, Hartley O, Stahlberg H, Maier T, Deupi X, Grzesiek S. Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist. Sci Adv 2021;7:eabg8685. [PMID: 34134983 DOI: 10.1126/sciadv.abg8685] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 13.0] [Reference Citation Analysis]
33 Koma T, Yokoyama M, Kotani O, Doi N, Nakanishi N, Okubo H, Adachi S, Adachi A, Sato H, Nomaguchi M. Species-Specific Valid Ternary Interactions of HIV-1 Env-gp120, CD4, and CCR5 as Revealed by an Adaptive Single-Amino Acid Substitution at the V3 Loop Tip. J Virol 2021;95:e0217720. [PMID: 33883222 DOI: 10.1128/JVI.02177-20] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
34 Congreve M, Christopher JA, Graaf C. Structure‐Based Drug Design for G Protein‐Coupled Receptors. Burger's Medicinal Chemistry and Drug Discovery 2021. [DOI: 10.1002/0471266949.bmc269] [Reference Citation Analysis]
35 Xiao T, Cai Y, Chen B. HIV-1 Entry and Membrane Fusion Inhibitors. Viruses 2021;13:735. [PMID: 33922579 DOI: 10.3390/v13050735] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
36 Liu K, Shen L, Wu M, Liu ZJ, Hua T. Structural insights into the activation of chemokine receptor CXCR2. FEBS J 2021. [PMID: 33835690 DOI: 10.1111/febs.15865] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
37 Sailapathi A, Gunalan S, Somarathinam K, Kothandan G, Kumar D. Importance of Homology Modeling for Predicting the Structures of GPCRs. Homology Molecular Modeling - Perspectives and Applications 2021. [DOI: 10.5772/intechopen.94402] [Reference Citation Analysis]
38 Huang R, Guo L, Gao M, Li J, Xiang S. Research Trends and Regulation of CCL5 in Prostate Cancer. Onco Targets Ther 2021;14:1417-27. [PMID: 33664576 DOI: 10.2147/OTT.S279189] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
39 Dang TKL, Nguyen T, Habeck M, Gültas M, Waack S. A graph-based algorithm for detecting rigid domains in protein structures. BMC Bioinformatics 2021;22:66. [PMID: 33579190 DOI: 10.1186/s12859-021-03966-3] [Reference Citation Analysis]
40 Kline JM, Heusinkveld LE, Taranto E, Martin CB, Tomasi AG, Hsu IJ, Cho K, Khillan JS, Murphy PM, Pontejo SM. Structural and functional analysis of Ccr1l1, a Rodentia-restricted eosinophil-selective chemokine receptor homologue. J Biol Chem 2021;296:100373. [PMID: 33548230 DOI: 10.1016/j.jbc.2021.100373] [Reference Citation Analysis]
41 Yang D, Zhou Q, Labroska V, Qin S, Darbalaei S, Wu Y, Yuliantie E, Xie L, Tao H, Cheng J, Liu Q, Zhao S, Shui W, Jiang Y, Wang MW. G protein-coupled receptors: structure- and function-based drug discovery. Signal Transduct Target Ther 2021;6:7. [PMID: 33414387 DOI: 10.1038/s41392-020-00435-w] [Cited by in Crossref: 70] [Cited by in F6Publishing: 79] [Article Influence: 70.0] [Reference Citation Analysis]
42 Modrow S, Truyen U, Schätzl H. RNA- und DNA-Viren mit reverser Transkription. Molekulare Virologie 2021. [DOI: 10.1007/978-3-662-61781-6_18] [Reference Citation Analysis]
43 Vanangamudi M, Nair PC, Engels SEM, Palaniappan S, Namasivayam V. Structural Insights to Human Immunodeficiency Virus (HIV-1) Targets and Their Inhibition. Adv Exp Med Biol 2021;1322:63-95. [PMID: 34258737 DOI: 10.1007/978-981-16-0267-2_3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
44 Isaikina P, Tsai C, Dietz N, Pamula F, Grahl A, Goldie KN, Guixà-gonzález R, Schertler GF, Hartley O, Stahlberg H, Maier T, Deupi X, Grzesiek S. Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist.. [DOI: 10.1101/2020.11.27.401117] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
45 Sepuru KM, Nair V, Prakash P, Gorfe AA, Rajarathnam K. Long-Range Coupled Motions Underlie Ligand Recognition by a Chemokine Receptor. iScience 2020;23:101858. [PMID: 33344917 DOI: 10.1016/j.isci.2020.101858] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
46 Guo Q, Liu Z, Wang M, Guo S, Cong H, Liu L. Analysis on the expression and value of CCL2 and CCL3 in patients with osteoarthritis. Exp Mol Pathol 2021;118:104576. [PMID: 33197425 DOI: 10.1016/j.yexmp.2020.104576] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
47 Karl K, Paul MD, Pasquale EB, Hristova K. Ligand bias in receptor tyrosine kinase signaling. J Biol Chem 2020;295:18494-507. [PMID: 33122191 DOI: 10.1074/jbc.REV120.015190] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
48 Wedemeyer MJ, Mahn SA, Getschman AE, Crawford KS, Peterson FC, Marchese A, McCorvy JD, Volkman BF. The chemokine X-factor: Structure-function analysis of the CXC motif at CXCR4 and ACKR3. J Biol Chem 2020;295:13927-39. [PMID: 32788219 DOI: 10.1074/jbc.RA120.014244] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
49 Scurci I, Akondi KB, Pinheiro I, Paolini-Bertrand M, Borgeat A, Cerini F, Hartley O. CCR5 tyrosine sulfation heterogeneity generates cell surface receptor subpopulations with different ligand binding properties. Biochim Biophys Acta Gen Subj 2021;1865:129753. [PMID: 32991968 DOI: 10.1016/j.bbagen.2020.129753] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
50 Martins E, Brodier H, Rossitto-Borlat I, Ilgaz I, Villard M, Hartley O. Arrestin Recruitment to C-C Chemokine Receptor 5: Potent C-C Chemokine Ligand 5 Analogs Reveal Differences in Dependence on Receptor Phosphorylation and Isoform-Specific Recruitment Bias. Mol Pharmacol 2020;98:599-611. [PMID: 32943494 DOI: 10.1124/molpharm.120.000036] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
51 Kessler N, Akabayov SR, Moseri A, Cohen LS, Sakhapov D, Bolton D, Fridman B, Kay LE, Naider F, Anglister J. Allovalency observed by transferred NOE: interactions of sulfated tyrosine residues in the N-terminal segment of CCR5 with the CCL5 chemokine. FEBS J 2021;288:1648-63. [PMID: 32814359 DOI: 10.1111/febs.15503] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
52 Murphy JW, Rajasekaran D, Merkel J, Skeens E, Keeler C, Hodsdon ME, Lisi GP, Lolis E. High-Throughput Screening of a Functional Human CXCL12-CXCR4 Signaling Axis in a Genetically Modified S. cerevisiae: Discovery of a Novel Up-Regulator of CXCR4 Activity. Front Mol Biosci 2020;7:164. [PMID: 32766282 DOI: 10.3389/fmolb.2020.00164] [Reference Citation Analysis]
53 Sáez-Cirión A, Sereti I. Immunometabolism and HIV-1 pathogenesis: food for thought. Nat Rev Immunol 2021;21:5-19. [PMID: 32764670 DOI: 10.1038/s41577-020-0381-7] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 15.5] [Reference Citation Analysis]
54 Erdinest N, London N, Solomon A. Chemokines in allergic conjunctivitis. Curr Opin Allergy Clin Immunol 2020;20:516-27. [PMID: 32739979 DOI: 10.1097/ACI.0000000000000676] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
55 Sepuru KM, Nair V, Prakash P, Gorfe AA, Rajarathnam K. Long-range coupled motions underlie ligand recognition by a chemokine receptor.. [DOI: 10.1101/2020.07.28.225664] [Reference Citation Analysis]
56 Stephens BS, Ngo T, Kufareva I, Handel TM. Functional anatomy of the full-length CXCR4-CXCL12 complex systematically dissected by quantitative model-guided mutagenesis. Sci Signal 2020;13:eaay5024. [PMID: 32665413 DOI: 10.1126/scisignal.aay5024] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
57 Liu K, Wu L, Yuan S, Wu M, Xu Y, Sun Q, Li S, Zhao S, Hua T, Liu ZJ. Structural basis of CXC chemokine receptor 2 activation and signalling. Nature 2020;585:135-40. [PMID: 32610344 DOI: 10.1038/s41586-020-2492-5] [Cited by in Crossref: 76] [Cited by in F6Publishing: 78] [Article Influence: 38.0] [Reference Citation Analysis]
58 Wasilko DJ, Johnson ZL, Ammirati M, Che Y, Griffor MC, Han S, Wu H. Structural basis for chemokine receptor CCR6 activation by the endogenous protein ligand CCL20. Nat Commun 2020;11:3031. [PMID: 32541785 DOI: 10.1038/s41467-020-16820-6] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 18.5] [Reference Citation Analysis]
59 Pawnikar S, Miao Y. Pathway and mechanism of drug binding to chemokine receptors revealed by accelerated molecular simulations. Future Med Chem 2020;12:1213-25. [PMID: 32515227 DOI: 10.4155/fmc-2020-0044] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
60 Ellwanger JH, Kulmann-Leal B, Kaminski VL, Rodrigues AG, Bragatte MAS, Chies JAB. Beyond HIV infection: Neglected and varied impacts of CCR5 and CCR5Δ32 on viral diseases. Virus Res 2020;286:198040. [PMID: 32479976 DOI: 10.1016/j.virusres.2020.198040] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
61 Franck C, Foster SR, Johansen-Leete J, Chowdhury S, Cielesh M, Bhusal RP, Mackay JP, Larance M, Stone MJ, Payne RJ. Semisynthesis of an evasin from tick saliva reveals a critical role of tyrosine sulfation for chemokine binding and inhibition. Proc Natl Acad Sci U S A 2020;117:12657-64. [PMID: 32461364 DOI: 10.1073/pnas.2000605117] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
62 Chen C, Chu SF, Ai QD, Zhang Z, Chen NH. CKLF1/CCR5 axis is involved in neutrophils migration of rats with transient cerebral ischemia. Int Immunopharmacol 2020;85:106577. [PMID: 32446198 DOI: 10.1016/j.intimp.2020.106577] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
63 Samson GPB, Legler DF. Membrane Compartmentalization and Scaffold Proteins in Leukocyte Migration. Front Cell Dev Biol 2020;8:285. [PMID: 32411706 DOI: 10.3389/fcell.2020.00285] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
64 Ngo T, Stephens BS, Gustavsson M, Holden LG, Abagyan R, Handel TM, Kufareva I. Crosslinking-guided geometry of a complete CXC receptor-chemokine complex and the basis of chemokine subfamily selectivity. PLoS Biol 2020;18:e3000656. [PMID: 32271748 DOI: 10.1371/journal.pbio.3000656] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
65 Davenport AP, Scully CCG, de Graaf C, Brown AJH, Maguire JJ. Advances in therapeutic peptides targeting G protein-coupled receptors. Nat Rev Drug Discov. 2020;19:389-413. [PMID: 32494050 DOI: 10.1038/s41573-020-0062-z] [Cited by in Crossref: 89] [Cited by in F6Publishing: 95] [Article Influence: 44.5] [Reference Citation Analysis]
66 Gustavsson M. New insights into the structure and function of chemokine receptor:chemokine complexes from an experimental perspective. J Leukoc Biol 2020;107:1115-22. [DOI: 10.1002/jlb.2mr1219-288r] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
67 Stephens BS, Ngo T, Kufareva I, Handel TM. Functional anatomy of the full length CXCR4-CXCL12 complex systematically dissected by quantitative model-guided mutagenesis.. [DOI: 10.1101/2020.01.21.913772] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
68 Miao M, De Clercq E, Li G. Clinical significance of chemokine receptor antagonists. Expert Opin Drug Metab Toxicol 2020;16:11-30. [PMID: 31903790 DOI: 10.1080/17425255.2020.1711884] [Cited by in Crossref: 55] [Cited by in F6Publishing: 46] [Article Influence: 27.5] [Reference Citation Analysis]
69 Ngo T, Stephens BS, Gustavsson M, Holden LG, Abagyan R, Handel TM, Kufareva I. Crosslinking-guided geometry of a complete CXC receptor-chemokine complex and the basis of chemokine subfamily selectivity.. [DOI: 10.1101/2020.01.10.900951] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
70 Wedemeyer MJ, Mueller BK, Bender BJ, Meiler J, Volkman BF. Comparative modeling and docking of chemokine-receptor interactions with Rosetta. Biochem Biophys Res Commun 2020;528:389-97. [PMID: 31924303 DOI: 10.1016/j.bbrc.2019.12.076] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
71 Zarzycka B, Zaidi SA, Roth BL, Katritch V. Harnessing Ion-Binding Sites for GPCR Pharmacology. Pharmacol Rev 2019;71:571-95. [PMID: 31551350 DOI: 10.1124/pr.119.017863] [Cited by in Crossref: 60] [Cited by in F6Publishing: 61] [Article Influence: 20.0] [Reference Citation Analysis]
72 Gürtler LG. Cytokines and chemokines involved in the defense reaction against HIV-1 and hepatitis B virus: isn't it time to use a standardized nomenclature of the involved mediators? Virus Genes 2020;56:120-7. [PMID: 31848887 DOI: 10.1007/s11262-019-01721-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
73 Larsen O, Lückmann M, van der Velden WJC, Oliva-Santiago M, Brvar M, Ulven T, Frimurer TM, Karlshøj S, Rosenkilde MM. Selective Allosteric Modulation of N-Terminally Cleaved, but Not Full Length CCL3 in CCR1. ACS Pharmacol Transl Sci 2019;2:429-41. [PMID: 32259075 DOI: 10.1021/acsptsci.9b00059] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
74 Bhusal RP, Foster SR, Stone MJ. Structural basis of chemokine and receptor interactions: Key regulators of leukocyte recruitment in inflammatory responses. Protein Sci 2020;29:420-32. [PMID: 31605402 DOI: 10.1002/pro.3744] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
75 Scurci I, Martins E, Hartley O. CCR5: Established paradigms and new frontiers for a 'celebrity' chemokine receptor. Cytokine 2018;109:81-93. [PMID: 29903576 DOI: 10.1016/j.cyto.2018.02.018] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
76 Jørgensen AS, Larsen O, Uetz-von Allmen E, Lückmann M, Legler DF, Frimurer TM, Veldkamp CT, Hjortø GM, Rosenkilde MM. Biased Signaling of CCL21 and CCL19 Does Not Rely on N-Terminal Differences, but Markedly on the Chemokine Core Domains and Extracellular Loop 2 of CCR7. Front Immunol 2019;10:2156. [PMID: 31572374 DOI: 10.3389/fimmu.2019.02156] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
77 Gustavsson M, Dyer DP, Zhao C, Handel TM. Kinetics of CXCL12 binding to atypical chemokine receptor 3 reveal a role for the receptor N terminus in chemokine binding. Sci Signal 2019;12:eaaw3657. [PMID: 31506383 DOI: 10.1126/scisignal.aaw3657] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
78 Fox JC, Thomas MA, Dishman AF, Larsen O, Nakayama T, Yoshie O, Rosenkilde MM, Volkman BF. Structure-function guided modeling of chemokine-GPCR specificity for the chemokine XCL1 and its receptor XCR1. Sci Signal 2019;12:eaat4128. [PMID: 31481523 DOI: 10.1126/scisignal.aat4128] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
79 Rico CA, Berchiche YA, Horioka M, Peeler JC, Lorenzen E, Tian H, Kazmi MA, Fürstenberg A, Gaertner H, Hartley O, Sakmar TP, Huber T. High-Affinity Binding of Chemokine Analogs that Display Ligand Bias at the HIV-1 Coreceptor CCR5. Biophys J 2019;117:903-19. [PMID: 31421836 DOI: 10.1016/j.bpj.2019.07.043] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
80 Arimont M, Hoffmann C, de Graaf C, Leurs R. Chemokine Receptor Crystal Structures: What Can Be Learned from Them? Mol Pharmacol 2019;96:765-77. [PMID: 31266800 DOI: 10.1124/mol.119.117168] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
81 Chen B. Molecular Mechanism of HIV-1 Entry. Trends Microbiol 2019;27:878-91. [PMID: 31262533 DOI: 10.1016/j.tim.2019.06.002] [Cited by in Crossref: 102] [Cited by in F6Publishing: 109] [Article Influence: 34.0] [Reference Citation Analysis]
82 Denisov SS, Ippel JH, Heinzmann ACA, Koenen RR, Ortega-Gomez A, Soehnlein O, Hackeng TM, Dijkgraaf I. Tick saliva protein Evasin-3 modulates chemotaxis by disrupting CXCL8 interactions with glycosaminoglycans and CXCR2. J Biol Chem 2019;294:12370-9. [PMID: 31235521 DOI: 10.1074/jbc.RA119.008902] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
83 Ceraudo E, Horioka M, Mattheisen JM, Hitchman TD, Moore AR, Kazmi MA, Chi P, Chen Y, Sakmar TP, Huber T. Uveal Melanoma OncogeneCYSLTR2Encodes a Constitutively Active GPCR Highly Biased Toward Gq Signaling.. [DOI: 10.1101/663153] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
84 Jakobs BD, Spannagel L, Purvanov V, Uetz-von Allmen E, Matti C, Legler DF. Engineering of Nanobodies Recognizing the Human Chemokine Receptor CCR7. Int J Mol Sci 2019;20:E2597. [PMID: 31137829 DOI: 10.3390/ijms20102597] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
85 Wink LH, Baker DL, Cole JA, Parrill AL. A benchmark study of loop modeling methods applied to G protein-coupled receptors. J Comput Aided Mol Des 2019;33:573-95. [PMID: 31123958 DOI: 10.1007/s10822-019-00196-x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
86 Filipek S. Molecular switches in GPCRs. Current Opinion in Structural Biology 2019;55:114-20. [DOI: 10.1016/j.sbi.2019.03.017] [Cited by in Crossref: 48] [Cited by in F6Publishing: 36] [Article Influence: 16.0] [Reference Citation Analysis]
87 Rico CA, Berchiche YA, Horioka M, Peeler JC, Lorenzen E, Tian H, Kazmi MA, Fürstenberg A, Gaertner H, Hartley O, Sakmar TP, Huber T. High-Affinity Binding of Chemokine Analogs that Display Ligand Bias at the HIV-1 Co-receptor CCR5.. [DOI: 10.1101/575795] [Reference Citation Analysis]
88 Apel A, Cheng RK, Tautermann CS, Brauchle M, Huang C, Pautsch A, Hennig M, Nar H, Schnapp G. Crystal Structure of CC Chemokine Receptor 2A in Complex with an Orthosteric Antagonist Provides Insights for the Design of Selective Antagonists. Structure 2019;27:427-438.e5. [DOI: 10.1016/j.str.2018.10.027] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
89 Latinovic OS, Reitz M, Heredia A. CCR5 Inhibitors and HIV-1 Infection. J AIDS HIV Treat 2019;1:1-5. [PMID: 31414081 DOI: 10.33696/AIDS.1.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
90 Shaik MM, Peng H, Lu J, Rits-Volloch S, Xu C, Liao M, Chen B. Structural basis of coreceptor recognition by HIV-1 envelope spike. Nature 2019;565:318-23. [PMID: 30542158 DOI: 10.1038/s41586-018-0804-9] [Cited by in Crossref: 118] [Cited by in F6Publishing: 123] [Article Influence: 29.5] [Reference Citation Analysis]
91 Kleist AB, Peterson F, Tyler RC, Gustavsson M, Handel TM, Volkman BF. Solution NMR spectroscopy of GPCRs: Residue-specific labeling strategies with a focus on 13C-methyl methionine labeling of the atypical chemokine receptor ACKR3. Methods Cell Biol 2019;149:259-88. [PMID: 30616824 DOI: 10.1016/bs.mcb.2018.09.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
92 Wedemeyer MJ, Mueller BK, Bender BJ, Meiler J, Volkman BF. Modeling the complete chemokine-receptor interaction. Methods Cell Biol 2019;149:289-314. [PMID: 30616825 DOI: 10.1016/bs.mcb.2018.09.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
93 Adlere I, Sun S, Zarca A, Roumen L, Gozelle M, Viciano CP, Caspar B, Arimont M, Bebelman JP, Briddon SJ, Hoffmann C, Hill SJ, Smit MJ, Vischer HF, Wijtmans M, de Graaf C, de Esch IJP, Leurs R. Structure-based exploration and pharmacological evaluation of N-substituted piperidin-4-yl-methanamine CXCR4 chemokine receptor antagonists. Eur J Med Chem 2019;162:631-49. [PMID: 30476826 DOI: 10.1016/j.ejmech.2018.10.060] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
94 Lorenzen E, Ceraudo E, Berchiche YA, Rico CA, Fürstenberg A, Sakmar TP, Huber T. G protein subtype-specific signaling bias in a series of CCR5 chemokine analogs. Sci Signal 2018;11:eaao6152. [PMID: 30327411 DOI: 10.1126/scisignal.aao6152] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
95 Paolini-Bertrand M, Cerini F, Martins E, Scurci I, Hartley O. Rapid and low-cost multiplex synthesis of chemokine analogs. J Biol Chem 2018;293:19092-100. [PMID: 30305389 DOI: 10.1074/jbc.RA118.004370] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
96 Mostashari Rad T, Saghaie L, Fassihi A. HIV-1 Entry Inhibitors: A Review of Experimental and Computational Studies. Chem Biodivers 2018;15:e1800159. [PMID: 30027572 DOI: 10.1002/cbdv.201800159] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
97 Thelen M, Legler DF. Membrane lipid environment: Potential modulation of chemokine receptor function. Cytokine 2018;109:72-5. [DOI: 10.1016/j.cyto.2018.02.011] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
98 Brocca-Cofano E, Xu C, Wetzel KS, Cottrell ML, Policicchio BB, Raehtz KD, Ma D, Dunsmore T, Haret-Richter GS, Musaitif K, Keele BF, Kashuba AD, Collman RG, Pandrea I, Apetrei C. Marginal Effects of Systemic CCR5 Blockade with Maraviroc on Oral Simian Immunodeficiency Virus Transmission to Infant Macaques. J Virol 2018;92:e00576-18. [PMID: 29925666 DOI: 10.1128/JVI.00576-18] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
99 Riutta SJ, Larsen O, Getschman AE, Rosenkilde MM, Hwang ST, Volkman BF. Mutational analysis of CCL20 reveals flexibility of N-terminal amino acid composition and length. J Leukoc Biol 2018;104:423-34. [DOI: 10.1002/jlb.1vma0218-049r] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
100 Thal DM, Glukhova A, Sexton PM, Christopoulos A. Structural insights into G-protein-coupled receptor allostery. Nature 2018;559:45-53. [DOI: 10.1038/s41586-018-0259-z] [Cited by in Crossref: 194] [Cited by in F6Publishing: 194] [Article Influence: 48.5] [Reference Citation Analysis]
101 Stenkamp RE. Identifying G protein-coupled receptor dimers from crystal packings. Acta Crystallogr D Struct Biol 2018;74:655-70. [PMID: 29968675 DOI: 10.1107/S2059798318008136] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
102 Brelot A, Chakrabarti LA. CCR5 Revisited: How Mechanisms of HIV Entry Govern AIDS Pathogenesis. J Mol Biol 2018;430:2557-89. [PMID: 29932942 DOI: 10.1016/j.jmb.2018.06.027] [Cited by in Crossref: 54] [Cited by in F6Publishing: 56] [Article Influence: 13.5] [Reference Citation Analysis]
103 Miles TF, Spiess K, Jude KM, Tsutsumi N, Burg JS, Ingram JR, Waghray D, Hjorto GM, Larsen O, Ploegh HL, Rosenkilde MM, Garcia KC. Viral GPCR US28 can signal in response to chemokine agonists of nearly unlimited structural degeneracy. Elife 2018;7:e35850. [PMID: 29882741 DOI: 10.7554/eLife.35850] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 7.8] [Reference Citation Analysis]
104 Thomas MA, Kleist AB, Volkman BF. Decoding the chemotactic signal. J Leukoc Biol 2018;104:359-74. [PMID: 29873835 DOI: 10.1002/JLB.1MR0218-044] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
105 Zhang R, Jiang H, Li F, Su N, Ding Y, Mao X, Ren D, Wang J. Key genes and pathways in measles and their interaction with environmental chemicals. Exp Ther Med 2018;15:4890-900. [PMID: 29805511 DOI: 10.3892/etm.2018.6050] [Reference Citation Analysis]
106 Martínez-Muñoz L, Villares R, Rodríguez-Fernández JL, Rodríguez-Frade JM, Mellado M. Remodeling our concept of chemokine receptor function: From monomers to oligomers. J Leukoc Biol 2018;104:323-31. [PMID: 29719064 DOI: 10.1002/JLB.2MR1217-503R] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
107 Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. FEBS J 2018;285:2944-71. [PMID: 29637711 DOI: 10.1111/febs.14466] [Cited by in Crossref: 413] [Cited by in F6Publishing: 440] [Article Influence: 103.3] [Reference Citation Analysis]
108 Petti LM, Marlatt SA, Luo Y, Scheideman EH, Shelar A, DiMaio D. Regulation of C-C chemokine receptor 5 (CCR5) stability by Lys197 and by transmembrane protein aptamers that target it for lysosomal degradation. J Biol Chem 2018;293:8787-801. [PMID: 29678881 DOI: 10.1074/jbc.RA117.001067] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
109 Heredia JD, Park J, Brubaker RJ, Szymanski SK, Gill KS, Procko E. Mapping Interaction Sites on Human Chemokine Receptors by Deep Mutational Scanning. J Immunol 2018;200:3825-39. [PMID: 29678950 DOI: 10.4049/jimmunol.1800343] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 9.0] [Reference Citation Analysis]
110 Abayev M, Rodrigues JPGLM, Srivastava G, Arshava B, Jaremko Ł, Jaremko M, Naider F, Levitt M, Anglister J. The solution structure of monomeric CCL5 in complex with a doubly sulfated N-terminal segment of CCR5. FEBS J 2018;285:1988-2003. [PMID: 29619777 DOI: 10.1111/febs.14460] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 7.3] [Reference Citation Analysis]
111 Brocca-cofano E, Xu C, Wetzel KS, Cottrell ML, Policicchio BB, Raehtz KD, Ma D, Dunsmore T, Haret-richter GS, Musaitif K, Keele BF, Kashuba AD, Collman RG, Pandrea I, Apetrei C. Marginal Effects of Systemic CCR5 Blockade with Maraviroc on Oral Simian Immunodeficiency Virus Transmission to Infant Macaques.. [DOI: 10.1101/299206] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
112 Lacy M, Kontos C, Brandhofer M, Hille K, Gröning S, Sinitski D, Bourilhon P, Rosenberg E, Krammer C, Thavayogarajah T, Pantouris G, Bakou M, Weber C, Lolis E, Bernhagen J, Kapurniotu A. Identification of an Arg-Leu-Arg tripeptide that contributes to the binding interface between the cytokine MIF and the chemokine receptor CXCR4. Sci Rep 2018;8:5171. [PMID: 29581527 DOI: 10.1038/s41598-018-23554-5] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 8.3] [Reference Citation Analysis]
113 Szpakowska M, Nevins AM, Meyrath M, Rhainds D, D'huys T, Guité-Vinet F, Dupuis N, Gauthier PA, Counson M, Kleist A, St-Onge G, Hanson J, Schols D, Volkman BF, Heveker N, Chevigné A. Different contributions of chemokine N-terminal features attest to a different ligand binding mode and a bias towards activation of ACKR3/CXCR7 compared with CXCR4 and CXCR3. Br J Pharmacol 2018;175:1419-38. [PMID: 29272550 DOI: 10.1111/bph.14132] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 9.8] [Reference Citation Analysis]
114 Fievez V, Szpakowska M, Mosbah A, Arumugam K, Mathu J, Counson M, Beaupain N, Seguin-Devaux C, Deroo S, Baudy-Floc'h M, Chevigné A. Development of Mimokines, chemokine N terminus-based CXCR4 inhibitors optimized by phage display and rational design. J Leukoc Biol 2018;104:343-57. [PMID: 29570832 DOI: 10.1002/JLB.3MA0118-007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
115 Stenkamp RE. Identifying G protein-coupled receptor dimers from crystal packings.. [DOI: 10.1101/282178] [Reference Citation Analysis]
116 Eaton JRO, Alenazi Y, Singh K, Davies G, Geis-Asteggiante L, Kessler B, Robinson CV, Kawamura A, Bhattacharya S. The N-terminal domain of a tick evasin is critical for chemokine binding and neutralization and confers specific binding activity to other evasins. J Biol Chem 2018;293:6134-46. [PMID: 29487134 DOI: 10.1074/jbc.RA117.000487] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
117 Sahoo AR, Mishra R, Rana S. The Model Structures of the Complement Component 5a Receptor (C5aR) Bound to the Native and Engineered hC5a. Sci Rep 2018;8:2955. [PMID: 29440703 DOI: 10.1038/s41598-018-21290-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
118 Chen YC, Li KM, Zarivach R, Sun YJ, Sue SC. Human CCL5 trimer: expression, purification and initial crystallographic studies. Acta Crystallogr F Struct Biol Commun 2018;74:82-5. [PMID: 29400316 DOI: 10.1107/S2053230X17018544] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
119 Vangelista L, Vento S. The Expanding Therapeutic Perspective of CCR5 Blockade. Front Immunol 2017;8:1981. [PMID: 29375583 DOI: 10.3389/fimmu.2017.01981] [Cited by in Crossref: 60] [Cited by in F6Publishing: 65] [Article Influence: 15.0] [Reference Citation Analysis]
120 Guan X, Chaffey PK, Chen H, Feng W, Wei X, Yang LM, Ruan Y, Wang X, Li Y, Barosh KB, Tran AH, Zhu J, Liang W, Zheng YT, Wang X, Tan Z. O-GalNAcylation of RANTES Improves Its Properties as a Human Immunodeficiency Virus Type 1 Entry Inhibitor. Biochemistry 2018;57:136-48. [PMID: 29202246 DOI: 10.1021/acs.biochem.7b00875] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
121 Proudfoot AEI, Johnson Z, Bonvin P, Handel TM. Glycosaminoglycan Interactions with Chemokines Add Complexity to a Complex System. Pharmaceuticals (Basel) 2017;10:E70. [PMID: 28792472 DOI: 10.3390/ph10030070] [Cited by in Crossref: 70] [Cited by in F6Publishing: 77] [Article Influence: 14.0] [Reference Citation Analysis]